1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355
|
/*
* Copyright 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <GLES3/gl3.h>
#include <math/vec2.h>
#include <math/vec3.h>
#include <math/vec4.h>
static const char* VERTEX_SHADER = R"SHADER__(#version 300 es
precision highp float;
layout(location = 0) in vec4 mesh_position;
void main() {
gl_Position = mesh_position;
}
)SHADER__";
static const char* FRAGMENT_SHADER = R"SHADER__(#version 300 es
precision highp float;
layout(location = 0) uniform vec4 resolution;
layout(location = 1) uniform float time;
layout(location = 2) uniform vec3[4] SPHERICAL_HARMONICS;
layout(location = 0) out vec4 fragColor;
#define saturate(x) clamp(x, 0.0, 1.0)
#define PI 3.14159265359
//------------------------------------------------------------------------------
// Distance field functions
//------------------------------------------------------------------------------
float sdPlane(in vec3 p) {
return p.y;
}
float sdSphere(in vec3 p, float s) {
return length(p) - s;
}
float sdTorus(in vec3 p, in vec2 t) {
return length(vec2(length(p.xz) - t.x, p.y)) - t.y;
}
vec2 opUnion(vec2 d1, vec2 d2) {
return d1.x < d2.x ? d1 : d2;
}
vec2 scene(in vec3 position) {
vec2 scene = opUnion(
vec2(sdPlane(position), 1.0),
vec2(sdSphere(position - vec3(0.0, 0.4, 0.0), 0.4), 12.0)
);
return scene;
}
//------------------------------------------------------------------------------
// Ray casting
//------------------------------------------------------------------------------
float shadow(in vec3 origin, in vec3 direction, in float tmin, in float tmax) {
float hit = 1.0;
for (float t = tmin; t < tmax; ) {
float h = scene(origin + direction * t).x;
if (h < 0.001) return 0.0;
t += h;
hit = min(hit, 10.0 * h / t);
}
return clamp(hit, 0.0, 1.0);
}
vec2 traceRay(in vec3 origin, in vec3 direction) {
float tmin = 0.02;
float tmax = 20.0;
float material = -1.0;
float t = tmin;
for ( ; t < tmax; ) {
vec2 hit = scene(origin + direction * t);
if (hit.x < 0.002 || t > tmax) break;
t += hit.x;
material = hit.y;
}
if (t > tmax) {
material = -1.0;
}
return vec2(t, material);
}
vec3 normal(in vec3 position) {
vec3 epsilon = vec3(0.001, 0.0, 0.0);
vec3 n = vec3(
scene(position + epsilon.xyy).x - scene(position - epsilon.xyy).x,
scene(position + epsilon.yxy).x - scene(position - epsilon.yxy).x,
scene(position + epsilon.yyx).x - scene(position - epsilon.yyx).x);
return normalize(n);
}
//------------------------------------------------------------------------------
// BRDF
//------------------------------------------------------------------------------
float pow5(float x) {
float x2 = x * x;
return x2 * x2 * x;
}
float D_GGX(float linearRoughness, float NoH, const vec3 h) {
// Walter et al. 2007, "Microfacet Models for Refraction through Rough Surfaces"
float oneMinusNoHSquared = 1.0 - NoH * NoH;
float a = NoH * linearRoughness;
float k = linearRoughness / (oneMinusNoHSquared + a * a);
float d = k * k * (1.0 / PI);
return d;
}
float V_SmithGGXCorrelated(float linearRoughness, float NoV, float NoL) {
// Heitz 2014, "Understanding the Masking-Shadowing Function in Microfacet-Based BRDFs"
