1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
|
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#undef LOG_TAG
#define LOG_TAG "Scheduler"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include "Scheduler.h"
#include <android-base/properties.h>
#include <android-base/stringprintf.h>
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
#include <android/hardware/configstore/1.1/ISurfaceFlingerConfigs.h>
#include <configstore/Utils.h>
#include <ftl/concat.h>
#include <ftl/enum.h>
#include <ftl/fake_guard.h>
#include <ftl/small_map.h>
#include <gui/TraceUtils.h>
#include <gui/WindowInfo.h>
#include <system/window.h>
#include <ui/DisplayMap.h>
#include <utils/Timers.h>
#include <FrameTimeline/FrameTimeline.h>
#include <scheduler/interface/ICompositor.h>
#include <algorithm>
#include <cinttypes>
#include <cstdint>
#include <functional>
#include <memory>
#include <numeric>
#include <common/FlagManager.h>
#include "../Layer.h"
#include "EventThread.h"
#include "FrameRateOverrideMappings.h"
#include "FrontEnd/LayerHandle.h"
#include "OneShotTimer.h"
#include "RefreshRateStats.h"
#include "SurfaceFlingerFactory.h"
#include "SurfaceFlingerProperties.h"
#include "TimeStats/TimeStats.h"
#include "VSyncTracker.h"
#include "VsyncConfiguration.h"
#include "VsyncController.h"
#include "VsyncSchedule.h"
namespace android::scheduler {
Scheduler::Scheduler(ICompositor& compositor, ISchedulerCallback& callback, FeatureFlags features,
surfaceflinger::Factory& factory, Fps activeRefreshRate, TimeStats& timeStats)
: android::impl::MessageQueue(compositor),
mFeatures(features),
mVsyncConfiguration(factory.createVsyncConfiguration(activeRefreshRate)),
mVsyncModulator(sp<VsyncModulator>::make(mVsyncConfiguration->getCurrentConfigs())),
mRefreshRateStats(std::make_unique<RefreshRateStats>(timeStats, activeRefreshRate)),
mSchedulerCallback(callback) {}
Scheduler::~Scheduler() {
// MessageQueue depends on VsyncSchedule, so first destroy it.
// Otherwise, MessageQueue will get destroyed after Scheduler's dtor,
// which will cause a use-after-free issue.
Impl::destroyVsync();
// Stop timers and wait for their threads to exit.
mDisplayPowerTimer.reset();
mTouchTimer.reset();
// Stop idle timer and clear callbacks, as the RefreshRateSelector may outlive the Scheduler.
demotePacesetterDisplay();
}
void Scheduler::initVsync(frametimeline::TokenManager& tokenManager,
std::chrono::nanoseconds workDuration) {
Impl::initVsyncInternal(getVsyncSchedule()->getDispatch(), tokenManager, workDuration);
}
void Scheduler::startTimers() {
using namespace sysprop;
using namespace std::string_literals;
const int32_t defaultTouchTimerValue =
FlagManager::getInstance().enable_fro_dependent_features() &&
sysprop::enable_frame_rate_override(true)
? 200
: 0;
if (const int32_t millis = set_touch_timer_ms(defaultTouchTimerValue); millis > 0) {
// Touch events are coming to SF every 100ms, so the timer needs to be higher than that
mTouchTimer.emplace(
"TouchTimer", std::chrono::milliseconds(millis),
[this] { touchTimerCallback(TimerState::Reset); },
[this] { touchTimerCallback(TimerState::Expired); });
mTouchTimer->start();
}
if (const int64_t millis = set_display_power_timer_ms(0); millis > 0) {
mDisplayPowerTimer.emplace(
"DisplayPowerTimer", std::chrono::milliseconds(millis),
[this] { displayPowerTimerCallback(TimerState::Reset); },
[this] { displayPowerTimerCallback(TimerState::Expired); });
mDisplayPowerTimer->start();
}
}
void Scheduler::setPacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) {
demotePacesetterDisplay();
promotePacesetterDisplay(pacesetterIdOpt);
}
void Scheduler::registerDisplay(PhysicalDisplayId displayId, RefreshRateSelectorPtr selectorPtr) {
auto schedulePtr =
std::make_shared<VsyncSchedule>(selectorPtr->getActiveMode().modePtr, mFeatures,
[this](PhysicalDisplayId id, bool enable) {
onHardwareVsyncRequest(id, enable);
});
registerDisplayInternal(displayId, std::move(selectorPtr), std::move(schedulePtr));
}
void Scheduler::registerDisplayInternal(PhysicalDisplayId displayId,
RefreshRateSelectorPtr selectorPtr,
VsyncSchedulePtr schedulePtr) {
demotePacesetterDisplay();
auto [pacesetterVsyncSchedule, isNew] = [&]() FTL_FAKE_GUARD(kMainThreadContext) {
std::scoped_lock lock(mDisplayLock);
const bool isNew = mDisplays
.emplace_or_replace(displayId, displayId, std::move(selectorPtr),
std::move(schedulePtr), mFeatures)
.second;
return std::make_pair(promotePacesetterDisplayLocked(), isNew);
}();
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
// Disable hardware VSYNC if the registration is new, as opposed to a renewal.
if (isNew) {
onHardwareVsyncRequest(displayId, false);
}
dispatchHotplug(displayId, Hotplug::Connected);
}
void Scheduler::unregisterDisplay(PhysicalDisplayId displayId) {
dispatchHotplug(displayId, Hotplug::Disconnected);
demotePacesetterDisplay();
std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule;
{
std::scoped_lock lock(mDisplayLock);
mDisplays.erase(displayId);
// Do not allow removing the final display. Code in the scheduler expects
// there to be at least one display. (This may be relaxed in the future with
// headless virtual display.)
