1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
|
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
#include <common/FlagManager.h>
#include <ftl/fake_guard.h>
#include <gui/TraceUtils.h>
#include <scheduler/Fps.h>
#include <scheduler/Timer.h>
#include "VsyncSchedule.h"
#include "Utils/Dumper.h"
#include "VSyncDispatchTimerQueue.h"
#include "VSyncPredictor.h"
#include "VSyncReactor.h"
#include "../TracedOrdinal.h"
namespace android::scheduler {
class VsyncSchedule::PredictedVsyncTracer {
// Invoked from the thread of the VsyncDispatch owned by this VsyncSchedule.
constexpr auto makeVsyncCallback() {
return [this](nsecs_t, nsecs_t, nsecs_t) {
mParity = !mParity;
schedule();
};
}
public:
explicit PredictedVsyncTracer(std::shared_ptr<VsyncDispatch> dispatch)
: mRegistration(std::move(dispatch), makeVsyncCallback(), __func__) {
schedule();
}
private:
void schedule() { mRegistration.schedule({0, 0, 0}); }
TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0};
VSyncCallbackRegistration mRegistration;
};
VsyncSchedule::VsyncSchedule(ftl::NonNull<DisplayModePtr> modePtr, FeatureFlags features,
RequestHardwareVsync requestHardwareVsync)
: mId(modePtr->getPhysicalDisplayId()),
mRequestHardwareVsync(std::move(requestHardwareVsync)),
mTracker(createTracker(modePtr)),
mDispatch(createDispatch(mTracker)),
mController(createController(modePtr->getPhysicalDisplayId(), *mTracker, features)),
mTracer(features.test(Feature::kTracePredictedVsync)
? std::make_unique<PredictedVsyncTracer>(mDispatch)
: nullptr) {}
VsyncSchedule::VsyncSchedule(PhysicalDisplayId id, TrackerPtr tracker, DispatchPtr dispatch,
ControllerPtr controller, RequestHardwareVsync requestHardwareVsync)
: mId(id),
mRequestHardwareVsync(std::move(requestHardwareVsync)),
mTracker(std::move(tracker)),
mDispatch(std::move(dispatch)),
mController(std::move(controller)) {}
VsyncSchedule::~VsyncSchedule() = default;
Period VsyncSchedule::period() const {
return Period::fromNs(mTracker->currentPeriod());
}
Period VsyncSchedule::minFramePeriod() const {
if (FlagManager::getInstance().vrr_config()) {
return mTracker->minFramePeriod();
}
return period();
}
TimePoint VsyncSchedule::vsyncDeadlineAfter(TimePoint timePoint,
ftl::Optional<TimePoint> lastVsyncOpt) const {
return TimePoint::fromNs(
mTracker->nextAnticipatedVSyncTimeFrom(timePoint.ns(),
lastVsyncOpt.transform(
[](TimePoint t) { return t.ns(); })));
}
void VsyncSchedule::dump(std::string& out) const {
utils::Dumper dumper(out);
{
std::lock_guard<std::mutex> lock(mHwVsyncLock);
dumper.dump("hwVsyncState", ftl::enum_string(mHwVsyncState));
ftl::FakeGuard guard(kMainThreadContext);
dumper.dump("pendingHwVsyncState", ftl::enum_string(mPendingHwVsyncState));
dumper.eol();
}
out.append("VsyncController:\n");
mController->dump(out);
out.append("VsyncDispatch:\n");
mDispatch->dump(out);
}
VsyncSchedule::TrackerPtr VsyncSchedule::createTracker(ftl::NonNull<DisplayModePtr> modePtr) {
// TODO(b/144707443): Tune constants.
constexpr size_t kHistorySize = 20;
constexpr size_t kMinSamplesForPrediction = 6;
constexpr uint32_t kDiscardOutlierPercent = 20;
return std::make_unique<VSyncPredictor>(std::make_unique<SystemClock>(), modePtr, kHistorySize,
kMinSamplesForPrediction, kDiscardOutlierPercent);
}
VsyncSchedule::DispatchPtr VsyncSchedule::createDispatch(TrackerPtr tracker) {
using namespace std::chrono_literals;
// TODO(b/144707443): Tune constants.
