1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "OneShotTimer.h"
#include <utils/Log.h>
#include <utils/Timers.h>
#include <chrono>
#include <sstream>
#include <thread>
namespace {
using namespace std::chrono_literals;
constexpr int64_t kNsToSeconds = std::chrono::duration_cast<std::chrono::nanoseconds>(1s).count();
// The syscall interface uses a pair of integers for the timestamp. The first
// (tv_sec) is the whole count of seconds. The second (tv_nsec) is the
// nanosecond part of the count. This function takes care of translation.
void calculateTimeoutTime(std::chrono::nanoseconds timestamp, timespec* spec) {
const nsecs_t timeout = systemTime(CLOCK_MONOTONIC) + timestamp.count();
spec->tv_sec = static_cast<__kernel_time_t>(timeout / kNsToSeconds);
spec->tv_nsec = timeout % kNsToSeconds;
}
} // namespace
namespace android {
namespace scheduler {
OneShotTimer::OneShotTimer(std::string name, const Interval& interval,
const ResetCallback& resetCallback,
const TimeoutCallback& timeoutCallback, std::unique_ptr<Clock> clock)
: mClock(std::move(clock)),
mName(std::move(name)),
mInterval(interval),
mResetCallback(resetCallback),
mTimeoutCallback(timeoutCallback) {
mLastResetTime = std::chrono::steady_clock::time_point::min();
LOG_ALWAYS_FATAL_IF(!mClock, "Clock must not be provided");
}
OneShotTimer::~OneShotTimer() {
stop();
}
void OneShotTimer::start() {
int result = sem_init(&mSemaphore, 0, 0);
LOG_ALWAYS_FATAL_IF(result, "sem_init failed");
if (!mThread.joinable()) {
// Only create thread if it has not been created.
mThread = std::thread(&OneShotTimer::loop, this);
}
}
void OneShotTimer::stop() {
mStopTriggered = true;
int result = sem_post(&mSemaphore);
LOG_ALWAYS_FATAL_IF(result, "sem_post failed");
if (mThread.joinable()) {
mThread.join();
result = sem_destroy(&mSemaphore);
LOG_ALWAYS_FATAL_IF(result, "sem_destroy failed");
}
}
void OneShotTimer::loop() {
if (pthread_setname_np(pthread_self(), mName.c_str())) {
ALOGW("Failed to set thread name on dispatch thread");
}
TimerState state = TimerState::RESET;
while (true) {
bool triggerReset = false;
bool triggerTimeout = false;
state = checkForResetAndStop(state);
if (state == TimerState::STOPPED) {
break;
}
if (state == TimerState::IDLE) {
int result = sem_wait(&mSemaphore);
if (result && errno != EINTR) {
std::stringstream ss;
ss << "sem_wait failed (" << errno << ")";
LOG_ALWAYS_FATAL("%s", ss.str().c_str());
}
continue;
}
if (state == TimerState::RESET) {
triggerReset = true;
}
if (triggerReset && mResetCallback) {
mResetCallback();
}
state = checkForResetAndStop(state);
if (state == TimerState::STOPPED) {
break;
}
auto triggerTime = mClock->now() + mInterval;
state = TimerState::WAITING;
while (true) {
// Wait until triggerTime time to check if we need to reset or drop into the idle state.
if (const auto triggerInterval = triggerTime - mClock->now(); triggerInterval > 0ns) {
mWaiting = true;
struct timespec ts;
calculateTimeoutTime(triggerInterval, &ts);
int result = sem_clockwait(&mSemaphore, CLOCK_MONOTONIC, &ts);
if (result && errno != ETIMEDOUT && errno != EINTR) {
std::stringstream ss;
ss << "sem_clockwait failed (" << errno << ")";
LOG_ALWAYS_FATAL("%s", ss.str().c_str());
}
}
mWaiting = false;
state = checkForResetAndStop(state);
if (state == TimerState::STOPPED) {
break;
}
if (state == TimerState::WAITING && (triggerTime - mClock->now()) <= 0ns) {
triggerTimeout = true;
state = TimerState::IDLE;
break;
}
if (state == TimerState::RESET) {
triggerTime = mLastResetTime.load() + mInterval;
state = TimerState::WAITING;
}
}
if (triggerTimeout && mTimeoutCallback) {
mTimeoutCallback();
}
}
}
OneShotTimer::TimerState OneShotTimer::checkForResetAndStop(TimerState state) {
// Stop takes precedence of the reset.
if (mStopTriggered.exchange(false)) {
return TimerState::STOPPED;
}
// If the state was stopped, the thread was joined, and we cannot reset
// the timer anymore.
if (state != TimerState::STOPPED && mResetTriggered.exchange(false)) {
return TimerState::RESET;
}
return state;
}
void OneShotTimer::reset() {
mLastResetTime = mClock->now();
mResetTriggered = true;
// If mWaiting is true, then we are guaranteed to be in a block where we are waiting on
// mSemaphore for a timeout, rather than idling. So we can avoid a sem_post call since we can
// just check that we triggered a reset on timeout.
if (!mWaiting) {
LOG_ALWAYS_FATAL_IF(sem_post(&mSemaphore), "sem_post failed");
}
}
} // namespace scheduler
} // namespace android
|