LOG_ALWAYS_FATAL_IF(mDisplays.empty(), "Cannot unregister all displays!");
pacesetterVsyncSchedule = promotePacesetterDisplayLocked();
}
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
}
void Scheduler::run() {
while (true) {
waitMessage();
}
}
void Scheduler::onFrameSignal(ICompositor& compositor, VsyncId vsyncId,
TimePoint expectedVsyncTime) {
const FrameTargeter::BeginFrameArgs beginFrameArgs =
{.frameBeginTime = SchedulerClock::now(),
.vsyncId = vsyncId,
.expectedVsyncTime = expectedVsyncTime,
.sfWorkDuration = mVsyncModulator->getVsyncConfig().sfWorkDuration,
.hwcMinWorkDuration = mVsyncConfiguration->getCurrentConfigs().hwcMinWorkDuration};
ftl::NonNull<const Display*> pacesetterPtr = pacesetterPtrLocked();
pacesetterPtr->targeterPtr->beginFrame(beginFrameArgs, *pacesetterPtr->schedulePtr);
{
FrameTargets targets;
targets.try_emplace(pacesetterPtr->displayId, &pacesetterPtr->targeterPtr->target());
// TODO (b/256196556): Followers should use the next VSYNC after the frontrunner, not the
// pacesetter.
// Update expectedVsyncTime, which may have been adjusted by beginFrame.
expectedVsyncTime = pacesetterPtr->targeterPtr->target().expectedPresentTime();
for (const auto& [id, display] : mDisplays) {
if (id == pacesetterPtr->displayId) continue;
auto followerBeginFrameArgs = beginFrameArgs;
followerBeginFrameArgs.expectedVsyncTime =
display.schedulePtr->vsyncDeadlineAfter(expectedVsyncTime);
FrameTargeter& targeter = *display.targeterPtr;
targeter.beginFrame(followerBeginFrameArgs, *display.schedulePtr);
targets.try_emplace(id, &targeter.target());
}
if (!compositor.commit(pacesetterPtr->displayId, targets)) {
if (FlagManager::getInstance().vrr_config()) {
compositor.sendNotifyExpectedPresentHint(pacesetterPtr->displayId);
}
return;
}
}
// The pacesetter may have changed or been registered anew during commit.
pacesetterPtr = pacesetterPtrLocked();
// TODO(b/256196556): Choose the frontrunner display.
FrameTargeters targeters;
targeters.try_emplace(pacesetterPtr->displayId, pacesetterPtr->targeterPtr.get());
for (auto& [id, display] : mDisplays) {
if (id == pacesetterPtr->displayId) continue;
FrameTargeter& targeter = *display.targeterPtr;
targeters.try_emplace(id, &targeter);
}
if (FlagManager::getInstance().vrr_config() &&
CC_UNLIKELY(mPacesetterFrameDurationFractionToSkip > 0.f)) {
const auto period = pacesetterPtr->targeterPtr->target().expectedFrameDuration();
const auto skipDuration = Duration::fromNs(
static_cast<nsecs_t>(period.ns() * mPacesetterFrameDurationFractionToSkip));
ATRACE_FORMAT("Injecting jank for %f%% of the frame (%" PRId64 " ns)",
mPacesetterFrameDurationFractionToSkip * 100, skipDuration.ns());
std::this_thread::sleep_for(skipDuration);
mPacesetterFrameDurationFractionToSkip = 0.f;
}
if (FlagManager::getInstance().vrr_config()) {
const auto minFramePeriod = pacesetterPtr->schedulePtr->minFramePeriod();
const auto presentFenceForPastVsync =
pacesetterPtr->targeterPtr->target().presentFenceForPastVsync(minFramePeriod);
const auto lastConfirmedPresentTime = presentFenceForPastVsync->getSignalTime();
if (lastConfirmedPresentTime != Fence::SIGNAL_TIME_PENDING &&
lastConfirmedPresentTime != Fence::SIGNAL_TIME_INVALID) {
pacesetterPtr->schedulePtr->getTracker()
.onFrameBegin(expectedVsyncTime, TimePoint::fromNs(lastConfirmedPresentTime));
}
}
const auto resultsPerDisplay = compositor.composite(pacesetterPtr->displayId, targeters);
if (FlagManager::getInstance().vrr_config()) {
compositor.sendNotifyExpectedPresentHint(pacesetterPtr->displayId);
}
compositor.sample();
for (const auto& [id, targeter] : targeters) {
const auto resultOpt = resultsPerDisplay.get(id);
LOG_ALWAYS_FATAL_IF(!resultOpt);
targeter->endFrame(*resultOpt);
}
}
std::optional<Fps> Scheduler::getFrameRateOverride(uid_t uid) const {
const bool supportsFrameRateOverrideByContent =
pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent();
return mFrameRateOverrideMappings
.getFrameRateOverrideForUid(uid, supportsFrameRateOverrideByContent);
}
bool Scheduler::isVsyncValid(TimePoint expectedVsyncTime, uid_t uid) const {
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return true;
}
ATRACE_FORMAT("%s uid: %d frameRate: %s", __func__, uid, to_string(*frameRate).c_str());
return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), *frameRate);
}
bool Scheduler::isVsyncInPhase(TimePoint expectedVsyncTime, Fps frameRate) const {
return getVsyncSchedule()->getTracker().isVSyncInPhase(expectedVsyncTime.ns(), frameRate);
}
bool Scheduler::throttleVsync(android::TimePoint expectedPresentTime, uid_t uid) {
return !isVsyncValid(expectedPresentTime, uid);
}
Period Scheduler::getVsyncPeriod(uid_t uid) {
const auto [refreshRate, period] = [this] {
std::scoped_lock lock(mDisplayLock);
const auto pacesetterOpt = pacesetterDisplayLocked();
LOG_ALWAYS_FATAL_IF(!pacesetterOpt);
const Display& pacesetter = *pacesetterOpt;
return std::make_pair(pacesetter.selectorPtr->getActiveMode().fps,
pacesetter.schedulePtr->period());
}();
const Period currentPeriod = period != Period::zero() ? period : refreshRate.getPeriod();
const auto frameRate = getFrameRateOverride(uid);
if (!frameRate.has_value()) {
return currentPeriod;
}
const auto divisor = RefreshRateSelector::getFrameRateDivisor(refreshRate, *frameRate);
if (divisor <= 1) {
return currentPeriod;
}
// TODO(b/299378819): the casting is not needed, but we need a flag as it might change
// behaviour.
