1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
/*
* Copyright 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#undef LOG_TAG
#define LOG_TAG "SurfaceFlinger"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <gui/GLConsumer.h>
#include <gui/TraceUtils.h>
#include <math/vec3.h>
#include <system/window.h>
#include <utils/Log.h>
#include "LayerFE.h"
#include "SurfaceFlinger.h"
namespace android {
namespace {
constexpr float defaultMaxLuminance = 1000.0;
constexpr mat4 inverseOrientation(uint32_t transform) {
const mat4 flipH(-1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
const mat4 flipV(1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1);
const mat4 rot90(0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1);
mat4 tr;
if (transform & NATIVE_WINDOW_TRANSFORM_ROT_90) {
tr = tr * rot90;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_H) {
tr = tr * flipH;
}
if (transform & NATIVE_WINDOW_TRANSFORM_FLIP_V) {
tr = tr * flipV;
}
return inverse(tr);
}
FloatRect reduce(const FloatRect& win, const Region& exclude) {
if (CC_LIKELY(exclude.isEmpty())) {
return win;
}
// Convert through Rect (by rounding) for lack of FloatRegion
return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
}
// Computes the transform matrix using the setFilteringEnabled to determine whether the
// transform matrix should be computed for use with bilinear filtering.
void getDrawingTransformMatrix(const std::shared_ptr<renderengine::ExternalTexture>& buffer,
Rect bufferCrop, uint32_t bufferTransform, bool filteringEnabled,
float outMatrix[16]) {
if (!buffer) {
ALOGE("Buffer should not be null!");
return;
}
GLConsumer::computeTransformMatrix(outMatrix, static_cast<float>(buffer->getWidth()),
static_cast<float>(buffer->getHeight()),
buffer->getPixelFormat(), bufferCrop, bufferTransform,
filteringEnabled);
}
} // namespace
LayerFE::LayerFE(const std::string& name) : mName(name) {}
const compositionengine::LayerFECompositionState* LayerFE::getCompositionState() const {
return mSnapshot.get();
}
bool LayerFE::onPreComposition(nsecs_t refreshStartTime, bool) {
mCompositionResult.refreshStartTime = refreshStartTime;
return mSnapshot->hasReadyFrame;
}
std::optional<compositionengine::LayerFE::LayerSettings> LayerFE::prepareClientComposition(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) const {
std::optional<compositionengine::LayerFE::LayerSettings> layerSettings =
prepareClientCompositionInternal(targetSettings);
// Nothing to render.
if (!layerSettings) {
return {};
}
// HWC requests to clear this layer.
if (targetSettings.clearContent) {
prepareClearClientComposition(*layerSettings, false /* blackout */);
return layerSettings;
}
// set the shadow for the layer if needed
prepareShadowClientComposition(*layerSettings, targetSettings.viewport);
return layerSettings;
}
std::optional<compositionengine::LayerFE::LayerSettings> LayerFE::prepareClientCompositionInternal(
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) const {
ATRACE_CALL();
compositionengine::LayerFE::LayerSettings layerSettings;
layerSettings.geometry.boundaries =
reduce(mSnapshot->geomLayerBounds, mSnapshot->transparentRegionHint);
layerSettings.geometry.positionTransform = mSnapshot->geomLayerTransform.asMatrix4();
// skip drawing content if the targetSettings indicate the content will be occluded
const bool drawContent = targetSettings.realContentIsVisible || targetSettings.clearContent;
layerSettings.skipContentDraw = !drawContent;
if (!mSnapshot->colorTransformIsIdentity) {
layerSettings.colorTransform = mSnapshot->colorTransform;
}
const auto& roundedCornerState = mSnapshot->roundedCorner;
layerSettings.geometry.roundedCornersRadius = roundedCornerState.radius;
layerSettings.geometry.roundedCornersCrop = roundedCornerState.cropRect;
layerSettings.alpha = mSnapshot->alpha;
layerSettings.sourceDataspace = mSnapshot->dataspace;
// Override the dataspace transfer from 170M to sRGB if the device configuration requests this.
