1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
/*
* Copyright 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra"
// #define LOG_NDEBUG 0
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "LayerInfo.h"
#include <algorithm>
#include <utility>
#include <android/native_window.h>
#include <cutils/compiler.h>
#include <cutils/trace.h>
#include <ftl/enum.h>
#include <gui/TraceUtils.h>
#include <system/window.h>
#undef LOG_TAG
#define LOG_TAG "LayerInfo"
namespace android::scheduler {
bool LayerInfo::sTraceEnabled = false;
LayerInfo::LayerInfo(const std::string& name, uid_t ownerUid,
LayerHistory::LayerVoteType defaultVote)
: mName(name),
mOwnerUid(ownerUid),
mDefaultVote(defaultVote),
mLayerVote({defaultVote, Fps()}),
mLayerProps(std::make_unique<LayerProps>()),
mRefreshRateHistory(name) {
;
}
void LayerInfo::setLastPresentTime(nsecs_t lastPresentTime, nsecs_t now, LayerUpdateType updateType,
bool pendingModeChange, const LayerProps& props) {
lastPresentTime = std::max(lastPresentTime, static_cast<nsecs_t>(0));
mLastUpdatedTime = std::max(lastPresentTime, now);
*mLayerProps = props;
switch (updateType) {
case LayerUpdateType::AnimationTX:
mLastAnimationTime = std::max(lastPresentTime, now);
break;
case LayerUpdateType::SetFrameRate:
if (FlagManager::getInstance().vrr_config()) {
break;
}
FALLTHROUGH_INTENDED;
case LayerUpdateType::Buffer:
FrameTimeData frameTime = {.presentTime = lastPresentTime,
.queueTime = mLastUpdatedTime,
.pendingModeChange = pendingModeChange,
.isSmallDirty = props.isSmallDirty};
mFrameTimes.push_back(frameTime);
if (mFrameTimes.size() > HISTORY_SIZE) {
mFrameTimes.pop_front();
}
break;
}
}
void LayerInfo::setProperties(const android::scheduler::LayerProps& properties) {
*mLayerProps = properties;
}
bool LayerInfo::isFrameTimeValid(const FrameTimeData& frameTime) const {
return frameTime.queueTime >= std::chrono::duration_cast<std::chrono::nanoseconds>(
mFrameTimeValidSince.time_since_epoch())
.count();
}
LayerInfo::Frequent LayerInfo::isFrequent(nsecs_t now) const {
// If we know nothing about this layer (e.g. after touch event),
// we consider it as frequent as it might be the start of an animation.
if (mFrameTimes.size() < kFrequentLayerWindowSize) {
return {/* isFrequent */ true, /* clearHistory */ false, /* isConclusive */ true};
}
// Non-active layers are also infrequent
if (mLastUpdatedTime < getActiveLayerThreshold(now)) {
return {/* isFrequent */ false, /* clearHistory */ false, /* isConclusive */ true};
}
// We check whether we can classify this layer as frequent or infrequent:
// - frequent: a layer posted kFrequentLayerWindowSize within
// kMaxPeriodForFrequentLayerNs of each other.
// - infrequent: a layer posted kFrequentLayerWindowSize with longer
// gaps than kFrequentLayerWindowSize.
// If we can't determine the layer classification yet, we return the last
// classification.
bool isFrequent = true;
bool isInfrequent = true;
int32_t smallDirtyCount = 0;
const auto n = mFrameTimes.size() - 1;
for (size_t i = 0; i < kFrequentLayerWindowSize - 1; i++) {
if (mFrameTimes[n - i].queueTime - mFrameTimes[n - i - 1].queueTime <
kMaxPeriodForFrequentLayerNs.count()) {
isInfrequent = false;
if (mFrameTimes[n - i].presentTime == 0 && mFrameTimes[n - i].isSmallDirty) {
smallDirtyCount++;
}
} else {
isFrequent = false;
}
}
// Vote the small dirty when a layer contains at least HISTORY_SIZE of small dirty updates.
bool isSmallDirty = false;
if (smallDirtyCount >= kNumSmallDirtyThreshold) {
if (mLastSmallDirtyCount >= HISTORY_SIZE) {
isSmallDirty = true;
} else {
mLastSmallDirtyCount++;
}
} else {
mLastSmallDirtyCount = 0;
}
if (isFrequent || isInfrequent) {
// If the layer was previously inconclusive, we clear
// the history as indeterminate layers changed to frequent,
// and we should not look at the stale data.