float a2 = linearRoughness * linearRoughness;
float GGXV = NoL * sqrt((NoV - a2 * NoV) * NoV + a2);
float GGXL = NoV * sqrt((NoL - a2 * NoL) * NoL + a2);
return 0.5 / (GGXV + GGXL);
}
vec3 F_Schlick(const vec3 f0, float VoH) {
// Schlick 1994, "An Inexpensive BRDF Model for Physically-Based Rendering"
return f0 + (vec3(1.0) - f0) * pow5(1.0 - VoH);
}
float F_Schlick(float f0, float f90, float VoH) {
return f0 + (f90 - f0) * pow5(1.0 - VoH);
}
float Fd_Burley(float linearRoughness, float NoV, float NoL, float LoH) {
// Burley 2012, "Physically-Based Shading at Disney"
float f90 = 0.5 + 2.0 * linearRoughness * LoH * LoH;
float lightScatter = F_Schlick(1.0, f90, NoL);
float viewScatter = F_Schlick(1.0, f90, NoV);
return lightScatter * viewScatter * (1.0 / PI);
}
float Fd_Lambert() {
return 1.0 / PI;
}
//------------------------------------------------------------------------------
// Indirect lighting
//------------------------------------------------------------------------------
vec3 Irradiance_SphericalHarmonics(const vec3 n) {
return max(
SPHERICAL_HARMONICS[0]
+ SPHERICAL_HARMONICS[1] * (n.y)
+ SPHERICAL_HARMONICS[2] * (n.z)
+ SPHERICAL_HARMONICS[3] * (n.x)
, 0.0);
}
vec2 PrefilteredDFG_Karis(float roughness, float NoV) {
// Karis 2014, "Physically Based Material on Mobile"
const vec4 c0 = vec4(-1.0, -0.0275, -0.572, 0.022);
const vec4 c1 = vec4( 1.0, 0.0425, 1.040, -0.040);
vec4 r = roughness * c0 + c1;
float a004 = min(r.x * r.x, exp2(-9.28 * NoV)) * r.x + r.y;
return vec2(-1.04, 1.04) * a004 + r.zw;
}
//------------------------------------------------------------------------------
// Tone mapping and transfer functions
//------------------------------------------------------------------------------
vec3 Tonemap_ACES(const vec3 x) {
// Narkowicz 2015, "ACES Filmic Tone Mapping Curve"
const float a = 2.51;
const float b = 0.03;
const float c = 2.43;
const float d = 0.59;
const float e = 0.14;
return (x * (a * x + b)) / (x * (c * x + d) + e);
}
vec3 OECF_sRGBFast(const vec3 linear) {
return pow(linear, vec3(1.0 / 2.2));
}
//------------------------------------------------------------------------------
// Rendering
//------------------------------------------------------------------------------
vec3 render(in vec3 origin, in vec3 direction, out float distance) {
// Sky gradient
vec3 color = vec3(0.65, 0.85, 1.0) + direction.y * 0.72;
// (distance, material)
vec2 hit = traceRay(origin, direction);
distance = hit.x;
float material = hit.y;
// We've hit something in the scene
if (material > 0.0) {
vec3 position = origin + distance * direction;
vec3 v = normalize(-direction);
vec3 n = normal(position);
vec3 l = normalize(vec3(0.6, 0.7, -0.7));
vec3 h = normalize(v + l);
vec3 r = normalize(reflect(direction, n));
float NoV = abs(dot(n, v)) + 1e-5;
float NoL = saturate(dot(n, l));
float NoH = saturate(dot(n, h));
float LoH = saturate(dot(l, h));
vec3 baseColor = vec3(0.0);
float roughness = 0.0;
float metallic = 0.0;
float intensity = 2.0;
float indirectIntensity = 0.64;
if (material < 4.0) {
// Checkerboard floor
float f = mod(floor(6.0 * position.z) + floor(6.0 * position.x), 2.0);