// We do this here instead of in buffer info so that dumpsys can still report layers that are
// using the 170M transfer.
if (targetSettings.treat170mAsSrgb &&
(layerSettings.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) ==
HAL_DATASPACE_TRANSFER_SMPTE_170M) {
layerSettings.sourceDataspace = static_cast<ui::Dataspace>(
(layerSettings.sourceDataspace & HAL_DATASPACE_STANDARD_MASK) |
(layerSettings.sourceDataspace & HAL_DATASPACE_RANGE_MASK) |
HAL_DATASPACE_TRANSFER_SRGB);
}
layerSettings.whitePointNits = targetSettings.whitePointNits;
switch (targetSettings.blurSetting) {
case LayerFE::ClientCompositionTargetSettings::BlurSetting::Enabled:
layerSettings.backgroundBlurRadius = mSnapshot->backgroundBlurRadius;
layerSettings.blurRegions = mSnapshot->blurRegions;
layerSettings.blurRegionTransform = mSnapshot->localTransformInverse.asMatrix4();
break;
case LayerFE::ClientCompositionTargetSettings::BlurSetting::BackgroundBlurOnly:
layerSettings.backgroundBlurRadius = mSnapshot->backgroundBlurRadius;
break;
case LayerFE::ClientCompositionTargetSettings::BlurSetting::BlurRegionsOnly:
layerSettings.blurRegions = mSnapshot->blurRegions;
layerSettings.blurRegionTransform = mSnapshot->localTransformInverse.asMatrix4();
break;
case LayerFE::ClientCompositionTargetSettings::BlurSetting::Disabled:
default:
break;
}
layerSettings.stretchEffect = mSnapshot->stretchEffect;
// Record the name of the layer for debugging further down the stack.
layerSettings.name = mSnapshot->name;
if (hasEffect() && !hasBufferOrSidebandStream()) {
prepareEffectsClientComposition(layerSettings, targetSettings);
return layerSettings;
}
prepareBufferStateClientComposition(layerSettings, targetSettings);
return layerSettings;
}
void LayerFE::prepareClearClientComposition(LayerFE::LayerSettings& layerSettings,
bool blackout) const {
layerSettings.source.buffer.buffer = nullptr;
layerSettings.source.solidColor = half3(0.0f, 0.0f, 0.0f);
layerSettings.disableBlending = true;
layerSettings.bufferId = 0;
layerSettings.frameNumber = 0;
// If layer is blacked out, force alpha to 1 so that we draw a black color layer.
layerSettings.alpha = blackout ? 1.0f : 0.0f;
layerSettings.name = mSnapshot->name;
}
void LayerFE::prepareEffectsClientComposition(
compositionengine::LayerFE::LayerSettings& layerSettings,
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) const {
// If fill bounds are occluded or the fill color is invalid skip the fill settings.
if (targetSettings.realContentIsVisible && fillsColor()) {
// Set color for color fill settings.
layerSettings.source.solidColor = mSnapshot->color.rgb;
} else if (hasBlur() || drawShadows()) {
layerSettings.skipContentDraw = true;
}
}
void LayerFE::prepareBufferStateClientComposition(
compositionengine::LayerFE::LayerSettings& layerSettings,
compositionengine::LayerFE::ClientCompositionTargetSettings& targetSettings) const {
ATRACE_CALL();
if (CC_UNLIKELY(!mSnapshot->externalTexture)) {
// If there is no buffer for the layer or we have sidebandstream where there is no
// activeBuffer, then we need to return LayerSettings.