constexpr std::chrono::nanoseconds kGroupDispatchWithin = 500us;
constexpr std::chrono::nanoseconds kSnapToSameVsyncWithin = 3ms;
return std::make_unique<VSyncDispatchTimerQueue>(std::make_unique<Timer>(), std::move(tracker),
kGroupDispatchWithin.count(),
kSnapToSameVsyncWithin.count());
}
VsyncSchedule::ControllerPtr VsyncSchedule::createController(PhysicalDisplayId id,
VsyncTracker& tracker,
FeatureFlags features) {
// TODO(b/144707443): Tune constants.
constexpr size_t kMaxPendingFences = 20;
const bool hasKernelIdleTimer = features.test(Feature::kKernelIdleTimer);
auto reactor = std::make_unique<VSyncReactor>(id, std::make_unique<SystemClock>(), tracker,
kMaxPendingFences, hasKernelIdleTimer);
reactor->setIgnorePresentFences(!features.test(Feature::kPresentFences));
return reactor;
}
void VsyncSchedule::onDisplayModeChanged(ftl::NonNull<DisplayModePtr> modePtr, bool force) {
std::lock_guard<std::mutex> lock(mHwVsyncLock);
mController->onDisplayModeChanged(modePtr, force);
enableHardwareVsyncLocked();
}
bool VsyncSchedule::addResyncSample(TimePoint timestamp, ftl::Optional<Period> hwcVsyncPeriod) {
bool needsHwVsync = false;
bool periodFlushed = false;
{
std::lock_guard<std::mutex> lock(mHwVsyncLock);
if (mHwVsyncState == HwVsyncState::Enabled) {
needsHwVsync = mController->addHwVsyncTimestamp(timestamp.ns(),
hwcVsyncPeriod.transform(&Period::ns),
&periodFlushed);
}
}
if (needsHwVsync) {
enableHardwareVsync();
} else {
constexpr bool kDisallow = false;
disableHardwareVsync(kDisallow);
}
return periodFlushed;
}
void VsyncSchedule::enableHardwareVsync() {
std::lock_guard<std::mutex> lock(mHwVsyncLock);
enableHardwareVsyncLocked();
}
void VsyncSchedule::enableHardwareVsyncLocked() {
ATRACE_CALL();
if (mHwVsyncState == HwVsyncState::Disabled) {
getTracker().resetModel();
mRequestHardwareVsync(mId, true);
mHwVsyncState = HwVsyncState::Enabled;
}
}
void VsyncSchedule::disableHardwareVsync(bool disallow) {
ATRACE_CALL();
std::lock_guard<std::mutex> lock(mHwVsyncLock);
switch (mHwVsyncState) {
case HwVsyncState::Enabled:
mRequestHardwareVsync(mId, false);
[[fallthrough]];
case HwVsyncState::Disabled:
mHwVsyncState = disallow ? HwVsyncState::Disallowed : HwVsyncState::Disabled;
break;
case HwVsyncState::Disallowed:
break;
}
}
bool VsyncSchedule::isHardwareVsyncAllowed(bool makeAllowed) {
std::lock_guard<std::mutex> lock(mHwVsyncLock);
if (makeAllowed && mHwVsyncState == HwVsyncState::Disallowed) {
mHwVsyncState = HwVsyncState::Disabled;
}
return mHwVsyncState != HwVsyncState::Disallowed;
}
void VsyncSchedule::setPendingHardwareVsyncState(bool enabled) {
mPendingHwVsyncState = enabled ? HwVsyncState::Enabled : HwVsyncState::Disabled;
}
bool VsyncSchedule::getPendingHardwareVsyncState() const {
return mPendingHwVsyncState == HwVsyncState::Enabled;
}
} // namespace android::scheduler
|