1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
|
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wextra"
#undef LOG_TAG
#define LOG_TAG "VSyncPredictor"
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <algorithm>
#include <chrono>
#include <sstream>
#include <android-base/logging.h>
#include <android-base/stringprintf.h>
#include <common/FlagManager.h>
#include <cutils/compiler.h>
#include <cutils/properties.h>
#include <ftl/concat.h>
#include <gui/TraceUtils.h>
#include <utils/Log.h>
#include "RefreshRateSelector.h"
#include "VSyncPredictor.h"
namespace android::scheduler {
using base::StringAppendF;
static auto constexpr kMaxPercent = 100u;
namespace {
nsecs_t getVsyncFixup(VSyncPredictor::Model model, Period minFramePeriod, nsecs_t vsyncTime,
std::optional<nsecs_t> lastVsyncOpt) {
const auto threshold = model.slope / 2;
if (FlagManager::getInstance().vrr_config() && lastVsyncOpt) {
const auto vsyncDiff = vsyncTime - *lastVsyncOpt;
if (vsyncDiff >= threshold && vsyncDiff <= minFramePeriod.ns() - threshold) {
const auto vsyncFixup = *lastVsyncOpt + minFramePeriod.ns() - vsyncTime;
ATRACE_FORMAT_INSTANT("minFramePeriod violation. next in %.2f which is %.2f from prev. "
"adjust by %.2f",
static_cast<float>(vsyncTime - TimePoint::now().ns()) / 1e6f,
static_cast<float>(vsyncTime - *lastVsyncOpt) / 1e6f,
static_cast<float>(vsyncFixup) / 1e6f);
return vsyncFixup;
}
}
return 0;
}
} // namespace
VSyncPredictor::~VSyncPredictor() = default;
VSyncPredictor::VSyncPredictor(std::unique_ptr<Clock> clock, ftl::NonNull<DisplayModePtr> modePtr,
size_t historySize, size_t minimumSamplesForPrediction,
uint32_t outlierTolerancePercent)
: mClock(std::move(clock)),
mId(modePtr->getPhysicalDisplayId()),
mTraceOn(property_get_bool("debug.sf.vsp_trace", false)),
kHistorySize(historySize),
kMinimumSamplesForPrediction(minimumSamplesForPrediction),
kOutlierTolerancePercent(std::min(outlierTolerancePercent, kMaxPercent)),
mDisplayModePtr(modePtr) {
resetModel();
}
inline void VSyncPredictor::traceInt64If(const char* name, int64_t value) const {
if (CC_UNLIKELY(mTraceOn)) {
traceInt64(name, value);
}
}
inline void VSyncPredictor::traceInt64(const char* name, int64_t value) const {
ATRACE_INT64(ftl::Concat(ftl::truncated<14>(name), " ", mId.value).c_str(), value);
}
inline size_t VSyncPredictor::next(size_t i) const {
return (i + 1) % mTimestamps.size();
}
nsecs_t VSyncPredictor::idealPeriod() const {
return mDisplayModePtr->getVsyncRate().getPeriodNsecs();
}
bool VSyncPredictor::validate(nsecs_t timestamp) const {
if (mLastTimestampIndex < 0 || mTimestamps.empty()) {
return true;
}
const auto aValidTimestamp = mTimestamps[mLastTimestampIndex];
const auto percent =
(timestamp - aValidTimestamp) % idealPeriod() * kMaxPercent / idealPeriod();
if (percent >= kOutlierTolerancePercent &&
percent <= (kMaxPercent - kOutlierTolerancePercent)) {
ATRACE_FORMAT_INSTANT("timestamp is not aligned with model");
return false;
}
const auto iter = std::min_element(mTimestamps.begin(), mTimestamps.end(),
[timestamp](nsecs_t a, nsecs_t b) {
return std::abs(timestamp - a) < std::abs(timestamp - b);
});
const auto distancePercent = std::abs(*iter - timestamp) * kMaxPercent / idealPeriod();
if (distancePercent < kOutlierTolerancePercent) {
// duplicate timestamp
ATRACE_FORMAT_INSTANT("duplicate timestamp");
return false;
}
return true;
}
nsecs_t VSyncPredictor::currentPeriod() const {
std::lock_guard lock(mMutex);
return mRateMap.find(idealPeriod())->second.slope;
}
Period VSyncPredictor::minFramePeriod() const {
if (!FlagManager::getInstance().vrr_config()) {
return Period::fromNs(currentPeriod());
}
std::lock_guard lock(mMutex);
return minFramePeriodLocked();
}
Period VSyncPredictor::minFramePeriodLocked() const {
const auto idealPeakRefreshPeriod = mDisplayModePtr->getPeakFps().getPeriodNsecs();
const auto numPeriods = static_cast<int>(std::round(static_cast<float>(idealPeakRefreshPeriod) /
static_cast<float>(idealPeriod())));
const auto slope = mRateMap.find(idealPeriod())->second.slope;
return Period::fromNs(slope * numPeriods);
}
bool VSyncPredictor::addVsyncTimestamp(nsecs_t timestamp) {
ATRACE_CALL();
std::lock_guard lock(mMutex);
if (!validate(timestamp)) {
// VSR could elect to ignore the incongruent timestamp or resetModel(). If ts is ignored,
// don't insert this ts into mTimestamps ringbuffer. If we are still
// in the learning phase we should just clear all timestamps and start
// over.