return;
}
bool blackOutLayer;
if (FlagManager::getInstance().display_protected()) {
blackOutLayer = (mSnapshot->hasProtectedContent && !targetSettings.isProtected) ||
(mSnapshot->isSecure && !targetSettings.isSecure);
} else {
blackOutLayer = (mSnapshot->hasProtectedContent && !targetSettings.isProtected) ||
((mSnapshot->isSecure || mSnapshot->hasProtectedContent) &&
!targetSettings.isSecure);
}
const bool bufferCanBeUsedAsHwTexture =
mSnapshot->externalTexture->getUsage() & GraphicBuffer::USAGE_HW_TEXTURE;
if (blackOutLayer || !bufferCanBeUsedAsHwTexture) {
ALOGE_IF(!bufferCanBeUsedAsHwTexture, "%s is blacked out as buffer is not gpu readable",
mSnapshot->name.c_str());
prepareClearClientComposition(layerSettings, true /* blackout */);
return;
}
layerSettings.source.buffer.buffer = mSnapshot->externalTexture;
layerSettings.source.buffer.isOpaque = mSnapshot->contentOpaque;
layerSettings.source.buffer.fence = mSnapshot->acquireFence;
layerSettings.source.buffer.usePremultipliedAlpha = mSnapshot->premultipliedAlpha;
bool hasSmpte2086 = mSnapshot->hdrMetadata.validTypes & HdrMetadata::SMPTE2086;
bool hasCta861_3 = mSnapshot->hdrMetadata.validTypes & HdrMetadata::CTA861_3;
float maxLuminance = 0.f;
if (hasSmpte2086 && hasCta861_3) {
maxLuminance = std::min(mSnapshot->hdrMetadata.smpte2086.maxLuminance,
mSnapshot->hdrMetadata.cta8613.maxContentLightLevel);
} else if (hasSmpte2086) {
maxLuminance = mSnapshot->hdrMetadata.smpte2086.maxLuminance;
} else if (hasCta861_3) {
maxLuminance = mSnapshot->hdrMetadata.cta8613.maxContentLightLevel;
} else {
switch (layerSettings.sourceDataspace & HAL_DATASPACE_TRANSFER_MASK) {
case HAL_DATASPACE_TRANSFER_ST2084:
case HAL_DATASPACE_TRANSFER_HLG:
// Behavior-match previous releases for HDR content
maxLuminance = defaultMaxLuminance;
break;
}
}
layerSettings.source.buffer.maxLuminanceNits = maxLuminance;
layerSettings.frameNumber = mSnapshot->frameNumber;
layerSettings.bufferId = mSnapshot->externalTexture->getId();
const bool useFiltering = targetSettings.needsFiltering ||
mSnapshot->geomLayerTransform.needsBilinearFiltering();
// Query the texture matrix given our current filtering mode.
float textureMatrix[16];
getDrawingTransformMatrix(layerSettings.source.buffer.buffer, mSnapshot->geomContentCrop,
mSnapshot->geomBufferTransform, useFiltering,
textureMatrix);
if (mSnapshot->geomBufferUsesDisplayInverseTransform) {
/*
* the code below applies the primary display's inverse transform to
* the texture transform
*/
uint32_t transform = SurfaceFlinger::getActiveDisplayRotationFlags();
mat4 tr = inverseOrientation(transform);
/**
* TODO(b/36727915): This is basically a hack.
*
* Ensure that regardless of the parent transformation,
* this buffer is always transformed from native display
* orientation to display orientation. For example, in the case
* of a camera where the buffer remains in native orientation,
* we want the pixels to always be upright.
*/
const auto parentTransform = mSnapshot->parentTransform;
tr = tr * inverseOrientation(parentTransform.getOrientation());
// and finally apply it to the original texture matrix
const mat4 texTransform(mat4(static_cast<const float*>(textureMatrix)) * tr);
memcpy(textureMatrix, texTransform.asArray(), sizeof(textureMatrix));
}
const Rect win{layerSettings.geometry.boundaries};
float bufferWidth = static_cast<float>(mSnapshot->bufferSize.getWidth());
float bufferHeight = static_cast<float>(mSnapshot->bufferSize.getHeight());
// Layers can have a "buffer size" of [0, 0, -1, -1] when no display frame has
// been set and there is no parent layer bounds. In that case, the scale is meaningless so
// ignore them.