return {isFrequent, isFrequent && !mIsFrequencyConclusive, /* isConclusive */ true,
isSmallDirty};
}
// If we can't determine whether the layer is frequent or not, we return
// the last known classification and mark the layer frequency as inconclusive.
isFrequent = !mLastRefreshRate.infrequent;
// If the layer was previously tagged as animating, we clear
// the history as it is likely the layer just changed its behavior,
// and we should not look at stale data.
return {isFrequent, isFrequent && mLastRefreshRate.animating, /* isConclusive */ false};
}
Fps LayerInfo::getFps(nsecs_t now) const {
// Find the first active frame
auto it = mFrameTimes.begin();
for (; it != mFrameTimes.end(); ++it) {
if (it->queueTime >= getActiveLayerThreshold(now)) {
break;
}
}
const auto numFrames = std::distance(it, mFrameTimes.end());
if (numFrames < kFrequentLayerWindowSize) {
return Fps();
}
// Layer is considered frequent if the average frame rate is higher than the threshold
const auto totalTime = mFrameTimes.back().queueTime - it->queueTime;
return Fps::fromPeriodNsecs(totalTime / (numFrames - 1));
}
bool LayerInfo::isAnimating(nsecs_t now) const {
return mLastAnimationTime >= getActiveLayerThreshold(now);
}
bool LayerInfo::hasEnoughDataForHeuristic() const {
// The layer had to publish at least HISTORY_SIZE or HISTORY_DURATION of updates
if (mFrameTimes.size() < 2) {
ALOGV("fewer than 2 frames recorded: %zu", mFrameTimes.size());
return false;
}
if (!isFrameTimeValid(mFrameTimes.front())) {
ALOGV("stale frames still captured");
return false;
}
const auto totalDuration = mFrameTimes.back().queueTime - mFrameTimes.front().queueTime;
if (mFrameTimes.size() < HISTORY_SIZE && totalDuration < HISTORY_DURATION.count()) {
ALOGV("not enough frames captured: %zu | %.2f seconds", mFrameTimes.size(),
totalDuration / 1e9f);
return false;
}
return true;
}
std::optional<nsecs_t> LayerInfo::calculateAverageFrameTime() const {
// Ignore frames captured during a mode change
const bool isDuringModeChange =
std::any_of(mFrameTimes.begin(), mFrameTimes.end(),
[](const auto& frame) { return frame.pendingModeChange; });
if (isDuringModeChange) {
return std::nullopt;
}
const bool isMissingPresentTime =
std::any_of(mFrameTimes.begin(), mFrameTimes.end(),
[](auto frame) { return frame.presentTime == 0; });
if (isMissingPresentTime && !mLastRefreshRate.reported.isValid()) {
// If there are no presentation timestamps and we haven't calculated
// one in the past then we can't calculate the refresh rate
return std::nullopt;
}
// Calculate the average frame time based on presentation timestamps. If those
// doesn't exist, we look at the time the buffer was queued only. We can do that only if
// we calculated a refresh rate based on presentation timestamps in the past. The reason
// we look at the queue time is to handle cases where hwui attaches presentation timestamps
// when implementing render ahead for specific refresh rates. When hwui no longer provides
// presentation timestamps we look at the queue time to see if the current refresh rate still
// matches the content.
auto getFrameTime = isMissingPresentTime ? [](FrameTimeData data) { return data.queueTime; }
: [](FrameTimeData data) { return data.presentTime; };
nsecs_t totalDeltas = 0;
int numDeltas = 0;
int32_t smallDirtyCount = 0;
auto prevFrame = mFrameTimes.begin();
for (auto it = mFrameTimes.begin() + 1; it != mFrameTimes.end(); ++it) {
const auto currDelta = getFrameTime(*it) - getFrameTime(*prevFrame);
if (currDelta < kMinPeriodBetweenFrames) {
// Skip this frame, but count the delta into the next frame
continue;
}
// If this is a small area update, we don't want to consider it for calculating the average
// frame time. Instead, we let the bigger frame updates to drive the calculation.
if (it->isSmallDirty && currDelta < kMinPeriodBetweenSmallDirtyFrames) {
smallDirtyCount++;
continue;
}
prevFrame = it;
if (currDelta > kMaxPeriodBetweenFrames) {
// Skip this frame and the current delta.
