1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
|
# Copyright (C) 2019 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the License);
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an AS IS BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
module: "android.sysprop.SurfaceFlingerProperties"
owner: Platform
# The following two properties define (respectively):
#
# - The phase offset between hardware vsync and when apps are woken up by the
# Choreographer callback
# - The phase offset between hardware vsync and when SurfaceFlinger wakes up
# to consume input
# Their values may be tuned to trade off between display pipeline latency (both
# overall latency and the lengths of the app --> SF and SF --> display phases)
# and frame delivery jitter (which typically manifests as "jank" or "jerkiness"
# while interacting with the device). The default values must produce a
# relatively low amount of jitter at the expense of roughly two frames of
# app --> display latency, and unless significant testing is performed to avoid
# increased display jitter (both manual investigation using systrace [1] and
# automated testing using dumpsys gfxinfo [2] are recommended), they should not
# be modified.
#
# [1] https://developer.android.com/studio/profile/systrace.html
# [2] https://developer.android.com/training/testing/performance.html
prop {
api_name: "vsync_event_phase_offset_ns"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.vsync_event_phase_offset_ns"
}
prop {
api_name: "vsync_sf_event_phase_offset_ns"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.vsync_sf_event_phase_offset_ns"
}
# Instruct the Render Engine to use EGL_IMG_context_priority hint if available.
prop {
api_name: "use_context_priority"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.use_context_priority"
}
# Controls the number of buffers SurfaceFlinger will allocate for use in FramebufferSurface.
prop {
api_name: "max_frame_buffer_acquired_buffers"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.max_frame_buffer_acquired_buffers"
}
# Controls the maximum width in pixels that the graphics pipeline can support for GPU fallback
# composition. For example, 8k displays with 4k GPUs, or 4k displays with 2k GPUs.
prop {
api_name: "max_graphics_width"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.max_graphics_width"
}
# Controls the maximum height in pixels that the graphics pipeline can support for GPU fallback
# composition. For example, 8k displays with 4k GPUs, or 4k displays with 2k GPUs.
prop {
api_name: "max_graphics_height"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.max_graphics_height"
}
# hasWideColorDisplay indicates that the device has
# or can support a wide-color display, e.g. color space
# greater than sRGB. Typical display may have same
# color primaries as DCI-P3.
# Indicate support for this feature by setting
# TARGET_HAS_WIDE_COLOR_DISPLAY to true in BoardConfig.mk
# This also means that the device is color managed.
# A color managed device will use the appropriate
# display mode depending on the content on the screen.
# Default is sRGB.
prop {
api_name: "has_wide_color_display"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.has_wide_color_display"
}
# Indicates if Sync framework is available. Sync framework provides fence
# mechanism which significantly reduces buffer processing latency.
prop {
api_name: "running_without_sync_framework"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.running_without_sync_framework"
}
# hwHDRDisplay indicates that the device has an High Dynamic Range display.
# A display is considered High Dynamic Range if it
#
# 1. is a wide color gamut display, typically DCI-P3 or lager
# 2. has high luminance capability, typically 540 nits or higher at 10% OPR
#
# Indicate support for this feature by setting
# ro.surface_flinger.has_HDR_display to true in device.mk
# ro.surface_flinger.has_wide_color_display must be set to true when
# ro.surface_flinger.has_HDR_display is true.
prop {
api_name: "has_HDR_display"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.has_HDR_display"
}
# Specify the offset in nanoseconds to add to vsync time when timestamping present fences.
prop {
api_name: "present_time_offset_from_vsync_ns"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.present_time_offset_from_vsync_ns"
}
# Some hardware can do RGB->YUV conversion more efficiently in hardware
# controlled by HWC than in hardware controlled by the video encoder.
# This instruct VirtualDisplaySurface to use HWC for such conversion on
# GL composition.
prop {
api_name: "force_hwc_copy_for_virtual_displays"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.force_hwc_copy_for_virtual_displays"
