1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "adb/pairing/pairing_auth.h"
#include <android-base/logging.h>
#include <openssl/curve25519.h>
#include <openssl/mem.h>
#include <iomanip>
#include <sstream>
#include <vector>
#include "adb/pairing/aes_128_gcm.h"
#include <string.h>
using namespace adb::pairing;
static constexpr spake2_role_t kClientRole = spake2_role_alice;
static constexpr spake2_role_t kServerRole = spake2_role_bob;
static const uint8_t kClientName[] = "adb pair client";
static const uint8_t kServerName[] = "adb pair server";
// This class is basically a wrapper around the SPAKE2 protocol + initializing a
// cipher with the generated key material for encryption.
struct PairingAuthCtx {
public:
using Data = std::vector<uint8_t>;
enum class Role {
Client,
Server,
};
explicit PairingAuthCtx(Role role, const Data& pswd);
// Returns the message to exchange with the other party. This is guaranteed
// to have a non-empty message if creating this object with
// |PairingAuthCtx::Create|, so you won't need to check.
const Data& msg() const;
// Processes the peer's |msg| and attempts to initialize the cipher for
// encryption. You can only call this method ONCE with a non-empty |msg|,
// regardless of success or failure. Subsequent calls will always return
// false. On success, you can use the |decrypt|
// and |encrypt| methods to exchange any further information securely.
//
// Note: Once you call this with a non-empty key, the state is locked, which
// means that you cannot try and register another key, regardless of the
// return value. In order to register another key, you have to create a new
// instance of PairingAuthCtx.
bool InitCipher(const Data& their_msg);
// Encrypts |data| and returns the result. If encryption fails, the return
// will be an empty vector.
Data Encrypt(const Data& data);
// Decrypts |data| and returns the result. If decryption fails, the return
// will be an empty vector.
Data Decrypt(const Data& data);
// Returns a safe buffer size for encrypting a buffer of size |len|.
size_t SafeEncryptedSize(size_t len);
// Returns a safe buffer size for decrypting a buffer of size |len|.
size_t SafeDecryptedSize(size_t len);
private:
Data our_msg_;
Role role_;
bssl::UniquePtr<SPAKE2_CTX> spake2_ctx_;
std::unique_ptr<Aes128Gcm> cipher_;
}; // PairingAuthCtx
PairingAuthCtx::PairingAuthCtx(Role role, const Data& pswd) : role_(role) {
CHECK(!pswd.empty());
// Try to create the spake2 context and generate the public key.
spake2_role_t spake_role;
const uint8_t* my_name = nullptr;
const uint8_t* their_name = nullptr;
size_t my_len = 0;
size_t their_len = 0;
// Create the SPAKE2 context
switch (role_) {
case Role::Client:
spake_role = kClientRole;
my_name = kClientName;
my_len = sizeof(kClientName);
their_name = kServerName;
their_len = sizeof(kServerName);
break;
case Role::Server:
spake_role = kServerRole;
my_name = kServerName;
my_len = sizeof(kServerName);
their_name = kClientName;
their_len = sizeof(kClientName);
break;
}
spake2_ctx_.reset(SPAKE2_CTX_new(spake_role, my_name, my_len, their_name, their_len));
if (spake2_ctx_ == nullptr) {
LOG(ERROR) << "Unable to create a SPAKE2 context.";
return;
}
// Generate the SPAKE2 public key
size_t key_size = 0;
uint8_t key[SPAKE2_MAX_MSG_SIZE];
int status = SPAKE2_generate_msg(spake2_ctx_.get(), key, &key_size, SPAKE2_MAX_MSG_SIZE,
pswd.data(), pswd.size());
if (status != 1 || key_size == 0) {
LOG(ERROR) << "Unable to generate the SPAKE2 public key.";
return;
}
our_msg_.assign(key, key + key_size);
}
const PairingAuthCtx::Data& PairingAuthCtx::msg() const {
return our_msg_;
}
bool PairingAuthCtx::InitCipher(const PairingAuthCtx::Data& their_msg) {
// You can only register a key once.
CHECK(!their_msg.empty());
CHECK(!cipher_);
// Don't even try to process a message over the SPAKE2_MAX_MSG_SIZE
if (their_msg.size() > SPAKE2_MAX_MSG_SIZE) {
LOG(ERROR) << "their_msg size [" << their_msg.size() << "] greater then max size ["
<< SPAKE2_MAX_MSG_SIZE << "].";
return false;
}
size_t key_material_len = 0;
uint8_t key_material[SPAKE2_MAX_KEY_SIZE];
int status = SPAKE2_process_msg(spake2_ctx_.get(), key_material, &key_material_len,
sizeof(key_material), their_msg.data(), their_msg.size());
if (status != 1) {
LOG(ERROR) << "Unable to process their public key";
return false;
}
// Once SPAKE2_process_msg returns successfully, you can't do anything else
// with the context, besides destroy it.
cipher_.reset(new Aes128Gcm(key_material, key_material_len));
return true;
}
PairingAuthCtx::Data PairingAuthCtx::Encrypt(const PairingAuthCtx::Data& data) {
CHECK(cipher_);
CHECK(!data.empty());
// Determine the size for the encrypted data based on the raw data.