baseColor = 0.4 + f * vec3(0.6);
roughness = 0.1;
} else if (material < 16.0) {
// Metallic objects
baseColor = vec3(0.3, 0.0, 0.0);
roughness = 0.2;
}
float linearRoughness = roughness * roughness;
vec3 diffuseColor = (1.0 - metallic) * baseColor.rgb;
vec3 f0 = 0.04 * (1.0 - metallic) + baseColor.rgb * metallic;
float attenuation = shadow(position, l, 0.02, 2.5);
// specular BRDF
float D = D_GGX(linearRoughness, NoH, h);
float V = V_SmithGGXCorrelated(linearRoughness, NoV, NoL);
vec3 F = F_Schlick(f0, LoH);
vec3 Fr = (D * V) * F;
// diffuse BRDF
vec3 Fd = diffuseColor * Fd_Burley(linearRoughness, NoV, NoL, LoH);
color = Fd + Fr;
color *= (intensity * attenuation * NoL) * vec3(0.98, 0.92, 0.89);
// diffuse indirect
vec3 indirectDiffuse = Irradiance_SphericalHarmonics(n) * Fd_Lambert();
vec2 indirectHit = traceRay(position, r);
vec3 indirectSpecular = vec3(0.65, 0.85, 1.0) + r.y * 0.72;
if (indirectHit.y > 0.0) {
if (indirectHit.y < 4.0) {
vec3 indirectPosition = position + indirectHit.x * r;
// Checkerboard floor
float f = mod(floor(6.0 * indirectPosition.z) + floor(6.0 * indirectPosition.x), 2.0);
indirectSpecular = 0.4 + f * vec3(0.6);
} else if (indirectHit.y < 16.0) {
// Metallic objects
indirectSpecular = vec3(0.3, 0.0, 0.0);
}
}
// indirect contribution
vec2 dfg = PrefilteredDFG_Karis(roughness, NoV);
vec3 specularColor = f0 * dfg.x + dfg.y;
vec3 ibl = diffuseColor * indirectDiffuse + indirectSpecular * specularColor;
color += ibl * indirectIntensity;
}
return color;
}
//------------------------------------------------------------------------------
// Setup and execution
//------------------------------------------------------------------------------
mat3 setCamera(in vec3 origin, in vec3 target, float rotation) {
vec3 forward = normalize(target - origin);
vec3 orientation = vec3(sin(rotation), cos(rotation), 0.0);
vec3 left = normalize(cross(forward, orientation));
vec3 up = normalize(cross(left, forward));
return mat3(left, up, forward);
}
void main() {
// Normalized coordinates
vec2 p = -1.0 + 2.0 * gl_FragCoord.xy / resolution.xy;
// Aspect ratio
p.x *= resolution.x / resolution.y;
// Camera position and "look at"
vec3 origin = vec3(0.0, 1.0, 0.0);
vec3 target = vec3(0.0);
origin.x += 2.0 * cos(time * 0.2);
origin.z += 2.0 * sin(time * 0.2);
mat3 toWorld = setCamera(origin, target, 0.0);
vec3 direction = toWorld * normalize(vec3(p.xy, 2.0));
// Render scene
float distance;
vec3 color = render(origin, direction, distance);
// Tone mapping
color = Tonemap_ACES(color);
// Exponential distance fog
color = mix(color, 0.8 * vec3(0.7, 0.8, 1.0), 1.0 - exp2(-0.011 * distance * distance));
// Gamma compression
color = OECF_sRGBFast(color);
fragColor = vec4(color, 1.0);
}
)SHADER__";
static const android::vec3 SPHERICAL_HARMONICS[4] =
{{0.754554516862612, 0.748542953903366, 0.790921515418539},
{-0.083856548007422, 0.092533500963210, 0.322764661032516},
{0.308152705331738, 0.366796330467391, 0.466698181299906},
{-0.188884931542396, -0.277402551592231, -0.377844212327557}};
static const android::vec4 TRIANGLE[3] = {{-1.0f, -1.0f, 1.0f, 1.0f},
{3.0f, -1.0f, 1.0f, 1.0f},
{-1.0f, 3.0f, 1.0f, 1.0f}};
|