return Period::fromNs(currentPeriod.ns() * divisor);
}
void Scheduler::onExpectedPresentTimePosted(TimePoint expectedPresentTime) {
const auto frameRateMode = [this] {
std::scoped_lock lock(mDisplayLock);
const auto pacesetterOpt = pacesetterDisplayLocked();
const Display& pacesetter = *pacesetterOpt;
return pacesetter.selectorPtr->getActiveMode();
}();
if (frameRateMode.modePtr->getVrrConfig()) {
mSchedulerCallback.onExpectedPresentTimePosted(expectedPresentTime, frameRateMode.modePtr,
frameRateMode.fps);
}
}
void Scheduler::createEventThread(Cycle cycle, frametimeline::TokenManager* tokenManager,
std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
auto eventThread =
std::make_unique<android::impl::EventThread>(cycle == Cycle::Render ? "app" : "appSf",
getVsyncSchedule(), tokenManager, *this,
workDuration, readyDuration);
if (cycle == Cycle::Render) {
mRenderEventThread = std::move(eventThread);
mRenderEventConnection = mRenderEventThread->createEventConnection();
} else {
mLastCompositeEventThread = std::move(eventThread);
mLastCompositeEventConnection = mLastCompositeEventThread->createEventConnection();
}
}
sp<IDisplayEventConnection> Scheduler::createDisplayEventConnection(
Cycle cycle, EventRegistrationFlags eventRegistration, const sp<IBinder>& layerHandle) {
const auto connection = eventThreadFor(cycle).createEventConnection(eventRegistration);
const auto layerId = static_cast<int32_t>(LayerHandle::getLayerId(layerHandle));
if (layerId != static_cast<int32_t>(UNASSIGNED_LAYER_ID)) {
// TODO(b/290409668): Moving the choreographer attachment to be a transaction that will be
// processed on the main thread.
mSchedulerCallback.onChoreographerAttached();
std::scoped_lock lock(mChoreographerLock);
const auto [iter, emplaced] =
mAttachedChoreographers.emplace(layerId,
AttachedChoreographers{Fps(), {connection}});
if (!emplaced) {
iter->second.connections.emplace(connection);
connection->frameRate = iter->second.frameRate;
}
}
return connection;
}
void Scheduler::dispatchHotplug(PhysicalDisplayId displayId, Hotplug hotplug) {
if (hasEventThreads()) {
const bool connected = hotplug == Hotplug::Connected;
eventThreadFor(Cycle::Render).onHotplugReceived(displayId, connected);
eventThreadFor(Cycle::LastComposite).onHotplugReceived(displayId, connected);
}
}
void Scheduler::dispatchHotplugError(int32_t errorCode) {
if (hasEventThreads()) {
eventThreadFor(Cycle::Render).onHotplugConnectionError(errorCode);
eventThreadFor(Cycle::LastComposite).onHotplugConnectionError(errorCode);
}
}
void Scheduler::enableSyntheticVsync(bool enable) {
eventThreadFor(Cycle::Render).enableSyntheticVsync(enable);
}
void Scheduler::onFrameRateOverridesChanged(Cycle cycle, PhysicalDisplayId displayId) {
const bool supportsFrameRateOverrideByContent =
pacesetterSelectorPtr()->supportsAppFrameRateOverrideByContent();
std::vector<FrameRateOverride> overrides =
mFrameRateOverrideMappings.getAllFrameRateOverrides(supportsFrameRateOverrideByContent);
eventThreadFor(cycle).onFrameRateOverridesChanged(displayId, std::move(overrides));
}
void Scheduler::onHdcpLevelsChanged(Cycle cycle, PhysicalDisplayId displayId,
int32_t connectedLevel, int32_t maxLevel) {
eventThreadFor(cycle).onHdcpLevelsChanged(displayId, connectedLevel, maxLevel);
}
void Scheduler::onPrimaryDisplayModeChanged(Cycle cycle, const FrameRateMode& mode) {
{
std::lock_guard<std::mutex> lock(mPolicyLock);
// Cache the last reported modes for primary display.
mPolicy.cachedModeChangedParams = {cycle, mode};
// Invalidate content based refresh rate selection so it could be calculated
// again for the new refresh rate.
mPolicy.contentRequirements.clear();
}
onNonPrimaryDisplayModeChanged(cycle, mode);
}
void Scheduler::dispatchCachedReportedMode() {
// Check optional fields first.
if (!mPolicy.modeOpt) {
ALOGW("No mode ID found, not dispatching cached mode.");
return;
}
if (!mPolicy.cachedModeChangedParams) {
ALOGW("No mode changed params found, not dispatching cached mode.");
return;
}
// If the mode is not the current mode, this means that a
// mode change is in progress. In that case we shouldn't dispatch an event
// as it will be dispatched when the current mode changes.
if (pacesetterSelectorPtr()->getActiveMode() != mPolicy.modeOpt) {
return;
}
// If there is no change from cached mode, there is no need to dispatch an event
if (*mPolicy.modeOpt == mPolicy.cachedModeChangedParams->mode) {
return;
}
mPolicy.cachedModeChangedParams->mode = *mPolicy.modeOpt;
onNonPrimaryDisplayModeChanged(mPolicy.cachedModeChangedParams->cycle,
mPolicy.cachedModeChangedParams->mode);
}
void Scheduler::onNonPrimaryDisplayModeChanged(Cycle cycle, const FrameRateMode& mode) {
if (hasEventThreads()) {
eventThreadFor(cycle).onModeChanged(mode);
}
}
void Scheduler::dump(Cycle cycle, std::string& result) const {
eventThreadFor(cycle).dump(result);
}
void Scheduler::setDuration(Cycle cycle, std::chrono::nanoseconds workDuration,
std::chrono::nanoseconds readyDuration) {
if (hasEventThreads()) {
eventThreadFor(cycle).setDuration(workDuration, readyDuration);
}
}
void Scheduler::updatePhaseConfiguration(Fps refreshRate) {
mRefreshRateStats->setRefreshRate(refreshRate);
mVsyncConfiguration->setRefreshRateFps(refreshRate);
setVsyncConfig(mVsyncModulator->setVsyncConfigSet(mVsyncConfiguration->getCurrentConfigs()),
refreshRate.getPeriod());
}
void Scheduler::resetPhaseConfiguration(Fps refreshRate) {
// Cancel the pending refresh rate change, if any, before updating the phase configuration.