if (mTimestamps.size() < kMinimumSamplesForPrediction) {
// Add the timestamp to mTimestamps before clearing it so we could
// update mKnownTimestamp based on the new timestamp.
mTimestamps.push_back(timestamp);
clearTimestamps();
} else if (!mTimestamps.empty()) {
mKnownTimestamp =
std::max(timestamp, *std::max_element(mTimestamps.begin(), mTimestamps.end()));
} else {
mKnownTimestamp = timestamp;
}
ATRACE_FORMAT_INSTANT("timestamp rejected. mKnownTimestamp was %.2fms ago",
(mClock->now() - *mKnownTimestamp) / 1e6f);
return false;
}
if (mTimestamps.size() != kHistorySize) {
mTimestamps.push_back(timestamp);
mLastTimestampIndex = next(mLastTimestampIndex);
} else {
mLastTimestampIndex = next(mLastTimestampIndex);
mTimestamps[mLastTimestampIndex] = timestamp;
}
traceInt64If("VSP-ts", timestamp);
const size_t numSamples = mTimestamps.size();
if (numSamples < kMinimumSamplesForPrediction) {
mRateMap[idealPeriod()] = {idealPeriod(), 0};
return true;
}
// This is a 'simple linear regression' calculation of Y over X, with Y being the
// vsync timestamps, and X being the ordinal of vsync count.
// The calculated slope is the vsync period.
// Formula for reference:
// Sigma_i: means sum over all timestamps.
// mean(variable): statistical mean of variable.
// X: snapped ordinal of the timestamp
// Y: vsync timestamp
//
// Sigma_i( (X_i - mean(X)) * (Y_i - mean(Y) )
// slope = -------------------------------------------
// Sigma_i ( X_i - mean(X) ) ^ 2
//
// intercept = mean(Y) - slope * mean(X)
//
std::vector<nsecs_t> vsyncTS(numSamples);
std::vector<nsecs_t> ordinals(numSamples);
// Normalizing to the oldest timestamp cuts down on error in calculating the intercept.
const auto oldestTS = *std::min_element(mTimestamps.begin(), mTimestamps.end());
auto it = mRateMap.find(idealPeriod());
auto const currentPeriod = it->second.slope;
// The mean of the ordinals must be precise for the intercept calculation, so scale them up for
// fixed-point arithmetic.
