File: VsyncSchedule.cpp

package info (click to toggle)
android-platform-tools 35.0.2-1~exp6
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 211,716 kB
  • sloc: cpp: 995,749; java: 290,495; ansic: 145,647; xml: 58,531; python: 39,608; sh: 14,500; javascript: 5,198; asm: 4,866; makefile: 3,115; yacc: 769; awk: 368; ruby: 183; sql: 140; perl: 88; lex: 67
file content (224 lines) | stat: -rw-r--r-- 8,140 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
/*
 * Copyright 2021 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#define ATRACE_TAG ATRACE_TAG_GRAPHICS

#include <common/FlagManager.h>

#include <ftl/fake_guard.h>
#include <gui/TraceUtils.h>
#include <scheduler/Fps.h>
#include <scheduler/Timer.h>

#include "VsyncSchedule.h"

#include "Utils/Dumper.h"
#include "VSyncDispatchTimerQueue.h"
#include "VSyncPredictor.h"
#include "VSyncReactor.h"

#include "../TracedOrdinal.h"

namespace android::scheduler {

class VsyncSchedule::PredictedVsyncTracer {
    // Invoked from the thread of the VsyncDispatch owned by this VsyncSchedule.
    constexpr auto makeVsyncCallback() {
        return [this](nsecs_t, nsecs_t, nsecs_t) {
            mParity = !mParity;
            schedule();
        };
    }

public:
    explicit PredictedVsyncTracer(std::shared_ptr<VsyncDispatch> dispatch)
          : mRegistration(std::move(dispatch), makeVsyncCallback(), __func__) {
        schedule();
    }

private:
    void schedule() { mRegistration.schedule({0, 0, 0}); }

    TracedOrdinal<bool> mParity = {"VSYNC-predicted", 0};
    VSyncCallbackRegistration mRegistration;
};

VsyncSchedule::VsyncSchedule(ftl::NonNull<DisplayModePtr> modePtr, FeatureFlags features,
                             RequestHardwareVsync requestHardwareVsync)
      : mId(modePtr->getPhysicalDisplayId()),
        mRequestHardwareVsync(std::move(requestHardwareVsync)),
        mTracker(createTracker(modePtr)),
        mDispatch(createDispatch(mTracker)),
        mController(createController(modePtr->getPhysicalDisplayId(), *mTracker, features)),
        mTracer(features.test(Feature::kTracePredictedVsync)
                        ? std::make_unique<PredictedVsyncTracer>(mDispatch)
                        : nullptr) {}

VsyncSchedule::VsyncSchedule(PhysicalDisplayId id, TrackerPtr tracker, DispatchPtr dispatch,
                             ControllerPtr controller, RequestHardwareVsync requestHardwareVsync)
      : mId(id),
        mRequestHardwareVsync(std::move(requestHardwareVsync)),
        mTracker(std::move(tracker)),
        mDispatch(std::move(dispatch)),
        mController(std::move(controller)) {}

VsyncSchedule::~VsyncSchedule() = default;

Period VsyncSchedule::period() const {
    return Period::fromNs(mTracker->currentPeriod());
}

Period VsyncSchedule::minFramePeriod() const {
    if (FlagManager::getInstance().vrr_config()) {
        return mTracker->minFramePeriod();
    }
    return period();
}

TimePoint VsyncSchedule::vsyncDeadlineAfter(TimePoint timePoint,
                                            ftl::Optional<TimePoint> lastVsyncOpt) const {
    return TimePoint::fromNs(
            mTracker->nextAnticipatedVSyncTimeFrom(timePoint.ns(),
                                                   lastVsyncOpt.transform(
                                                           [](TimePoint t) { return t.ns(); })));
}

void VsyncSchedule::dump(std::string& out) const {
    utils::Dumper dumper(out);
    {
        std::lock_guard<std::mutex> lock(mHwVsyncLock);
        dumper.dump("hwVsyncState", ftl::enum_string(mHwVsyncState));

        ftl::FakeGuard guard(kMainThreadContext);
        dumper.dump("pendingHwVsyncState", ftl::enum_string(mPendingHwVsyncState));
        dumper.eol();
    }

    out.append("VsyncController:\n");
    mController->dump(out);

    out.append("VsyncDispatch:\n");
    mDispatch->dump(out);
}

VsyncSchedule::TrackerPtr VsyncSchedule::createTracker(ftl::NonNull<DisplayModePtr> modePtr) {
    // TODO(b/144707443): Tune constants.
    constexpr size_t kHistorySize = 20;
    constexpr size_t kMinSamplesForPrediction = 6;
    constexpr uint32_t kDiscardOutlierPercent = 20;

    return std::make_unique<VSyncPredictor>(std::make_unique<SystemClock>(), modePtr, kHistorySize,
                                            kMinSamplesForPrediction, kDiscardOutlierPercent);
}