}
# Maximum dimension supported by HWC for virtual display.
# Must be equals to min(max_width, max_height).
prop {
api_name: "max_virtual_display_dimension"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.max_virtual_display_dimension"
}
# Return true if surface flinger should use vr flinger for compatible vr
# apps, false otherwise. Devices that will never be running vr apps should
# return false to avoid extra resource usage. Daydream ready devices must
# return true for full vr support.
prop {
api_name: "use_vr_flinger"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.use_vr_flinger"
}
# Returns true if surface flinger should start
# hardware.graphics.allocator@2.0::IAllocator service.
prop {
api_name: "start_graphics_allocator_service"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.start_graphics_allocator_service"
}
# Returns the orientation of the primary display device.
prop {
api_name: "primary_display_orientation"
type: Enum
enum_values: "ORIENTATION_0|ORIENTATION_90|ORIENTATION_180|ORIENTATION_270"
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.primary_display_orientation"
}
# useColorManagement indicates whether SurfaceFlinger should manage color
# by switching to appropriate color mode automatically depending on the
# Dataspace of the surfaces on screen.
# DEPRECATED: SurfaceFlinger is always color managed.
prop {
api_name: "use_color_management"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.use_color_management"
}
# The following four properties define:
# Returns the default data space and pixel format that SurfaceFlinger
# expects to receive and output as well as the wide color gamut data space
# and pixel format for wide color gamut surfaces.
# To determine the data space and pixel format, there are a few things
# we recommend to consider:
#
# 1. Hardware composer's capability to composite contents with the chosen
# data space and pixel format efficiently;
# 2. Hardware composer's ability to composite contents when sRGB contents
# and the chosen wide color gamut data space contents coexist;
# 3. For better blending, consider using pixel format where the alpha
# channel has as many bits as the RGB color channel.
# 4. Memory consumption and efficient buffer compression when considering
# more bits in pixel format.
# dataspace is the default data space that SurfaceFlinger expects.
# The data space must not be Dataspace::UNKNOWN, if unspecified,
# the default data space is Dataspace::V0_SRGB;
prop {
api_name: "default_composition_dataspace"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.default_composition_dataspace"
}
# pixelFormat is the default pixel format that SurfaceFlinger
# expects. If unspecified, the default pixel format is
# PixelFormat::RGBA_8888.
prop {
api_name: "default_composition_pixel_format"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.default_composition_pixel_format"
}
# wcgDataspace is the data space that SurfaceFlinger expects for
# wide color gamut surfaces.
# When hasWideColorDisplay returns true, this API must return a
# valid wide color gamut data space.
# The data space must not be UNKNOWN, if unspecified, the data space
# is V0_SRGB by default, which essentially indicates there's no wide
# color gamut, meaning hasWideColorDisplay returns false.
prop {
api_name: "wcg_composition_dataspace"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.wcg_composition_dataspace"
}
# wcgPixelFormat is the pixel format that SurfaceFlinger expects for
# wide color gamut surfaces. If unspecified, the pixel format is
# PixelFormat::RGBA_8888 by default.
prop {
api_name: "wcg_composition_pixel_format"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.wcg_composition_pixel_format"
}
# colorSpaceAgnosticDataspace specifies the data space that
# SurfaceFlinger expects for surfaces which are color space agnostic.
# The variable works only when useColorManagement is specified. If
# unspecified, the data space follows what SurfaceFlinger expects for
# surfaces when useColorManagement is specified.
# DEPRECATED: do not use
prop {
api_name: "color_space_agnostic_dataspace"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.color_space_agnostic_dataspace"
}
# Return the native panel primary data. The data includes red, green,
# blue and white. The primary format is CIE 1931 XYZ color space.
# If unspecified, the primaries is sRGB gamut by default.
prop {
api_name: "display_primary_red"
type: DoubleList
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.display_primary_red"
}
prop {
api_name: "display_primary_green"
type: DoubleList
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.display_primary_green"
}
prop {
api_name: "display_primary_blue"
type: DoubleList
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.display_primary_blue"
}
prop {
api_name: "display_primary_white"
type: DoubleList
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.display_primary_white"
}
# refreshRateSwitching indicates whether SurfaceFlinger should use refresh rate
# switching on the device, e.g. to switch between 60 and 90 Hz. The settings
# below that are related to refresh rate switching will only have an effect if
# refresh_rate_switching is enabled.
prop {
api_name: "refresh_rate_switching"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.refresh_rate_switching"
deprecated: true
}
prop {
api_name: "set_idle_timer_ms"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.set_idle_timer_ms"
