1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
/*
* Copyright 2019 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <deque>
#include <mutex>
#include <unordered_map>
#include <vector>
#include <android-base/thread_annotations.h>
#include <scheduler/TimeKeeper.h>
#include <ui/DisplayId.h>
#include "VSyncTracker.h"
namespace android::scheduler {
class VSyncPredictor : public VSyncTracker {
public:
/*
* \param [in] Clock The clock abstraction. Useful for unit tests.
* \param [in] PhysicalDisplayid The display this corresponds to.
* \param [in] modePtr The initial display mode
* \param [in] historySize The internal amount of entries to store in the model.
* \param [in] minimumSamplesForPrediction The minimum number of samples to collect before
* predicting. \param [in] outlierTolerancePercent a number 0 to 100 that will be used to filter
* samples that fall outlierTolerancePercent from an anticipated vsync event.
*/
VSyncPredictor(std::unique_ptr<Clock>, ftl::NonNull<DisplayModePtr> modePtr, size_t historySize,
size_t minimumSamplesForPrediction, uint32_t outlierTolerancePercent);
~VSyncPredictor();
bool addVsyncTimestamp(nsecs_t timestamp) final EXCLUDES(mMutex);
nsecs_t nextAnticipatedVSyncTimeFrom(nsecs_t timePoint,
std::optional<nsecs_t> lastVsyncOpt = {}) final
EXCLUDES(mMutex);
nsecs_t currentPeriod() const final EXCLUDES(mMutex);
Period minFramePeriod() const final EXCLUDES(mMutex);
void resetModel() final EXCLUDES(mMutex);
/* Query if the model is in need of more samples to make a prediction.
* \return True, if model would benefit from more samples, False if not.
*/
bool needsMoreSamples() const final EXCLUDES(mMutex);
struct Model {
nsecs_t slope;
nsecs_t intercept;
};
VSyncPredictor::Model getVSyncPredictionModel() const EXCLUDES(mMutex);
bool isVSyncInPhase(nsecs_t timePoint, Fps frameRate) final EXCLUDES(mMutex);
void setDisplayModePtr(ftl::NonNull<DisplayModePtr>) final EXCLUDES(mMutex);
void setRenderRate(Fps) final EXCLUDES(mMutex);
void onFrameBegin(TimePoint expectedPresentTime, TimePoint lastConfirmedPresentTime) final
EXCLUDES(mMutex);
void onFrameMissed(TimePoint expectedPresentTime) final EXCLUDES(mMutex);
void dump(std::string& result) const final EXCLUDES(mMutex);
private:
struct VsyncSequence {
nsecs_t vsyncTime;
int64_t seq;
};
struct MissedVsync {
TimePoint vsync;
Duration fixup = Duration::fromNs(0);
};
class VsyncTimeline {
public:
VsyncTimeline(Period idealPeriod, std::optional<Fps> renderRateOpt);
std::optional<TimePoint> nextAnticipatedVSyncTimeFrom(
Model model, Period minFramePeriod, nsecs_t vsyncTime, MissedVsync lastMissedVsync,
std::optional<nsecs_t> lastVsyncOpt = {});
void freeze(TimePoint lastVsync);
std::optional<TimePoint> validUntil() const { return mValidUntil; }
bool isVSyncInPhase(Model, nsecs_t vsync, Fps frameRate);
void shiftVsyncSequence(Duration phase);
private:
nsecs_t snapToVsyncAlignedWithRenderRate(Model model, nsecs_t vsync);
VsyncSequence getVsyncSequenceLocked(Model, nsecs_t vsync);
const Period mIdealPeriod = Duration::fromNs(0);
const std::optional<Fps> mRenderRateOpt;
std::optional<TimePoint> mValidUntil;
std::optional<VsyncSequence> mLastVsyncSequence;
};
VSyncPredictor(VSyncPredictor const&) = delete;
VSyncPredictor& operator=(VSyncPredictor const&) = delete;
void clearTimestamps() REQUIRES(mMutex);
const std::unique_ptr<Clock> mClock;
const PhysicalDisplayId mId;
inline void traceInt64If(const char* name, int64_t value) const;
inline void traceInt64(const char* name, int64_t value) const;
size_t next(size_t i) const REQUIRES(mMutex);
bool validate(nsecs_t timestamp) const REQUIRES(mMutex);
Model getVSyncPredictionModelLocked() const REQUIRES(mMutex);
nsecs_t snapToVsync(nsecs_t timePoint) const REQUIRES(mMutex);
Period minFramePeriodLocked() const REQUIRES(mMutex);
Duration ensureMinFrameDurationIsKept(TimePoint, TimePoint) REQUIRES(mMutex);
void purgeTimelines(android::TimePoint now) REQUIRES(mMutex);
nsecs_t idealPeriod() const REQUIRES(mMutex);
bool const mTraceOn;
size_t const kHistorySize;
size_t const kMinimumSamplesForPrediction;
size_t const kOutlierTolerancePercent;
std::mutex mutable mMutex;
std::optional<nsecs_t> mKnownTimestamp GUARDED_BY(mMutex);
// Map between ideal vsync period and the calculated model
std::unordered_map<nsecs_t, Model> mutable mRateMap GUARDED_BY(mMutex);
size_t mLastTimestampIndex GUARDED_BY(mMutex) = 0;
std::vector<nsecs_t> mTimestamps GUARDED_BY(mMutex);
ftl::NonNull<DisplayModePtr> mDisplayModePtr GUARDED_BY(mMutex);
std::deque<TimePoint> mPastExpectedPresentTimes GUARDED_BY(mMutex);
MissedVsync mMissedVsync GUARDED_BY(mMutex);
std::deque<VsyncTimeline> mTimelines GUARDED_BY(mMutex);
TimePoint mLastCommittedVsync GUARDED_BY(mMutex) = TimePoint::fromNs(0);
Period mIdealPeriod GUARDED_BY(mMutex) = Duration::fromNs(0);
std::optional<Fps> mRenderRateOpt GUARDED_BY(mMutex);
};
} // namespace android::scheduler
|