continue;
}
totalDeltas += currDelta;
numDeltas++;
}
if (smallDirtyCount > 0) {
ATRACE_FORMAT_INSTANT("small dirty = %" PRIu32, smallDirtyCount);
}
if (numDeltas == 0) {
return std::nullopt;
}
const auto averageFrameTime = static_cast<double>(totalDeltas) / static_cast<double>(numDeltas);
return static_cast<nsecs_t>(averageFrameTime);
}
std::optional<Fps> LayerInfo::calculateRefreshRateIfPossible(const RefreshRateSelector& selector,
nsecs_t now) {
ATRACE_CALL();
static constexpr float MARGIN = 1.0f; // 1Hz
if (!hasEnoughDataForHeuristic()) {
ALOGV("Not enough data");
return std::nullopt;
}
if (const auto averageFrameTime = calculateAverageFrameTime()) {
const auto refreshRate = Fps::fromPeriodNsecs(*averageFrameTime);
const auto closestKnownRefreshRate = mRefreshRateHistory.add(refreshRate, now, selector);
if (closestKnownRefreshRate.isValid()) {
using fps_approx_ops::operator!=;
// To avoid oscillation, use the last calculated refresh rate if it is close enough.
if (std::abs(mLastRefreshRate.calculated.getValue() - refreshRate.getValue()) >
MARGIN &&
mLastRefreshRate.reported != closestKnownRefreshRate) {
mLastRefreshRate.calculated = refreshRate;
mLastRefreshRate.reported = closestKnownRefreshRate;
}
ALOGV("%s %s rounded to nearest known frame rate %s", mName.c_str(),
to_string(refreshRate).c_str(), to_string(mLastRefreshRate.reported).c_str());
} else {
ALOGV("%s Not stable (%s) returning last known frame rate %s", mName.c_str(),
to_string(refreshRate).c_str(), to_string(mLastRefreshRate.reported).c_str());
}
}
return mLastRefreshRate.reported.isValid() ? std::make_optional(mLastRefreshRate.reported)
: std::nullopt;
}
LayerInfo::RefreshRateVotes LayerInfo::getRefreshRateVote(const RefreshRateSelector& selector,
nsecs_t now) {
ATRACE_CALL();
LayerInfo::RefreshRateVotes votes;
if (mLayerVote.type != LayerHistory::LayerVoteType::Heuristic) {
if (mLayerVote.category != FrameRateCategory::Default) {
const auto voteType = mLayerVote.type == LayerHistory::LayerVoteType::NoVote
? LayerHistory::LayerVoteType::NoVote
: LayerHistory::LayerVoteType::ExplicitCategory;
ATRACE_FORMAT_INSTANT("Vote %s (category=%s)", ftl::enum_string(voteType).c_str(),
ftl::enum_string(mLayerVote.category).c_str());
ALOGV("%s voted %s with category: %s", mName.c_str(),
ftl::enum_string(voteType).c_str(),
ftl::enum_string(mLayerVote.category).c_str());
votes.push_back({voteType, Fps(), Seamlessness::Default, mLayerVote.category,
mLayerVote.categorySmoothSwitchOnly});
}
if (mLayerVote.fps.isValid() ||
mLayerVote.type != LayerHistory::LayerVoteType::ExplicitDefault) {
ATRACE_FORMAT_INSTANT("Vote %s", ftl::enum_string(mLayerVote.type).c_str());
ALOGV("%s voted %d", mName.c_str(), static_cast<int>(mLayerVote.type));
votes.push_back({mLayerVote.type, mLayerVote.fps, mLayerVote.seamlessness,
FrameRateCategory::Default, mLayerVote.categorySmoothSwitchOnly});
}
return votes;
}
if (isAnimating(now)) {
ATRACE_FORMAT_INSTANT("animating");
ALOGV("%s is animating", mName.c_str());
mLastRefreshRate.animating = true;
votes.push_back({LayerHistory::LayerVoteType::Max, Fps()});
return votes;
}
// Vote for max refresh rate whenever we're front-buffered.
if (FlagManager::getInstance().vrr_config() && isFrontBuffered()) {
ATRACE_FORMAT_INSTANT("front buffered");
ALOGV("%s is front-buffered", mName.c_str());
votes.push_back({LayerHistory::LayerVoteType::Max, Fps()});
return votes;
}
const LayerInfo::Frequent frequent = isFrequent(now);
mIsFrequencyConclusive = frequent.isConclusive;
if (!frequent.isFrequent) {
ATRACE_FORMAT_INSTANT("infrequent");
ALOGV("%s is infrequent", mName.c_str());
mLastRefreshRate.infrequent = true;
mLastSmallDirtyCount = 0;
// Infrequent layers vote for minimal refresh rate for
// battery saving purposes and also to prevent b/135718869.