mVsyncModulator->cancelRefreshRateChange();
mVsyncConfiguration->reset();
updatePhaseConfiguration(refreshRate);
}
void Scheduler::setActiveDisplayPowerModeForRefreshRateStats(hal::PowerMode powerMode) {
mRefreshRateStats->setPowerMode(powerMode);
}
void Scheduler::setVsyncConfig(const VsyncConfig& config, Period vsyncPeriod) {
setDuration(Cycle::Render,
/* workDuration */ config.appWorkDuration,
/* readyDuration */ config.sfWorkDuration);
setDuration(Cycle::LastComposite,
/* workDuration */ vsyncPeriod,
/* readyDuration */ config.sfWorkDuration);
setDuration(config.sfWorkDuration);
}
void Scheduler::enableHardwareVsync(PhysicalDisplayId id) {
auto schedule = getVsyncSchedule(id);
LOG_ALWAYS_FATAL_IF(!schedule);
schedule->enableHardwareVsync();
}
void Scheduler::disableHardwareVsync(PhysicalDisplayId id, bool disallow) {
auto schedule = getVsyncSchedule(id);
LOG_ALWAYS_FATAL_IF(!schedule);
schedule->disableHardwareVsync(disallow);
}
void Scheduler::resyncAllToHardwareVsync(bool allowToEnable) {
ATRACE_CALL();
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [id, display] : mDisplays) {
if (display.powerMode != hal::PowerMode::OFF ||
!FlagManager::getInstance().multithreaded_present()) {
resyncToHardwareVsyncLocked(id, allowToEnable);
}
}
}
void Scheduler::resyncToHardwareVsyncLocked(PhysicalDisplayId id, bool allowToEnable,
DisplayModePtr modePtr) {
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return;
}
const Display& display = *displayOpt;
if (display.schedulePtr->isHardwareVsyncAllowed(allowToEnable)) {
if (!modePtr) {
modePtr = display.selectorPtr->getActiveMode().modePtr.get();
}
if (modePtr->getVsyncRate().isValid()) {
constexpr bool kForce = false;
display.schedulePtr->onDisplayModeChanged(ftl::as_non_null(modePtr), kForce);
}
}
}
void Scheduler::onHardwareVsyncRequest(PhysicalDisplayId id, bool enabled) {
static const auto& whence = __func__;
ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str());
// On main thread to serialize reads/writes of pending hardware VSYNC state.
static_cast<void>(
schedule([=, this]() FTL_FAKE_GUARD(mDisplayLock) FTL_FAKE_GUARD(kMainThreadContext) {
ATRACE_NAME(ftl::Concat(whence, ' ', id.value, ' ', enabled).c_str());
if (const auto displayOpt = mDisplays.get(id)) {
auto& display = displayOpt->get();
display.schedulePtr->setPendingHardwareVsyncState(enabled);
if (display.powerMode != hal::PowerMode::OFF) {
mSchedulerCallback.requestHardwareVsync(id, enabled);
}
}
}));
}
void Scheduler::setRenderRate(PhysicalDisplayId id, Fps renderFrameRate) {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return;
}
const Display& display = *displayOpt;
const auto mode = display.selectorPtr->getActiveMode();
using fps_approx_ops::operator!=;
LOG_ALWAYS_FATAL_IF(renderFrameRate != mode.fps,
"Mismatch in render frame rates. Selector: %s, Scheduler: %s, Display: "
"%" PRIu64,
to_string(mode.fps).c_str(), to_string(renderFrameRate).c_str(), id.value);
ALOGV("%s %s (%s)", __func__, to_string(mode.fps).c_str(),
to_string(mode.modePtr->getVsyncRate()).c_str());
display.schedulePtr->getTracker().setRenderRate(renderFrameRate);
}
Fps Scheduler::getNextFrameInterval(PhysicalDisplayId id,
TimePoint currentExpectedPresentTime) const {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
const auto displayOpt = mDisplays.get(id);
if (!displayOpt) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return Fps{};
}
const Display& display = *displayOpt;
const Duration threshold =
display.selectorPtr->getActiveMode().modePtr->getVsyncRate().getPeriod() / 2;
const TimePoint nextVsyncTime =
display.schedulePtr->vsyncDeadlineAfter(currentExpectedPresentTime + threshold,
currentExpectedPresentTime);
const Duration frameInterval = nextVsyncTime - currentExpectedPresentTime;
return Fps::fromPeriodNsecs(frameInterval.ns());
}
void Scheduler::resync() {
static constexpr nsecs_t kIgnoreDelay = ms2ns(750);
const nsecs_t now = systemTime();
const nsecs_t last = mLastResyncTime.exchange(now);
if (now - last > kIgnoreDelay) {
resyncAllToHardwareVsync(false /* allowToEnable */);
}
}
bool Scheduler::addResyncSample(PhysicalDisplayId id, nsecs_t timestamp,
std::optional<nsecs_t> hwcVsyncPeriodIn) {
const auto hwcVsyncPeriod = ftl::Optional(hwcVsyncPeriodIn).transform([](nsecs_t nanos) {
return Period::fromNs(nanos);
});
auto schedule = getVsyncSchedule(id);
if (!schedule) {
ALOGW("%s: Invalid display %s!", __func__, to_string(id).c_str());
return false;
}
return schedule->addResyncSample(TimePoint::fromNs(timestamp), hwcVsyncPeriod);
}
void Scheduler::addPresentFence(PhysicalDisplayId id, std::shared_ptr<FenceTime> fence) {
ATRACE_NAME(ftl::Concat(__func__, ' ', id.value).c_str());
const auto scheduleOpt =
(ftl::FakeGuard(mDisplayLock), mDisplays.get(id)).and_then([](const Display& display) {
return display.powerMode == hal::PowerMode::OFF
? std::nullopt
: std::make_optional(display.schedulePtr);
});
if (!scheduleOpt) return;
const auto& schedule = scheduleOpt->get();
const bool needMoreSignals = schedule->getController().addPresentFence(std::move(fence));
if (needMoreSignals) {
schedule->enableHardwareVsync();
} else {
constexpr bool kDisallow = false;
schedule->disableHardwareVsync(kDisallow);
}
}
void Scheduler::registerLayer(Layer* layer) {
// If the content detection feature is off, we still keep the layer history,
// since we use it for other features (like Frame Rate API), so layers
// still need to be registered.