Data encrypted(cipher_->EncryptedSize(data.size()));
auto out_size = cipher_->Encrypt(data.data(), data.size(), encrypted.data(), encrypted.size());
if (!out_size.has_value() || *out_size == 0) {
LOG(ERROR) << "Unable to encrypt data";
return Data();
}
encrypted.resize(*out_size);
return encrypted;
}
PairingAuthCtx::Data PairingAuthCtx::Decrypt(const PairingAuthCtx::Data& data) {
CHECK(cipher_);
CHECK(!data.empty());
// Determine the size for the decrypted data based on the raw data.
Data decrypted(cipher_->DecryptedSize(data.size()));
size_t decrypted_size = decrypted.size();
auto out_size = cipher_->Decrypt(data.data(), data.size(), decrypted.data(), decrypted_size);
if (!out_size.has_value() || *out_size == 0) {
LOG(ERROR) << "Unable to decrypt data";
return Data();
}
decrypted.resize(*out_size);
return decrypted;
}
size_t PairingAuthCtx::SafeEncryptedSize(size_t len) {
CHECK(cipher_);
return cipher_->EncryptedSize(len);
}
size_t PairingAuthCtx::SafeDecryptedSize(size_t len) {
CHECK(cipher_);
return cipher_->DecryptedSize(len);
}
PairingAuthCtx* pairing_auth_server_new(const uint8_t* pswd, size_t len) {
CHECK(pswd);
CHECK_GT(len, 0U);
std::vector<uint8_t> p(pswd, pswd + len);
auto* ret = new PairingAuthCtx(PairingAuthCtx::Role::Server, std::move(p));
CHECK(!ret->msg().empty());
return ret;
}
PairingAuthCtx* pairing_auth_client_new(const uint8_t* pswd, size_t len) {
CHECK(pswd);
CHECK_GT(len, 0U);
std::vector<uint8_t> p(pswd, pswd + len);
auto* ret = new PairingAuthCtx(PairingAuthCtx::Role::Client, std::move(p));
CHECK(!ret->msg().empty());
return ret;
}
size_t pairing_auth_msg_size(PairingAuthCtx* ctx) {
CHECK(ctx);
return ctx->msg().size();
}
void pairing_auth_get_spake2_msg(PairingAuthCtx* ctx, uint8_t* out_buf) {
CHECK(ctx);
CHECK(out_buf);
auto& msg = ctx->msg();
memcpy(out_buf, msg.data(), msg.size());
}
bool pairing_auth_init_cipher(PairingAuthCtx* ctx, const uint8_t* their_msg, size_t msg_len) {
CHECK(ctx);
CHECK(their_msg);
CHECK_GT(msg_len, 0U);
std::vector<uint8_t> p(their_msg, their_msg + msg_len);
return ctx->InitCipher(p);
}
size_t pairing_auth_safe_encrypted_size(PairingAuthCtx* ctx, size_t len) {
CHECK(ctx);
return ctx->SafeEncryptedSize(len);
}
bool pairing_auth_encrypt(PairingAuthCtx* ctx, const uint8_t* inbuf, size_t inlen, uint8_t* outbuf,
size_t* outlen) {
CHECK(ctx);
CHECK(inbuf);
CHECK(outbuf);
CHECK(outlen);
CHECK_GT(inlen, 0U);
std::vector<uint8_t> in(inbuf, inbuf + inlen);
auto out = ctx->Encrypt(in);
if (out.empty()) {
return false;
}
memcpy(outbuf, out.data(), out.size());
*outlen = out.size();
return true;
}
size_t pairing_auth_safe_decrypted_size(PairingAuthCtx* ctx, const uint8_t* buf, size_t len) {
CHECK(ctx);
CHECK(buf);
CHECK_GT(len, 0U);
// We no longer need buf for EVP_AEAD
return ctx->SafeDecryptedSize(len);
}
bool pairing_auth_decrypt(PairingAuthCtx* ctx, const uint8_t* inbuf, size_t inlen, uint8_t* outbuf,
size_t* outlen) {
CHECK(ctx);
CHECK(inbuf);
CHECK(outbuf);
CHECK(outlen);
CHECK_GT(inlen, 0U);
std::vector<uint8_t> in(inbuf, inbuf + inlen);
auto out = ctx->Decrypt(in);
if (out.empty()) {
return false;
}
memcpy(outbuf, out.data(), out.size());
*outlen = out.size();
return true;
}
void pairing_auth_destroy(PairingAuthCtx* ctx) {
CHECK(ctx);
delete ctx;
}
|