constexpr int64_t kScalingFactor = 1000;
nsecs_t meanTS = 0;
nsecs_t meanOrdinal = 0;
for (size_t i = 0; i < numSamples; i++) {
const auto timestamp = mTimestamps[i] - oldestTS;
vsyncTS[i] = timestamp;
meanTS += timestamp;
const auto ordinal = currentPeriod == 0
? 0
: (vsyncTS[i] + currentPeriod / 2) / currentPeriod * kScalingFactor;
ordinals[i] = ordinal;
meanOrdinal += ordinal;
}
meanTS /= numSamples;
meanOrdinal /= numSamples;
for (size_t i = 0; i < numSamples; i++) {
vsyncTS[i] -= meanTS;
ordinals[i] -= meanOrdinal;
}
nsecs_t top = 0;
nsecs_t bottom = 0;
for (size_t i = 0; i < numSamples; i++) {
top += vsyncTS[i] * ordinals[i];
bottom += ordinals[i] * ordinals[i];
}
if (CC_UNLIKELY(bottom == 0)) {
it->second = {idealPeriod(), 0};
clearTimestamps();
return false;
}
nsecs_t const anticipatedPeriod = top * kScalingFactor / bottom;
nsecs_t const intercept = meanTS - (anticipatedPeriod * meanOrdinal / kScalingFactor);
auto const percent = std::abs(anticipatedPeriod - idealPeriod()) * kMaxPercent / idealPeriod();
if (percent >= kOutlierTolerancePercent) {
it->second = {idealPeriod(), 0};
clearTimestamps();
return false;
}
traceInt64If("VSP-period", anticipatedPeriod);
traceInt64If("VSP-intercept", intercept);
it->second = {anticipatedPeriod, intercept};
ALOGV("model update ts %" PRIu64 ": %" PRId64 " slope: %" PRId64 " intercept: %" PRId64,
mId.value, timestamp, anticipatedPeriod, intercept);
return true;
}
nsecs_t VSyncPredictor::snapToVsync(nsecs_t timePoint) const {
auto const [slope, intercept] = getVSyncPredictionModelLocked();
if (mTimestamps.empty()) {
traceInt64("VSP-mode", 1);
auto const knownTimestamp = mKnownTimestamp ? *mKnownTimestamp : timePoint;
auto const numPeriodsOut = ((timePoint - knownTimestamp) / idealPeriod()) + 1;
return knownTimestamp + numPeriodsOut * idealPeriod();
}
auto const oldest = *std::min_element(mTimestamps.begin(), mTimestamps.end());
// See b/145667109, the ordinal calculation must take into account the intercept.
auto const zeroPoint = oldest + intercept;
auto const ordinalRequest = (timePoint - zeroPoint + slope) / slope;
auto const prediction = (ordinalRequest * slope) + intercept + oldest;
traceInt64("VSP-mode", 0);
traceInt64If("VSP-timePoint", timePoint);
traceInt64If("VSP-prediction", prediction);
auto const printer = [&, slope = slope, intercept = intercept] {
std::stringstream str;
str << "prediction made from: " << timePoint << "prediction: " << prediction << " (+"
<< prediction - timePoint << ") slope: " << slope << " intercept: " << intercept
<< "oldestTS: " << oldest << " ordinal: " << ordinalRequest;
return str.str();
};
ALOGV("%s", printer().c_str());
LOG_ALWAYS_FATAL_IF(prediction < timePoint, "VSyncPredictor: model miscalculation: %s",
printer().c_str());
return prediction;
}
nsecs_t VSyncPredictor::nextAnticipatedVSyncTimeFrom(nsecs_t timePoint,
std::optional<nsecs_t> lastVsyncOpt) {
ATRACE_CALL();
std::lock_guard lock(mMutex);
const auto now = TimePoint::fromNs(mClock->now());
purgeTimelines(now);
std::optional<TimePoint> vsyncOpt;
for (auto& timeline : mTimelines) {
vsyncOpt = timeline.nextAnticipatedVSyncTimeFrom(getVSyncPredictionModelLocked(),
minFramePeriodLocked(),
snapToVsync(timePoint), mMissedVsync,
lastVsyncOpt);
if (vsyncOpt) {
break;
}
}
LOG_ALWAYS_FATAL_IF(!vsyncOpt);
if (*vsyncOpt > mLastCommittedVsync) {
mLastCommittedVsync = *vsyncOpt;
ATRACE_FORMAT_INSTANT("mLastCommittedVsync in %.2fms",
float(mLastCommittedVsync.ns() - mClock->now()) / 1e6f);
}
return vsyncOpt->ns();
}
/*
* Returns whether a given vsync timestamp is in phase with a frame rate.
* If the frame rate is not a divisor of the refresh rate, it is always considered in phase.