mLayerHistory.registerLayer(layer, mFeatures.test(Feature::kContentDetection));
}
void Scheduler::deregisterLayer(Layer* layer) {
mLayerHistory.deregisterLayer(layer);
}
void Scheduler::onLayerDestroyed(Layer* layer) {
std::scoped_lock lock(mChoreographerLock);
mAttachedChoreographers.erase(layer->getSequence());
}
void Scheduler::recordLayerHistory(int32_t id, const LayerProps& layerProps, nsecs_t presentTime,
nsecs_t now, LayerHistory::LayerUpdateType updateType) {
if (pacesetterSelectorPtr()->canSwitch()) {
mLayerHistory.record(id, layerProps, presentTime, now, updateType);
}
}
void Scheduler::setModeChangePending(bool pending) {
mLayerHistory.setModeChangePending(pending);
}
void Scheduler::setDefaultFrameRateCompatibility(
int32_t id, scheduler::FrameRateCompatibility frameRateCompatibility) {
mLayerHistory.setDefaultFrameRateCompatibility(id, frameRateCompatibility,
mFeatures.test(Feature::kContentDetection));
}
void Scheduler::setLayerProperties(int32_t id, const android::scheduler::LayerProps& properties) {
mLayerHistory.setLayerProperties(id, properties);
}
void Scheduler::chooseRefreshRateForContent(
const surfaceflinger::frontend::LayerHierarchy* hierarchy,
bool updateAttachedChoreographer) {
const auto selectorPtr = pacesetterSelectorPtr();
if (!selectorPtr->canSwitch()) return;
ATRACE_CALL();
LayerHistory::Summary summary = mLayerHistory.summarize(*selectorPtr, systemTime());
applyPolicy(&Policy::contentRequirements, std::move(summary));
if (updateAttachedChoreographer) {
LOG_ALWAYS_FATAL_IF(!hierarchy);
// update the attached choreographers after we selected the render rate.
const ftl::Optional<FrameRateMode> modeOpt = [&] {
std::scoped_lock lock(mPolicyLock);
return mPolicy.modeOpt;
}();
if (modeOpt) {
updateAttachedChoreographers(*hierarchy, modeOpt->fps);
}
}
}
void Scheduler::resetIdleTimer() {
pacesetterSelectorPtr()->resetIdleTimer();
}
void Scheduler::onTouchHint() {
if (mTouchTimer) {
mTouchTimer->reset();
pacesetterSelectorPtr()->resetKernelIdleTimer();
}
}
void Scheduler::setDisplayPowerMode(PhysicalDisplayId id, hal::PowerMode powerMode) {
const bool isPacesetter = [this, id]() REQUIRES(kMainThreadContext) {
ftl::FakeGuard guard(mDisplayLock);
return id == mPacesetterDisplayId;
}();
if (isPacesetter) {
// TODO (b/255657128): This needs to be handled per display.
std::lock_guard<std::mutex> lock(mPolicyLock);
mPolicy.displayPowerMode = powerMode;
}
{
std::scoped_lock lock(mDisplayLock);
const auto displayOpt = mDisplays.get(id);
LOG_ALWAYS_FATAL_IF(!displayOpt);
auto& display = displayOpt->get();
display.powerMode = powerMode;
display.schedulePtr->getController().setDisplayPowerMode(powerMode);
}
if (!isPacesetter) return;
if (mDisplayPowerTimer) {
mDisplayPowerTimer->reset();
}
// Display Power event will boost the refresh rate to performance.
// Clear Layer History to get fresh FPS detection
mLayerHistory.clear();
}
auto Scheduler::getVsyncSchedule(std::optional<PhysicalDisplayId> idOpt) const
-> ConstVsyncSchedulePtr {
std::scoped_lock lock(mDisplayLock);
return getVsyncScheduleLocked(idOpt);
}
auto Scheduler::getVsyncScheduleLocked(std::optional<PhysicalDisplayId> idOpt) const
-> ConstVsyncSchedulePtr {
ftl::FakeGuard guard(kMainThreadContext);
if (!idOpt) {
LOG_ALWAYS_FATAL_IF(!mPacesetterDisplayId, "Missing a pacesetter!");
idOpt = mPacesetterDisplayId;
}
const auto displayOpt = mDisplays.get(*idOpt);
if (!displayOpt) {
return nullptr;
}
return displayOpt->get().schedulePtr;
}
void Scheduler::kernelIdleTimerCallback(TimerState state) {
ATRACE_INT("ExpiredKernelIdleTimer", static_cast<int>(state));
// TODO(145561154): cleanup the kernel idle timer implementation and the refresh rate
// magic number
const Fps refreshRate = pacesetterSelectorPtr()->getActiveMode().modePtr->getPeakFps();
constexpr Fps FPS_THRESHOLD_FOR_KERNEL_TIMER = 65_Hz;
using namespace fps_approx_ops;
if (state == TimerState::Reset && refreshRate > FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// If we're not in performance mode then the kernel timer shouldn't do
// anything, as the refresh rate during DPU power collapse will be the
// same.
resyncAllToHardwareVsync(true /* allowToEnable */);
} else if (state == TimerState::Expired && refreshRate <= FPS_THRESHOLD_FOR_KERNEL_TIMER) {
// Disable HW VSYNC if the timer expired, as we don't need it enabled if
// we're not pushing frames, and if we're in PERFORMANCE mode then we'll
// need to update the VsyncController model anyway.