votes.push_back({LayerHistory::LayerVoteType::Min, Fps()});
return votes;
}
if (frequent.clearHistory) {
clearHistory(now);
}
// Return no vote if the recent frames are small dirty.
if (frequent.isSmallDirty && !mLastRefreshRate.reported.isValid()) {
ATRACE_FORMAT_INSTANT("NoVote (small dirty)");
ALOGV("%s is small dirty", mName.c_str());
votes.push_back({LayerHistory::LayerVoteType::NoVote, Fps()});
return votes;
}
auto refreshRate = calculateRefreshRateIfPossible(selector, now);
if (refreshRate.has_value()) {
ATRACE_FORMAT_INSTANT("calculated (%s)", to_string(*refreshRate).c_str());
ALOGV("%s calculated refresh rate: %s", mName.c_str(), to_string(*refreshRate).c_str());
votes.push_back({LayerHistory::LayerVoteType::Heuristic, refreshRate.value()});
return votes;
}
ATRACE_FORMAT_INSTANT("Max (can't resolve refresh rate)");
ALOGV("%s Max (can't resolve refresh rate)", mName.c_str());
votes.push_back({LayerHistory::LayerVoteType::Max, Fps()});
return votes;
}
const char* LayerInfo::getTraceTag(LayerHistory::LayerVoteType type) const {
if (mTraceTags.count(type) == 0) {
auto tag = "LFPS " + mName + " " + ftl::enum_string(type);
mTraceTags.emplace(type, std::move(tag));
}
return mTraceTags.at(type).c_str();
}
LayerInfo::FrameRate LayerInfo::getSetFrameRateVote() const {
return mLayerProps->setFrameRateVote;
}
bool LayerInfo::isVisible() const {
return mLayerProps->visible;
}
int32_t LayerInfo::getFrameRateSelectionPriority() const {
return mLayerProps->frameRateSelectionPriority;
}
bool LayerInfo::isFrontBuffered() const {
return mLayerProps->isFrontBuffered;
}
FloatRect LayerInfo::getBounds() const {
return mLayerProps->bounds;
}
ui::Transform LayerInfo::getTransform() const {
return mLayerProps->transform;
}
LayerInfo::RefreshRateHistory::HeuristicTraceTagData
LayerInfo::RefreshRateHistory::makeHeuristicTraceTagData() const {
const std::string prefix = "LFPS ";
const std::string suffix = "Heuristic ";
return {.min = prefix + mName + suffix + "min",
.max = prefix + mName + suffix + "max",
.consistent = prefix + mName + suffix + "consistent",
.average = prefix + mName + suffix + "average"};
}
void LayerInfo::RefreshRateHistory::clear() {
mRefreshRates.clear();
}
Fps LayerInfo::RefreshRateHistory::add(Fps refreshRate, nsecs_t now,
const RefreshRateSelector& selector) {
mRefreshRates.push_back({refreshRate, now});
while (mRefreshRates.size() >= HISTORY_SIZE ||
now - mRefreshRates.front().timestamp > HISTORY_DURATION.count()) {
mRefreshRates.pop_front();
}
if (CC_UNLIKELY(sTraceEnabled)) {
if (!mHeuristicTraceTagData.has_value()) {
mHeuristicTraceTagData = makeHeuristicTraceTagData();
}
ATRACE_INT(mHeuristicTraceTagData->average.c_str(), refreshRate.getIntValue());
}
return selectRefreshRate(selector);
}
Fps LayerInfo::RefreshRateHistory::selectRefreshRate(const RefreshRateSelector& selector) const {
if (mRefreshRates.empty()) return Fps();
const auto [min, max] =
std::minmax_element(mRefreshRates.begin(), mRefreshRates.end(),
[](const auto& lhs, const auto& rhs) {
return isStrictlyLess(lhs.refreshRate, rhs.refreshRate);
});
const auto maxClosestRate = selector.findClosestKnownFrameRate(max->refreshRate);
const bool consistent = [&](Fps maxFps, Fps minFps) {
if (FlagManager::getInstance().use_known_refresh_rate_for_fps_consistency()) {
if (maxFps.getValue() - minFps.getValue() <
MARGIN_CONSISTENT_FPS_FOR_CLOSEST_REFRESH_RATE) {
const auto minClosestRate = selector.findClosestKnownFrameRate(minFps);
using fps_approx_ops::operator==;
return maxClosestRate == minClosestRate;