* For example, if the vsync timestamps are (16.6,33.3,50.0,66.6):
* isVSyncInPhase(16.6, 30) = true
* isVSyncInPhase(33.3, 30) = false
* isVSyncInPhase(50.0, 30) = true
*/
bool VSyncPredictor::isVSyncInPhase(nsecs_t timePoint, Fps frameRate) {
if (timePoint == 0) {
return true;
}
std::lock_guard lock(mMutex);
const auto model = getVSyncPredictionModelLocked();
const nsecs_t period = model.slope;
const nsecs_t justBeforeTimePoint = timePoint - period / 2;
const auto now = TimePoint::fromNs(mClock->now());
const auto vsync = snapToVsync(justBeforeTimePoint);
purgeTimelines(now);
for (auto& timeline : mTimelines) {
if (timeline.validUntil() && timeline.validUntil()->ns() > vsync) {
return timeline.isVSyncInPhase(model, vsync, frameRate);
}
}
// The last timeline should always be valid
return mTimelines.back().isVSyncInPhase(model, vsync, frameRate);
}
void VSyncPredictor::setRenderRate(Fps renderRate) {
ATRACE_FORMAT("%s %s", __func__, to_string(renderRate).c_str());
ALOGV("%s %s: RenderRate %s ", __func__, to_string(mId).c_str(), to_string(renderRate).c_str());
std::lock_guard lock(mMutex);
mRenderRateOpt = renderRate;
mTimelines.back().freeze(TimePoint::fromNs(mLastCommittedVsync.ns() + mIdealPeriod.ns() / 2));
mTimelines.emplace_back(mIdealPeriod, renderRate);
purgeTimelines(TimePoint::fromNs(mClock->now()));
}
void VSyncPredictor::setDisplayModePtr(ftl::NonNull<DisplayModePtr> modePtr) {
LOG_ALWAYS_FATAL_IF(mId != modePtr->getPhysicalDisplayId(),
"mode does not belong to the display");
ATRACE_FORMAT("%s %s", __func__, to_string(*modePtr).c_str());
const auto timeout = modePtr->getVrrConfig()
? modePtr->getVrrConfig()->notifyExpectedPresentConfig
: std::nullopt;
ALOGV("%s %s: DisplayMode %s notifyExpectedPresentTimeout %s", __func__, to_string(mId).c_str(),
to_string(*modePtr).c_str(),
timeout ? std::to_string(timeout->timeoutNs).c_str() : "N/A");
std::lock_guard lock(mMutex);
mDisplayModePtr = modePtr;
traceInt64("VSP-setPeriod", modePtr->getVsyncRate().getPeriodNsecs());
static constexpr size_t kSizeLimit = 30;
if (CC_UNLIKELY(mRateMap.size() == kSizeLimit)) {
mRateMap.erase(mRateMap.begin());
}
if (mRateMap.find(idealPeriod()) == mRateMap.end()) {
mRateMap[idealPeriod()] = {idealPeriod(), 0};
}
clearTimestamps();
}
Duration VSyncPredictor::ensureMinFrameDurationIsKept(TimePoint expectedPresentTime,
TimePoint lastConfirmedPresentTime) {
ATRACE_CALL();
const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
const auto threshold = currentPeriod / 2;
const auto minFramePeriod = minFramePeriodLocked().ns();
auto prev = lastConfirmedPresentTime.ns();
for (auto& current : mPastExpectedPresentTimes) {
if (CC_UNLIKELY(mTraceOn)) {
ATRACE_FORMAT_INSTANT("current %.2f past last signaled fence",
static_cast<float>(current.ns() - lastConfirmedPresentTime.ns()) /
1e6f);
}
const auto minPeriodViolation = current.ns() - prev + threshold < minFramePeriod;
if (minPeriodViolation) {
ATRACE_NAME("minPeriodViolation");
current = TimePoint::fromNs(prev + minFramePeriod);
prev = current.ns();
} else {
break;
}
}
if (!mPastExpectedPresentTimes.empty()) {
const auto phase = Duration(mPastExpectedPresentTimes.back() - expectedPresentTime);
if (phase > 0ns) {
for (auto& timeline : mTimelines) {
timeline.shiftVsyncSequence(phase);
}
mPastExpectedPresentTimes.clear();
return phase;
}
}
return 0ns;
}
void VSyncPredictor::onFrameBegin(TimePoint expectedPresentTime,
TimePoint lastConfirmedPresentTime) {
ATRACE_NAME("VSyncPredictor::onFrameBegin");
std::lock_guard lock(mMutex);
if (!mDisplayModePtr->getVrrConfig()) return;
if (CC_UNLIKELY(mTraceOn)) {
ATRACE_FORMAT_INSTANT("vsync is %.2f past last signaled fence",
static_cast<float>(expectedPresentTime.ns() -