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [_, display] : mDisplays) {
constexpr bool kDisallow = false;
display.schedulePtr->disableHardwareVsync(kDisallow);
}
}
mSchedulerCallback.kernelTimerChanged(state == TimerState::Expired);
}
void Scheduler::idleTimerCallback(TimerState state) {
applyPolicy(&Policy::idleTimer, state);
ATRACE_INT("ExpiredIdleTimer", static_cast<int>(state));
}
void Scheduler::touchTimerCallback(TimerState state) {
const TouchState touch = state == TimerState::Reset ? TouchState::Active : TouchState::Inactive;
// Touch event will boost the refresh rate to performance.
// Clear layer history to get fresh FPS detection.
// NOTE: Instead of checking all the layers, we should be checking the layer
// that is currently on top. b/142507166 will give us this capability.
if (applyPolicy(&Policy::touch, touch).touch) {
mLayerHistory.clear();
}
ATRACE_INT("TouchState", static_cast<int>(touch));
}
void Scheduler::displayPowerTimerCallback(TimerState state) {
applyPolicy(&Policy::displayPowerTimer, state);
ATRACE_INT("ExpiredDisplayPowerTimer", static_cast<int>(state));
}
void Scheduler::dump(utils::Dumper& dumper) const {
using namespace std::string_view_literals;
{
utils::Dumper::Section section(dumper, "Features"sv);
for (Feature feature : ftl::enum_range<Feature>()) {
if (const auto flagOpt = ftl::flag_name(feature)) {
dumper.dump(flagOpt->substr(1), mFeatures.test(feature));
}
}
}
{
utils::Dumper::Section section(dumper, "Policy"sv);
{
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
dumper.dump("pacesetterDisplayId"sv, mPacesetterDisplayId);
}
dumper.dump("layerHistory"sv, mLayerHistory.dump());
dumper.dump("touchTimer"sv, mTouchTimer.transform(&OneShotTimer::interval));
dumper.dump("displayPowerTimer"sv, mDisplayPowerTimer.transform(&OneShotTimer::interval));
}
mFrameRateOverrideMappings.dump(dumper);
dumper.eol();
mVsyncConfiguration->dump(dumper.out());
dumper.eol();
mRefreshRateStats->dump(dumper.out());
dumper.eol();
{
utils::Dumper::Section section(dumper, "Frame Targeting"sv);
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
for (const auto& [id, display] : mDisplays) {
utils::Dumper::Section
section(dumper,
id == mPacesetterDisplayId
? ftl::Concat("Pacesetter Display ", id.value).c_str()
: ftl::Concat("Follower Display ", id.value).c_str());
display.targeterPtr->dump(dumper);
dumper.eol();
}
}
}
void Scheduler::dumpVsync(std::string& out) const {
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
if (mPacesetterDisplayId) {
base::StringAppendF(&out, "VsyncSchedule for pacesetter %s:\n",
to_string(*mPacesetterDisplayId).c_str());
getVsyncScheduleLocked()->dump(out);
}
for (auto& [id, display] : mDisplays) {
if (id == mPacesetterDisplayId) {
continue;
}
base::StringAppendF(&out, "VsyncSchedule for follower %s:\n", to_string(id).c_str());
display.schedulePtr->dump(out);
}
}
bool Scheduler::updateFrameRateOverrides(GlobalSignals consideredSignals, Fps displayRefreshRate) {
std::scoped_lock lock(mPolicyLock);
return updateFrameRateOverridesLocked(consideredSignals, displayRefreshRate);
}
bool Scheduler::updateFrameRateOverridesLocked(GlobalSignals consideredSignals,
Fps displayRefreshRate) {
if (consideredSignals.idle) return false;
const auto frameRateOverrides =
pacesetterSelectorPtr()->getFrameRateOverrides(mPolicy.contentRequirements,
displayRefreshRate, consideredSignals);
// Note that RefreshRateSelector::supportsFrameRateOverrideByContent is checked when querying
// the FrameRateOverrideMappings rather than here.
return mFrameRateOverrideMappings.updateFrameRateOverridesByContent(frameRateOverrides);
}
void Scheduler::promotePacesetterDisplay(std::optional<PhysicalDisplayId> pacesetterIdOpt) {
std::shared_ptr<VsyncSchedule> pacesetterVsyncSchedule;
{
std::scoped_lock lock(mDisplayLock);
pacesetterVsyncSchedule = promotePacesetterDisplayLocked(pacesetterIdOpt);
}
applyNewVsyncSchedule(std::move(pacesetterVsyncSchedule));
}
std::shared_ptr<VsyncSchedule> Scheduler::promotePacesetterDisplayLocked(
std::optional<PhysicalDisplayId> pacesetterIdOpt) {
// TODO(b/241286431): Choose the pacesetter display.
mPacesetterDisplayId = pacesetterIdOpt.value_or(mDisplays.begin()->first);
ALOGI("Display %s is the pacesetter", to_string(*mPacesetterDisplayId).c_str());
std::shared_ptr<VsyncSchedule> newVsyncSchedulePtr;
if (const auto pacesetterOpt = pacesetterDisplayLocked()) {
const Display& pacesetter = *pacesetterOpt;
pacesetter.selectorPtr->setIdleTimerCallbacks(
{.platform = {.onReset = [this] { idleTimerCallback(TimerState::Reset); },
.onExpired = [this] { idleTimerCallback(TimerState::Expired); }},
.kernel = {.onReset = [this] { kernelIdleTimerCallback(TimerState::Reset); },
.onExpired =
[this] { kernelIdleTimerCallback(TimerState::Expired); }}});
pacesetter.selectorPtr->startIdleTimer();
newVsyncSchedulePtr = pacesetter.schedulePtr;
constexpr bool kForce = true;
newVsyncSchedulePtr->onDisplayModeChanged(pacesetter.selectorPtr->getActiveMode().modePtr,
kForce);
}
return newVsyncSchedulePtr;
}
void Scheduler::applyNewVsyncSchedule(std::shared_ptr<VsyncSchedule> vsyncSchedule) {
onNewVsyncSchedule(vsyncSchedule->getDispatch());
if (hasEventThreads()) {
eventThreadFor(Cycle::Render).onNewVsyncSchedule(vsyncSchedule);
eventThreadFor(Cycle::LastComposite).onNewVsyncSchedule(vsyncSchedule);
}
}
void Scheduler::demotePacesetterDisplay() {
// No need to lock for reads on kMainThreadContext.