}
# setTouchTimerMs indicates what is considered a timeout in milliseconds for Scheduler.
# This value is used by the Scheduler to trigger touch inactivity callbacks that will switch the
# display to a lower refresh rate. Setting this property to 0 means there is no timer.
prop {
api_name: "set_touch_timer_ms"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.set_touch_timer_ms"
}
# setDisplayPowerTimerMs indicates what is considered a timeout in milliseconds for Scheduler.
# This value is used by the Scheduler to trigger display power inactivity callbacks that will
# keep the display in peak refresh rate as long as display power is not in normal mode.
# Setting this property to 0 means there is no timer.
prop {
api_name: "set_display_power_timer_ms"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.set_display_power_timer_ms"
}
# useContentDetectionForRefreshRate indicates whether Scheduler should detect content FPS, and try
# to adjust the screen refresh rate based on that.
prop {
api_name: "use_content_detection_for_refresh_rate"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.use_content_detection_for_refresh_rate"
}
# useSmart90ForVideo indicates whether Scheduler should detect content FPS, and try to adjust the
# screen refresh rate based on that.
# Replaced by useContentDetectionForRefreshRate
prop {
api_name: "use_smart_90_for_video"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.use_smart_90_for_video"
deprecated: true
}
prop {
api_name: "enable_protected_contents"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.protected_contents"
}
# Indicates whether Scheduler's idle timer should support a display driver timeout in the kernel.
# The value of set_idle_timer_ms should be shorter in time than the timeout duration in the kernel.
prop {
api_name: "support_kernel_idle_timer"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.support_kernel_idle_timer"
}
# Indicates whether background blurs are supported.
prop {
api_name: "supports_background_blur"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.supports_background_blur"
}
# Sets the timeout used to rate limit DISPLAY_UPDATE_IMMINENT Power HAL notifications.
# SurfaceFlinger wakeups will trigger this boost whenever they are separated by more than this
# duration (specified in milliseconds). A value of 0 disables the rate limit, and will result in
# Power HAL notifications every time SF wakes up.
prop {
api_name: "display_update_imminent_timeout_ms"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.display_update_imminent_timeout_ms"
}
# Updates the DeviceProductInfo when a hoplug reconnect event is processed
prop {
api_name: "update_device_product_info_on_hotplug_reconnect"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.update_device_product_info_on_hotplug_reconnect"
}
# Enables the frame rate override feature
prop {
api_name: "enable_frame_rate_override"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.enable_frame_rate_override"
}
# Enables Layer Caching
prop {
api_name: "enable_layer_caching"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.enable_layer_caching"
}
# Enables SDR layer dimming
prop {
api_name: "enable_sdr_dimming"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.enable_sdr_dimming"
}
# Ignores Camera layers when calculating HDR coverage information
prop {
api_name: "ignore_hdr_camera_layers"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.ignore_hdr_camera_layers"
}
# Controls the minimum acquired buffers SurfaceFlinger will suggest via
# ISurfaceComposer.getMaxAcquiredBufferCount().
prop {
api_name: "min_acquired_buffers"
type: Long
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.min_acquired_buffers"
}
# When enabled, SurfaceFlinger will attempt to clear the per-layer HAL buffer cache slots for
# buffers when they are evicted from the app cache by using additional setLayerBuffer commands.
# Ideally, this behavior would always be enabled to reduce graphics memory consumption. However,
# Some HAL implementations may not support the additional setLayerBuffer commands used to clear
# the cache slots.
prop {
api_name: "clear_slots_with_set_layer_buffer"
type: Boolean
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.clear_slots_with_set_layer_buffer"
}
# Controls the default frame rate override of game applications. Ideally, game applications set
# desired frame rate via setFrameRate() API. However, to cover the scenario when the game didn't
# have a set frame rate, we introduce the default frame rate. The priority of this override is the
# lowest among setFrameRate() and game intervention override.
prop {
api_name: "game_default_frame_rate_override"
type: Integer
scope: Public
access: Readonly
prop_name: "ro.surface_flinger.game_default_frame_rate_override"
}
|