}
return false;
}
return maxFps.getValue() - minFps.getValue() < MARGIN_CONSISTENT_FPS;
}(max->refreshRate, min->refreshRate);
if (CC_UNLIKELY(sTraceEnabled)) {
if (!mHeuristicTraceTagData.has_value()) {
mHeuristicTraceTagData = makeHeuristicTraceTagData();
}
ATRACE_INT(mHeuristicTraceTagData->max.c_str(), max->refreshRate.getIntValue());
ATRACE_INT(mHeuristicTraceTagData->min.c_str(), min->refreshRate.getIntValue());
ATRACE_INT(mHeuristicTraceTagData->consistent.c_str(), consistent);
}
return consistent ? maxClosestRate : Fps();
}
FrameRateCompatibility LayerInfo::FrameRate::convertCompatibility(int8_t compatibility) {
switch (compatibility) {
case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT:
return FrameRateCompatibility::Default;
case ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE:
return FrameRateCompatibility::ExactOrMultiple;
case ANATIVEWINDOW_FRAME_RATE_EXACT:
return FrameRateCompatibility::Exact;
case ANATIVEWINDOW_FRAME_RATE_MIN:
return FrameRateCompatibility::Min;
case ANATIVEWINDOW_FRAME_RATE_GTE:
return FrameRateCompatibility::Gte;
case ANATIVEWINDOW_FRAME_RATE_NO_VOTE:
return FrameRateCompatibility::NoVote;
default:
LOG_ALWAYS_FATAL("Invalid frame rate compatibility value %d", compatibility);
return FrameRateCompatibility::Default;
}
}
Seamlessness LayerInfo::FrameRate::convertChangeFrameRateStrategy(int8_t strategy) {
switch (strategy) {
case ANATIVEWINDOW_CHANGE_FRAME_RATE_ONLY_IF_SEAMLESS:
return Seamlessness::OnlySeamless;
case ANATIVEWINDOW_CHANGE_FRAME_RATE_ALWAYS:
return Seamlessness::SeamedAndSeamless;
default:
LOG_ALWAYS_FATAL("Invalid change frame sate strategy value %d", strategy);
return Seamlessness::Default;
}
}
FrameRateCategory LayerInfo::FrameRate::convertCategory(int8_t category) {
switch (category) {
case ANATIVEWINDOW_FRAME_RATE_CATEGORY_DEFAULT:
return FrameRateCategory::Default;
case ANATIVEWINDOW_FRAME_RATE_CATEGORY_NO_PREFERENCE:
return FrameRateCategory::NoPreference;
case ANATIVEWINDOW_FRAME_RATE_CATEGORY_LOW:
return FrameRateCategory::Low;
case ANATIVEWINDOW_FRAME_RATE_CATEGORY_NORMAL:
return FrameRateCategory::Normal;
case ANATIVEWINDOW_FRAME_RATE_CATEGORY_HIGH_HINT:
return FrameRateCategory::HighHint;
case ANATIVEWINDOW_FRAME_RATE_CATEGORY_HIGH:
return FrameRateCategory::High;
default:
LOG_ALWAYS_FATAL("Invalid frame rate category value %d", category);
return FrameRateCategory::Default;
}
}
LayerInfo::FrameRateSelectionStrategy LayerInfo::convertFrameRateSelectionStrategy(
int8_t strategy) {
switch (strategy) {
case ANATIVEWINDOW_FRAME_RATE_SELECTION_STRATEGY_PROPAGATE:
return FrameRateSelectionStrategy::Propagate;
case ANATIVEWINDOW_FRAME_RATE_SELECTION_STRATEGY_OVERRIDE_CHILDREN:
return FrameRateSelectionStrategy::OverrideChildren;
case ANATIVEWINDOW_FRAME_RATE_SELECTION_STRATEGY_SELF:
return FrameRateSelectionStrategy::Self;
default:
LOG_ALWAYS_FATAL("Invalid frame rate selection strategy value %d", strategy);
return FrameRateSelectionStrategy::Self;
}
}
bool LayerInfo::FrameRate::isNoVote() const {
return vote.type == FrameRateCompatibility::NoVote;
}
bool LayerInfo::FrameRate::isValid() const {
return isNoVote() || vote.rate.isValid() || category != FrameRateCategory::Default;
}
std::ostream& operator<<(std::ostream& stream, const LayerInfo::FrameRate& rate) {
return stream << "{rate=" << rate.vote.rate << " type=" << ftl::enum_string(rate.vote.type)
<< " seamlessness=" << ftl::enum_string(rate.vote.seamlessness) << '}';
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wextra"
|