if (const auto pacesetterPtr = FTL_FAKE_GUARD(mDisplayLock, pacesetterSelectorPtrLocked())) {
pacesetterPtr->stopIdleTimer();
pacesetterPtr->clearIdleTimerCallbacks();
}
// Clear state that depends on the pacesetter's RefreshRateSelector.
std::scoped_lock lock(mPolicyLock);
mPolicy = {};
}
void Scheduler::updateAttachedChoreographersFrameRate(
const surfaceflinger::frontend::RequestedLayerState& layer, Fps fps) {
std::scoped_lock lock(mChoreographerLock);
const auto layerId = static_cast<int32_t>(layer.id);
const auto choreographers = mAttachedChoreographers.find(layerId);
if (choreographers == mAttachedChoreographers.end()) {
return;
}
auto& layerChoreographers = choreographers->second;
layerChoreographers.frameRate = fps;
ATRACE_FORMAT_INSTANT("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str());
ALOGV("%s: %s for %s", __func__, to_string(fps).c_str(), layer.name.c_str());
auto it = layerChoreographers.connections.begin();
while (it != layerChoreographers.connections.end()) {
sp<EventThreadConnection> choreographerConnection = it->promote();
if (choreographerConnection) {
choreographerConnection->frameRate = fps;
it++;
} else {
it = choreographers->second.connections.erase(it);
}
}
if (layerChoreographers.connections.empty()) {
mAttachedChoreographers.erase(choreographers);
}
}
int Scheduler::updateAttachedChoreographersInternal(
const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate,
int parentDivisor) {
const char* name = layerHierarchy.getLayer() ? layerHierarchy.getLayer()->name.c_str() : "Root";
int divisor = 0;
if (layerHierarchy.getLayer()) {
const auto frameRateCompatibility = layerHierarchy.getLayer()->frameRateCompatibility;
const auto frameRate = Fps::fromValue(layerHierarchy.getLayer()->frameRate);
ALOGV("%s: %s frameRate %s parentDivisor=%d", __func__, name, to_string(frameRate).c_str(),
parentDivisor);
if (frameRate.isValid()) {
if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_FIXED_SOURCE ||
frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_EXACT) {
// Since this layer wants an exact match, we would only set a frame rate if the
// desired rate is a divisor of the display refresh rate.
divisor = RefreshRateSelector::getFrameRateDivisor(displayRefreshRate, frameRate);
} else if (frameRateCompatibility == ANATIVEWINDOW_FRAME_RATE_COMPATIBILITY_DEFAULT) {
// find the closest frame rate divisor for the desired frame rate.
divisor = static_cast<int>(
std::round(displayRefreshRate.getValue() / frameRate.getValue()));
}
}
}
// We start by traversing the children, updating their choreographers, and getting back the
// aggregated frame rate.
int childrenDivisor = 0;
for (const auto& [child, _] : layerHierarchy.mChildren) {
LOG_ALWAYS_FATAL_IF(child == nullptr || child->getLayer() == nullptr);
ALOGV("%s: %s traversing child %s", __func__, name, child->getLayer()->name.c_str());
const int childDivisor =
updateAttachedChoreographersInternal(*child, displayRefreshRate, divisor);
childrenDivisor = childrenDivisor > 0 ? childrenDivisor : childDivisor;
if (childDivisor > 0) {
childrenDivisor = std::gcd(childrenDivisor, childDivisor);
}
ALOGV("%s: %s childrenDivisor=%d", __func__, name, childrenDivisor);
}
ALOGV("%s: %s divisor=%d", __func__, name, divisor);
// If there is no explicit vote for this layer. Use the children's vote if exists
divisor = (divisor == 0) ? childrenDivisor : divisor;
ALOGV("%s: %s divisor=%d with children", __func__, name, divisor);
// If there is no explicit vote for this layer or its children, Use the parent vote if exists
divisor = (divisor == 0) ? parentDivisor : divisor;
ALOGV("%s: %s divisor=%d with parent", __func__, name, divisor);
if (layerHierarchy.getLayer()) {
Fps fps = divisor > 1 ? displayRefreshRate / (unsigned int)divisor : Fps();
updateAttachedChoreographersFrameRate(*layerHierarchy.getLayer(), fps);
}
return divisor;
}
void Scheduler::updateAttachedChoreographers(
const surfaceflinger::frontend::LayerHierarchy& layerHierarchy, Fps displayRefreshRate) {
ATRACE_CALL();
updateAttachedChoreographersInternal(layerHierarchy, displayRefreshRate, 0);
}
template <typename S, typename T>
auto Scheduler::applyPolicy(S Policy::*statePtr, T&& newState) -> GlobalSignals {
ATRACE_CALL();
std::vector<display::DisplayModeRequest> modeRequests;
GlobalSignals consideredSignals;
bool refreshRateChanged = false;
bool frameRateOverridesChanged;
{
std::scoped_lock lock(mPolicyLock);
auto& currentState = mPolicy.*statePtr;
if (currentState == newState) return {};
currentState = std::forward<T>(newState);
DisplayModeChoiceMap modeChoices;
ftl::Optional<FrameRateMode> modeOpt;
{
std::scoped_lock lock(mDisplayLock);
ftl::FakeGuard guard(kMainThreadContext);
modeChoices = chooseDisplayModes();
// TODO(b/240743786): The pacesetter display's mode must change for any
// DisplayModeRequest to go through. Fix this by tracking per-display Scheduler::Policy
// and timers.
std::tie(modeOpt, consideredSignals) =
modeChoices.get(*mPacesetterDisplayId)
.transform([](const DisplayModeChoice& choice) {
return std::make_pair(choice.mode, choice.consideredSignals);
})
.value();
}
modeRequests.reserve(modeChoices.size());
for (auto& [id, choice] : modeChoices) {
modeRequests.emplace_back(
display::DisplayModeRequest{.mode = std::move(choice.mode),
.emitEvent = !choice.consideredSignals.idle});
}
frameRateOverridesChanged = updateFrameRateOverridesLocked(consideredSignals, modeOpt->fps);
if (mPolicy.modeOpt != modeOpt) {
mPolicy.modeOpt = modeOpt;
refreshRateChanged = true;
} else {
// We don't need to change the display mode, but we might need to send an event
// about a mode change, since it was suppressed if previously considered idle.
