1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <binder/IPCThreadState.h>
#include <utils/Log.h>
#include <utils/Timers.h>
#include <utils/threads.h>
#include <scheduler/interface/ICompositor.h>
#include "EventThread.h"
#include "FrameTimeline.h"
#include "MessageQueue.h"
namespace android::impl {
void MessageQueue::Handler::dispatchFrame(VsyncId vsyncId, TimePoint expectedVsyncTime) {
if (!mFramePending.exchange(true)) {
mVsyncId = vsyncId;
mExpectedVsyncTime = expectedVsyncTime;
mQueue.mLooper->sendMessage(sp<MessageHandler>::fromExisting(this), Message());
}
}
bool MessageQueue::Handler::isFramePending() const {
return mFramePending.load();
}
void MessageQueue::Handler::handleMessage(const Message&) {
mFramePending.store(false);
mQueue.onFrameSignal(mQueue.mCompositor, mVsyncId, mExpectedVsyncTime);
}
MessageQueue::MessageQueue(ICompositor& compositor)
: MessageQueue(compositor, sp<Handler>::make(*this)) {}
constexpr bool kAllowNonCallbacks = true;
MessageQueue::MessageQueue(ICompositor& compositor, sp<Handler> handler)
: mCompositor(compositor),
mLooper(sp<Looper>::make(kAllowNonCallbacks)),
mHandler(std::move(handler)) {}
void MessageQueue::vsyncCallback(nsecs_t vsyncTime, nsecs_t targetWakeupTime, nsecs_t readyTime) {
ATRACE_CALL();
// Trace VSYNC-sf
mVsync.value = (mVsync.value + 1) % 2;
const auto expectedVsyncTime = TimePoint::fromNs(vsyncTime);
{
std::lock_guard lock(mVsync.mutex);
mVsync.lastCallbackTime = expectedVsyncTime;
mVsync.scheduledFrameTimeOpt.reset();
}
const auto vsyncId = VsyncId{mVsync.tokenManager->generateTokenForPredictions(
{targetWakeupTime, readyTime, vsyncTime})};
mHandler->dispatchFrame(vsyncId, expectedVsyncTime);
}
void MessageQueue::initVsyncInternal(std::shared_ptr<scheduler::VSyncDispatch> dispatch,
frametimeline::TokenManager& tokenManager,
std::chrono::nanoseconds workDuration) {
std::unique_ptr<scheduler::VSyncCallbackRegistration> oldRegistration;
{
std::lock_guard lock(mVsync.mutex);
mVsync.workDuration = workDuration;
mVsync.tokenManager = &tokenManager;
oldRegistration = onNewVsyncScheduleLocked(std::move(dispatch));
}
// See comments in onNewVsyncSchedule. Today, oldRegistration should be
// empty, but nothing prevents us from calling initVsyncInternal multiple times, so
// go ahead and destruct it outside the lock for safety.
oldRegistration.reset();
}
void MessageQueue::onNewVsyncSchedule(std::shared_ptr<scheduler::VSyncDispatch> dispatch) {
std::unique_ptr<scheduler::VSyncCallbackRegistration> oldRegistration;
{
std::lock_guard lock(mVsync.mutex);
oldRegistration = onNewVsyncScheduleLocked(std::move(dispatch));
}
// The old registration needs to be deleted after releasing mVsync.mutex to
// avoid deadlock. This is because the callback may be running on the timer
// thread. In that case, timerCallback sets
// VSyncDispatchTimerQueueEntry::mRunning to true, then attempts to lock
// mVsync.mutex. But if it's already locked, the VSyncCallbackRegistration's
// destructor has to wait until VSyncDispatchTimerQueueEntry::mRunning is
// set back to false, but it won't be until mVsync.mutex is released.
oldRegistration.reset();
}
std::unique_ptr<scheduler::VSyncCallbackRegistration> MessageQueue::onNewVsyncScheduleLocked(
std::shared_ptr<scheduler::VSyncDispatch> dispatch) {
const bool reschedule = mVsync.registration &&
mVsync.registration->cancel() == scheduler::CancelResult::Cancelled;
auto oldRegistration = std::move(mVsync.registration);
mVsync.registration = std::make_unique<
scheduler::VSyncCallbackRegistration>(std::move(dispatch),
std::bind(&MessageQueue::vsyncCallback, this,
std::placeholders::_1,
std::placeholders::_2,
std::placeholders::_3),
"sf");
if (reschedule) {
mVsync.scheduledFrameTimeOpt =
mVsync.registration->schedule({.workDuration = mVsync.workDuration.get().count(),
.readyDuration = 0,
.lastVsync = mVsync.lastCallbackTime.ns()});
}
return oldRegistration;
}
void MessageQueue::destroyVsync() {
std::lock_guard lock(mVsync.mutex);
mVsync.tokenManager = nullptr;
mVsync.registration.reset();
}
void MessageQueue::setDuration(std::chrono::nanoseconds workDuration) {
ATRACE_CALL();
std::lock_guard lock(mVsync.mutex);
mVsync.workDuration = workDuration;
mVsync.scheduledFrameTimeOpt =
mVsync.registration->update({.workDuration = mVsync.workDuration.get().count(),
.readyDuration = 0,
.lastVsync = mVsync.lastCallbackTime.ns()});
}
void MessageQueue::waitMessage() {
do {
IPCThreadState::self()->flushCommands();
int32_t ret = mLooper->pollOnce(-1);
switch (ret) {
case Looper::POLL_WAKE:
case Looper::POLL_CALLBACK:
continue;
case Looper::POLL_ERROR:
ALOGE("Looper::POLL_ERROR");
continue;
case Looper::POLL_TIMEOUT:
// timeout (should not happen)
continue;
default:
// should not happen
ALOGE("Looper::pollOnce() returned unknown status %d", ret);
continue;
}
} while (true);
}
void MessageQueue::postMessage(sp<MessageHandler>&& handler) {
mLooper->sendMessage(handler, Message());
}
void MessageQueue::postMessageDelayed(sp<MessageHandler>&& handler, nsecs_t uptimeDelay) {
mLooper->sendMessageDelayed(uptimeDelay, handler, Message());
}
void MessageQueue::scheduleConfigure() {
struct ConfigureHandler : MessageHandler {
explicit ConfigureHandler(ICompositor& compositor) : compositor(compositor) {}
void handleMessage(const Message&) override { compositor.configure(); }
ICompositor& compositor;
};
// TODO(b/241285876): Batch configure tasks that happen within some duration.
postMessage(sp<ConfigureHandler>::make(mCompositor));
}
void MessageQueue::scheduleFrame() {
ATRACE_CALL();
std::lock_guard lock(mVsync.mutex);
mVsync.scheduledFrameTimeOpt =
mVsync.registration->schedule({.workDuration = mVsync.workDuration.get().count(),
.readyDuration = 0,
.lastVsync = mVsync.lastCallbackTime.ns()});
}
std::optional<scheduler::ScheduleResult> MessageQueue::getScheduledFrameResult() const {
if (mHandler->isFramePending()) {
return scheduler::ScheduleResult{TimePoint::now(), mHandler->getExpectedVsyncTime()};
}
std::lock_guard lock(mVsync.mutex);
if (const auto scheduledFrameTimeline = mVsync.scheduledFrameTimeOpt) {
return scheduledFrameTimeline;
}
return std::nullopt;
}
} // namespace android::impl
|