lastConfirmedPresentTime.ns()) /
1e6f);
}
const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
const auto threshold = currentPeriod / 2;
mPastExpectedPresentTimes.push_back(expectedPresentTime);
while (!mPastExpectedPresentTimes.empty()) {
const auto front = mPastExpectedPresentTimes.front().ns();
const bool frontIsBeforeConfirmed = front < lastConfirmedPresentTime.ns() + threshold;
if (frontIsBeforeConfirmed) {
if (CC_UNLIKELY(mTraceOn)) {
ATRACE_FORMAT_INSTANT("Discarding old vsync - %.2f before last signaled fence",
static_cast<float>(lastConfirmedPresentTime.ns() - front) /
1e6f);
}
mPastExpectedPresentTimes.pop_front();
} else {
break;
}
}
const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime);
if (phase > 0ns) {
mMissedVsync = {expectedPresentTime, minFramePeriodLocked()};
}
}
void VSyncPredictor::onFrameMissed(TimePoint expectedPresentTime) {
ATRACE_NAME("VSyncPredictor::onFrameMissed");
std::lock_guard lock(mMutex);
if (!mDisplayModePtr->getVrrConfig()) return;
// We don't know when the frame is going to be presented, so we assume it missed one vsync
const auto currentPeriod = mRateMap.find(idealPeriod())->second.slope;
const auto lastConfirmedPresentTime =
TimePoint::fromNs(expectedPresentTime.ns() + currentPeriod);
const auto phase = ensureMinFrameDurationIsKept(expectedPresentTime, lastConfirmedPresentTime);
if (phase > 0ns) {
mMissedVsync = {expectedPresentTime, Duration::fromNs(0)};
}
}
VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModel() const {
std::lock_guard lock(mMutex);
return VSyncPredictor::getVSyncPredictionModelLocked();
}
VSyncPredictor::Model VSyncPredictor::getVSyncPredictionModelLocked() const {
return mRateMap.find(idealPeriod())->second;
}
void VSyncPredictor::clearTimestamps() {
ATRACE_CALL();
if (!mTimestamps.empty()) {
auto const maxRb = *std::max_element(mTimestamps.begin(), mTimestamps.end());
if (mKnownTimestamp) {
mKnownTimestamp = std::max(*mKnownTimestamp, maxRb);
} else {
mKnownTimestamp = maxRb;
}
mTimestamps.clear();
mLastTimestampIndex = 0;
}
mTimelines.clear();
mLastCommittedVsync = TimePoint::fromNs(0);
mIdealPeriod = Period::fromNs(idealPeriod());
mTimelines.emplace_back(mIdealPeriod, mRenderRateOpt);
}
bool VSyncPredictor::needsMoreSamples() const {
std::lock_guard lock(mMutex);
return mTimestamps.size() < kMinimumSamplesForPrediction;
}
void VSyncPredictor::resetModel() {
std::lock_guard lock(mMutex);
mRateMap[idealPeriod()] = {idealPeriod(), 0};
clearTimestamps();
}
void VSyncPredictor::dump(std::string& result) const {
std::lock_guard lock(mMutex);
StringAppendF(&result, "\tmDisplayModePtr=%s\n", to_string(*mDisplayModePtr).c_str());
StringAppendF(&result, "\tRefresh Rate Map:\n");
for (const auto& [period, periodInterceptTuple] : mRateMap) {
StringAppendF(&result,
"\t\tFor ideal period %.2fms: period = %.2fms, intercept = %" PRId64 "\n",
period / 1e6f, periodInterceptTuple.slope / 1e6f,
periodInterceptTuple.intercept);
}
StringAppendF(&result, "\tmTimelines.size()=%zu\n", mTimelines.size());
}
void VSyncPredictor::purgeTimelines(android::TimePoint now) {
while (mTimelines.size() > 1) {
const auto validUntilOpt = mTimelines.front().validUntil();
if (validUntilOpt && *validUntilOpt < now) {
mTimelines.pop_front();
} else {
break;
}
}
LOG_ALWAYS_FATAL_IF(mTimelines.empty());
LOG_ALWAYS_FATAL_IF(mTimelines.back().validUntil().has_value());
}
VSyncPredictor::VsyncTimeline::VsyncTimeline(Period idealPeriod, std::optional<Fps> renderRateOpt)
: mIdealPeriod(idealPeriod), mRenderRateOpt(renderRateOpt) {}
void VSyncPredictor::VsyncTimeline::freeze(TimePoint lastVsync) {
LOG_ALWAYS_FATAL_IF(mValidUntil.has_value());
ATRACE_FORMAT_INSTANT("renderRate %s valid for %.2f",
mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA",
float(lastVsync.ns() - TimePoint::now().ns()) / 1e6f);
mValidUntil = lastVsync;
}
std::optional<TimePoint> VSyncPredictor::VsyncTimeline::nextAnticipatedVSyncTimeFrom(
Model model, Period minFramePeriod, nsecs_t vsync, MissedVsync missedVsync,
std::optional<nsecs_t> lastVsyncOpt) {
ATRACE_FORMAT("renderRate %s", mRenderRateOpt ? to_string(*mRenderRateOpt).c_str() : "NA");
const auto threshold = model.slope / 2;
const auto lastFrameMissed =
lastVsyncOpt && std::abs(*lastVsyncOpt - missedVsync.vsync.ns()) < threshold;
nsecs_t vsyncTime = snapToVsyncAlignedWithRenderRate(model, vsync);
nsecs_t vsyncFixupTime = 0;
if (FlagManager::getInstance().vrr_config() && lastFrameMissed) {
vsyncTime += missedVsync.fixup.ns();
ATRACE_FORMAT_INSTANT("lastFrameMissed");
} else {
vsyncFixupTime = getVsyncFixup(model, minFramePeriod, vsyncTime, lastVsyncOpt);
vsyncTime += vsyncFixupTime;
}
ATRACE_FORMAT_INSTANT("vsync in %.2fms", float(vsyncTime - TimePoint::now().ns()) / 1e6f);
if (mValidUntil && vsyncTime > mValidUntil->ns()) {
ATRACE_FORMAT_INSTANT("no longer valid for vsync in %.2f",
static_cast<float>(vsyncTime - TimePoint::now().ns()) / 1e6f);
return std::nullopt;
}
if (vsyncFixupTime > 0) {
shiftVsyncSequence(Duration::fromNs(vsyncFixupTime));
}
return TimePoint::fromNs(vsyncTime);
}
auto VSyncPredictor::VsyncTimeline::getVsyncSequenceLocked(Model model, nsecs_t vsync)
-> VsyncSequence {
if (!mLastVsyncSequence) return {vsync, 0};
const auto [lastVsyncTime, lastVsyncSequence] = *mLastVsyncSequence;
const auto vsyncSequence = lastVsyncSequence +
static_cast<int64_t>(std::round((vsync - lastVsyncTime) /
static_cast<float>(model.slope)));
return {vsync, vsyncSequence};
}
nsecs_t VSyncPredictor::VsyncTimeline::snapToVsyncAlignedWithRenderRate(Model model,
nsecs_t vsync) {
// update the mLastVsyncSequence for reference point
mLastVsyncSequence = getVsyncSequenceLocked(model, vsync);
const auto renderRatePhase = [&]() -> int {
if (!mRenderRateOpt) return 0;
const auto divisor =
RefreshRateSelector::getFrameRateDivisor(Fps::fromPeriodNsecs(mIdealPeriod.ns()),
*mRenderRateOpt);
if (divisor <= 1) return 0;
int mod = mLastVsyncSequence->seq % divisor;
if (mod == 0) return 0;
// This is actually a bug fix, but guarded with vrr_config since we found it with this
// config
if (FlagManager::getInstance().vrr_config()) {
if (mod < 0) mod += divisor;
}
return divisor - mod;
}();
if (renderRatePhase == 0) {
return mLastVsyncSequence->vsyncTime;
}
return mLastVsyncSequence->vsyncTime + model.slope * renderRatePhase;
}
bool VSyncPredictor::VsyncTimeline::isVSyncInPhase(Model model, nsecs_t vsync, Fps frameRate) {
const auto getVsyncIn = [](TimePoint now, nsecs_t timePoint) -> float {
return ticks<std::milli, float>(TimePoint::fromNs(timePoint) - now);
};
Fps displayFps = mRenderRateOpt ? *mRenderRateOpt : Fps::fromPeriodNsecs(mIdealPeriod.ns());
const auto divisor = RefreshRateSelector::getFrameRateDivisor(displayFps, frameRate);
const auto now = TimePoint::now();
if (divisor <= 1) {
return true;
}
const auto vsyncSequence = getVsyncSequenceLocked(model, vsync);
ATRACE_FORMAT_INSTANT("vsync in: %.2f sequence: %" PRId64 " divisor: %zu",
getVsyncIn(now, vsyncSequence.vsyncTime), vsyncSequence.seq, divisor);
return vsyncSequence.seq % divisor == 0;
}
void VSyncPredictor::VsyncTimeline::shiftVsyncSequence(Duration phase) {
if (mLastVsyncSequence) {
ATRACE_FORMAT_INSTANT("adjusting vsync by %.2f", static_cast<float>(phase.ns()) / 1e6f);
mLastVsyncSequence->vsyncTime += phase.ns();
}
}
} // namespace android::scheduler
// TODO(b/129481165): remove the #pragma below and fix conversion issues
#pragma clang diagnostic pop // ignored "-Wextra"
|