if (!consideredSignals.idle) {
dispatchCachedReportedMode();
}
}
}
if (refreshRateChanged) {
mSchedulerCallback.requestDisplayModes(std::move(modeRequests));
}
if (frameRateOverridesChanged) {
mSchedulerCallback.triggerOnFrameRateOverridesChanged();
}
return consideredSignals;
}
auto Scheduler::chooseDisplayModes() const -> DisplayModeChoiceMap {
ATRACE_CALL();
using RankedRefreshRates = RefreshRateSelector::RankedFrameRates;
ui::PhysicalDisplayVector<RankedRefreshRates> perDisplayRanking;
const auto globalSignals = makeGlobalSignals();
Fps pacesetterFps;
for (const auto& [id, display] : mDisplays) {
auto rankedFrameRates =
display.selectorPtr->getRankedFrameRates(mPolicy.contentRequirements,
globalSignals);
if (id == *mPacesetterDisplayId) {
pacesetterFps = rankedFrameRates.ranking.front().frameRateMode.fps;
}
perDisplayRanking.push_back(std::move(rankedFrameRates));
}
DisplayModeChoiceMap modeChoices;
using fps_approx_ops::operator==;
for (auto& [rankings, signals] : perDisplayRanking) {
const auto chosenFrameRateMode =
ftl::find_if(rankings,
[&](const auto& ranking) {
return ranking.frameRateMode.fps == pacesetterFps;
})
.transform([](const auto& scoredFrameRate) {
return scoredFrameRate.get().frameRateMode;
})
.value_or(rankings.front().frameRateMode);
modeChoices.try_emplace(chosenFrameRateMode.modePtr->getPhysicalDisplayId(),
DisplayModeChoice{chosenFrameRateMode, signals});
}
return modeChoices;
}
GlobalSignals Scheduler::makeGlobalSignals() const {
const bool powerOnImminent = mDisplayPowerTimer &&
(mPolicy.displayPowerMode != hal::PowerMode::ON ||
mPolicy.displayPowerTimer == TimerState::Reset);
return {.touch = mTouchTimer && mPolicy.touch == TouchState::Active,
.idle = mPolicy.idleTimer == TimerState::Expired,
.powerOnImminent = powerOnImminent};
}
FrameRateMode Scheduler::getPreferredDisplayMode() {
std::lock_guard<std::mutex> lock(mPolicyLock);
const auto frameRateMode =
pacesetterSelectorPtr()
->getRankedFrameRates(mPolicy.contentRequirements, makeGlobalSignals())
.ranking.front()
.frameRateMode;
// Make sure the stored mode is up to date.
mPolicy.modeOpt = frameRateMode;
return frameRateMode;
}
void Scheduler::onNewVsyncPeriodChangeTimeline(const hal::VsyncPeriodChangeTimeline& timeline) {
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
mLastVsyncPeriodChangeTimeline = std::make_optional(timeline);
const auto maxAppliedTime = systemTime() + MAX_VSYNC_APPLIED_TIME.count();
if (timeline.newVsyncAppliedTimeNanos > maxAppliedTime) {
mLastVsyncPeriodChangeTimeline->newVsyncAppliedTimeNanos = maxAppliedTime;
}
}
bool Scheduler::onCompositionPresented(nsecs_t presentTime) {
std::lock_guard<std::mutex> lock(mVsyncTimelineLock);
if (mLastVsyncPeriodChangeTimeline && mLastVsyncPeriodChangeTimeline->refreshRequired) {
if (presentTime < mLastVsyncPeriodChangeTimeline->refreshTimeNanos) {
// We need to composite again as refreshTimeNanos is still in the future.
return true;
}
mLastVsyncPeriodChangeTimeline->refreshRequired = false;
}
return false;
}
void Scheduler::onActiveDisplayAreaChanged(uint32_t displayArea) {
mLayerHistory.setDisplayArea(displayArea);
}
void Scheduler::setGameModeFrameRateForUid(FrameRateOverride frameRateOverride) {
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
return;
}
if (FlagManager::getInstance().game_default_frame_rate()) {
// update the frame rate override mapping in LayerHistory
mLayerHistory.updateGameModeFrameRateOverride(frameRateOverride);
} else {
mFrameRateOverrideMappings.setGameModeRefreshRateForUid(frameRateOverride);
}
}
void Scheduler::setGameDefaultFrameRateForUid(FrameRateOverride frameRateOverride) {
if (!FlagManager::getInstance().game_default_frame_rate() ||
(frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f)) {
return;
}
// update the frame rate override mapping in LayerHistory
mLayerHistory.updateGameDefaultFrameRateOverride(frameRateOverride);
}
void Scheduler::setPreferredRefreshRateForUid(FrameRateOverride frameRateOverride) {
if (frameRateOverride.frameRateHz > 0.f && frameRateOverride.frameRateHz < 1.f) {
return;
}
mFrameRateOverrideMappings.setPreferredRefreshRateForUid(frameRateOverride);
}
void Scheduler::updateSmallAreaDetection(
std::vector<std::pair<int32_t, float>>& uidThresholdMappings) {
mSmallAreaDetectionAllowMappings.update(uidThresholdMappings);
}
void Scheduler::setSmallAreaDetectionThreshold(int32_t appId, float threshold) {
mSmallAreaDetectionAllowMappings.setThresholdForAppId(appId, threshold);
}
bool Scheduler::isSmallDirtyArea(int32_t appId, uint32_t dirtyArea) {
std::optional<float> oThreshold = mSmallAreaDetectionAllowMappings.getThresholdForAppId(appId);
if (oThreshold) {
return mLayerHistory.isSmallDirtyArea(dirtyArea, oThreshold.value());
}
return false;
}
} // namespace android::scheduler
|