if (!mSnapshot->bufferSize.isValid()) {
bufferWidth = float(win.right) - float(win.left);
bufferHeight = float(win.bottom) - float(win.top);
}
const float scaleHeight = (float(win.bottom) - float(win.top)) / bufferHeight;
const float scaleWidth = (float(win.right) - float(win.left)) / bufferWidth;
const float translateY = float(win.top) / bufferHeight;
const float translateX = float(win.left) / bufferWidth;
// Flip y-coordinates because GLConsumer expects OpenGL convention.
mat4 tr = mat4::translate(vec4(.5f, .5f, 0.f, 1.f)) * mat4::scale(vec4(1.f, -1.f, 1.f, 1.f)) *
mat4::translate(vec4(-.5f, -.5f, 0.f, 1.f)) *
mat4::translate(vec4(translateX, translateY, 0.f, 1.f)) *
mat4::scale(vec4(scaleWidth, scaleHeight, 1.0f, 1.0f));
layerSettings.source.buffer.useTextureFiltering = useFiltering;
layerSettings.source.buffer.textureTransform =
mat4(static_cast<const float*>(textureMatrix)) * tr;
return;
}
void LayerFE::prepareShadowClientComposition(LayerFE::LayerSettings& caster,
const Rect& layerStackRect) const {
ShadowSettings state = mSnapshot->shadowSettings;
if (state.length <= 0.f || (state.ambientColor.a <= 0.f && state.spotColor.a <= 0.f)) {
return;
}
// Shift the spot light x-position to the middle of the display and then
// offset it by casting layer's screen pos.
state.lightPos.x =
(static_cast<float>(layerStackRect.width()) / 2.f) - mSnapshot->transformedBounds.left;
state.lightPos.y -= mSnapshot->transformedBounds.top;
caster.shadow = state;
}
void LayerFE::onLayerDisplayed(ftl::SharedFuture<FenceResult> futureFenceResult,
ui::LayerStack layerStack) {
mCompositionResult.releaseFences.emplace_back(std::move(futureFenceResult), layerStack);
}
CompositionResult&& LayerFE::stealCompositionResult() {
return std::move(mCompositionResult);
}
const char* LayerFE::getDebugName() const {
return mName.c_str();
}
const LayerMetadata* LayerFE::getMetadata() const {
return &mSnapshot->layerMetadata;
}
const LayerMetadata* LayerFE::getRelativeMetadata() const {
return &mSnapshot->relativeLayerMetadata;
}
int32_t LayerFE::getSequence() const {
return static_cast<int32_t>(mSnapshot->uniqueSequence);
}
bool LayerFE::hasRoundedCorners() const {
return mSnapshot->roundedCorner.hasRoundedCorners();
}
void LayerFE::setWasClientComposed(const sp<Fence>& fence) {
mCompositionResult.lastClientCompositionFence = fence;
}
bool LayerFE::hasBufferOrSidebandStream() const {
return mSnapshot->externalTexture || mSnapshot->sidebandStream;
}
bool LayerFE::fillsColor() const {
return mSnapshot->color.r >= 0.0_hf && mSnapshot->color.g >= 0.0_hf &&
mSnapshot->color.b >= 0.0_hf;
}
bool LayerFE::hasBlur() const {
return mSnapshot->backgroundBlurRadius > 0 || mSnapshot->blurRegions.size() > 0;
}
bool LayerFE::drawShadows() const {
return mSnapshot->shadowSettings.length > 0.f &&
(mSnapshot->shadowSettings.ambientColor.a > 0 ||
mSnapshot->shadowSettings.spotColor.a > 0);
};
const sp<GraphicBuffer> LayerFE::getBuffer() const {
return mSnapshot->externalTexture ? mSnapshot->externalTexture->getBuffer() : nullptr;
}
} // namespace android
|