VsyncSchedule::DispatchPtr VsyncSchedule::createDispatch(TrackerPtr tracker) {
    using namespace std::chrono_literals;

    // TODO(b/144707443): Tune constants.
    constexpr std::chrono::nanoseconds kGroupDispatchWithin = 500us;
    constexpr std::chrono::nanoseconds kSnapToSameVsyncWithin = 3ms;

    return std::make_unique<VSyncDispatchTimerQueue>(std::make_unique<Timer>(), std::move(tracker),
                                                     kGroupDispatchWithin.count(),
                                                     kSnapToSameVsyncWithin.count());
}

VsyncSchedule::ControllerPtr VsyncSchedule::createController(PhysicalDisplayId id,
                                                             VsyncTracker& tracker,
                                                             FeatureFlags features) {
    // TODO(b/144707443): Tune constants.
    constexpr size_t kMaxPendingFences = 20;
    const bool hasKernelIdleTimer = features.test(Feature::kKernelIdleTimer);

    auto reactor = std::make_unique<VSyncReactor>(id, std::make_unique<SystemClock>(), tracker,
                                                  kMaxPendingFences, hasKernelIdleTimer);

    reactor->setIgnorePresentFences(!features.test(Feature::kPresentFences));
    return reactor;
}

void VsyncSchedule::onDisplayModeChanged(ftl::NonNull<DisplayModePtr> modePtr, bool force) {
    std::lock_guard<std::mutex> lock(mHwVsyncLock);
    mController->onDisplayModeChanged(modePtr, force);
    enableHardwareVsyncLocked();
}

bool VsyncSchedule::addResyncSample(TimePoint timestamp, ftl::Optional<Period> hwcVsyncPeriod) {
    bool needsHwVsync = false;
    bool periodFlushed = false;
    {
        std::lock_guard<std::mutex> lock(mHwVsyncLock);
        if (mHwVsyncState == HwVsyncState::Enabled) {
            needsHwVsync = mController->addHwVsyncTimestamp(timestamp.ns(),
                                                            hwcVsyncPeriod.transform(&Period::ns),
                                                            &periodFlushed);
        }
    }
    if (needsHwVsync) {
        enableHardwareVsync();
    } else {
        constexpr bool kDisallow = false;
        disableHardwareVsync(kDisallow);
    }
    return periodFlushed;
}

void VsyncSchedule::enableHardwareVsync() {
    std::lock_guard<std::mutex> lock(mHwVsyncLock);
    enableHardwareVsyncLocked();
}

void VsyncSchedule::enableHardwareVsyncLocked() {
    ATRACE_CALL();
    if (mHwVsyncState == HwVsyncState::Disabled) {
        getTracker().resetModel();
        mRequestHardwareVsync(mId, true);
        mHwVsyncState = HwVsyncState::Enabled;
    }
}

void VsyncSchedule::disableHardwareVsync(bool disallow) {
    ATRACE_CALL();
    std::lock_guard<std::mutex> lock(mHwVsyncLock);
    switch (mHwVsyncState) {
        case HwVsyncState::Enabled:
            mRequestHardwareVsync(mId, false);
            [[fallthrough]];
        case HwVsyncState::Disabled:
            mHwVsyncState = disallow ? HwVsyncState::Disallowed : HwVsyncState::Disabled;
            break;
        case HwVsyncState::Disallowed:
            break;
    }
}

bool VsyncSchedule::isHardwareVsyncAllowed(bool makeAllowed) {
    std::lock_guard<std::mutex> lock(mHwVsyncLock);
    if (makeAllowed && mHwVsyncState == HwVsyncState::Disallowed) {
        mHwVsyncState = HwVsyncState::Disabled;
    }
    return mHwVsyncState != HwVsyncState::Disallowed;
}

void VsyncSchedule::setPendingHardwareVsyncState(bool enabled) {
    mPendingHwVsyncState = enabled ? HwVsyncState::Enabled : HwVsyncState::Disabled;
}

bool VsyncSchedule::getPendingHardwareVsyncState() const {
    return mPendingHwVsyncState == HwVsyncState::Enabled;
}

} // namespace android::scheduler