1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
/*
* Copyright (C) 2018 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <string.h>
#include <algorithm>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include <android-base/logging.h>
#include "fdevent/fdevent.h"
#include "sysdeps/uio.h"
// Essentially std::vector<char>, except without zero initialization or reallocation.
struct Block {
using iterator = char*;
Block() = default;
explicit Block(size_t size) { allocate(size); }
template <typename Iterator>
Block(Iterator begin, Iterator end) : Block(end - begin) {
std::copy(begin, end, data_.get());
}
Block(const Block& copy) = delete;
Block(Block&& move) noexcept
: data_(std::exchange(move.data_, nullptr)),
capacity_(std::exchange(move.capacity_, 0)),
size_(std::exchange(move.size_, 0)) {}
Block& operator=(const Block& copy) = delete;
Block& operator=(Block&& move) noexcept {
clear();
data_ = std::exchange(move.data_, nullptr);
capacity_ = std::exchange(move.capacity_, 0);
size_ = std::exchange(move.size_, 0);
return *this;
}
~Block() = default;
void resize(size_t new_size) {
if (!data_) {
allocate(new_size);
} else {
CHECK_GE(capacity_, new_size);
size_ = new_size;
}
}
template <typename InputIt>
void assign(InputIt begin, InputIt end) {
clear();
allocate(end - begin);
std::copy(begin, end, data_.get());
}
void clear() {
data_.reset();
capacity_ = 0;
size_ = 0;
}
size_t capacity() const { return capacity_; }
size_t size() const { return size_; }
bool empty() const { return size() == 0; }
char* data() { return data_.get(); }
const char* data() const { return data_.get(); }
char* begin() { return data_.get(); }
const char* begin() const { return data_.get(); }
char* end() { return data() + size_; }
const char* end() const { return data() + size_; }
char& operator[](size_t idx) { return data()[idx]; }
const char& operator[](size_t idx) const { return data()[idx]; }
bool operator==(const Block& rhs) const {
return size() == rhs.size() && memcmp(data(), rhs.data(), size()) == 0;
}
private:
void allocate(size_t size) {
CHECK(data_ == nullptr);
CHECK_EQ(0ULL, capacity_);
CHECK_EQ(0ULL, size_);
if (size != 0) {
// This isn't std::make_unique because that's equivalent to `new char[size]()`, which
// value-initializes the array instead of leaving it uninitialized. As an optimization,
// call new without parentheses to avoid this costly initialization.
data_.reset(new char[size]);
capacity_ = size;
size_ = size;
}
}
std::unique_ptr<char[]> data_;
size_t capacity_ = 0;
size_t size_ = 0;
};
struct amessage {
uint32_t command; /* command identifier constant */
uint32_t arg0; /* first argument */
uint32_t arg1; /* second argument */
uint32_t data_length; /* length of payload (0 is allowed) */
uint32_t data_check; /* checksum of data payload */
uint32_t magic; /* command ^ 0xffffffff */
};
struct apacket {
using payload_type = Block;
amessage msg;
payload_type payload;
};
struct IOVector {
using value_type = char;
using block_type = Block;
using size_type = size_t;
IOVector() = default;
explicit IOVector(block_type&& block) { append(std::move(block)); }
IOVector(const IOVector& copy) = delete;
IOVector(IOVector&& move) noexcept : IOVector() { *this = std::move(move); }
IOVector& operator=(const IOVector& copy) = delete;
IOVector& operator=(IOVector&& move) noexcept;
const value_type* front_data() const {
if (chain_.empty()) {
return nullptr;
}
return chain_[start_index_].data() + begin_offset_;
}
size_type front_size() const {
if (chain_.empty()) {
return 0;
}
return chain_[start_index_].size() - begin_offset_;
}
size_type size() const { return chain_length_ - begin_offset_; }
bool empty() const { return size() == 0; }
// Return the last block so the caller can still reuse its allocated capacity
// or it can be simply ignored.
block_type clear();
void drop_front(size_type len);
// Split the first |len| bytes out of this chain into its own.
IOVector take_front(size_type len);
// Add a nonempty block to the chain.
void append(block_type&& block) {
if (block.size() == 0) {
return;
}
CHECK_NE(0ULL, block.size());
chain_length_ += block.size();
chain_.emplace_back(std::move(block));
}
void trim_front();
private:
void trim_chain_front();
// Drop the front block from the chain, and update chain_length_ appropriately.
void pop_front_block();
// Iterate over the blocks with a callback with an operator()(const char*, size_t).
template <typename Fn>
void iterate_blocks(Fn&& callback) const {
if (size() == 0) {
return;
}
for (size_t i = start_index_; i < chain_.size(); ++i) {
const auto& block = chain_[i];
const char* begin = block.data();
size_t length = block.size();
if (i == start_index_) {
CHECK_GE(block.size(), begin_offset_);
begin += begin_offset_;
length -= begin_offset_;
}
callback(begin, length);
}
}
public:
// Copy all of the blocks into a single block.
template <typename CollectionType = block_type>
CollectionType coalesce() const& {
CollectionType result;
if (size() == 0) {
return result;
}
result.resize(size());
size_t offset = 0;
iterate_blocks([&offset, &result](const char* data, size_t len) {
memcpy(&result[offset], data, len);
offset += len;
});
return result;
}
block_type coalesce() &&;
template <typename FunctionType>
auto coalesced(FunctionType&& f) const {
if (chain_.size() == start_index_ + 1) {
// If we only have one block, we can use it directly.
return f(chain_[start_index_].data() + begin_offset_, size());
} else {
// Otherwise, copy to a single block.
auto data = coalesce();
return f(data.data(), data.size());
}
}
// Get a list of iovecs that can be used to write out all of the blocks.
std::vector<adb_iovec> iovecs() const;
private:
// Total length of all of the blocks in the chain.
size_t chain_length_ = 0;
size_t begin_offset_ = 0;
size_t start_index_ = 0;
std::vector<block_type> chain_;
};
// An implementation of weak pointers tied to the fdevent run loop.
//
// This allows for code to submit a request for an object, and upon receiving
// a response, know whether the object is still alive, or has been destroyed
// because of other reasons. We keep a list of living weak_ptrs in each object,
// and clear the weak_ptrs when the object is destroyed. This is safe, because
// we require that both the destructor of the referent and the get method on
// the weak_ptr are executed on the main thread.
template <typename T>
struct enable_weak_from_this;
template <typename T>
struct weak_ptr {
weak_ptr() = default;
explicit weak_ptr(T* ptr) { reset(ptr); }
weak_ptr(const weak_ptr& copy) { reset(copy.get()); }
weak_ptr(weak_ptr&& move) {
reset(move.get());
move.reset();
}
~weak_ptr() { reset(); }
weak_ptr& operator=(const weak_ptr& copy) {
if (© == this) {
return *this;
}
reset(copy.get());
return *this;
}
weak_ptr& operator=(weak_ptr&& move) {
if (&move == this) {
return *this;
}
reset(move.get());
move.reset();
return *this;
}
T* get() const {
fdevent_check_looper();
return ptr_;
}
void reset(T* ptr = nullptr) {
fdevent_check_looper();
if (ptr == ptr_) {
return;
}
if (ptr_) {
ptr_->weak_ptrs_.erase(
std::remove(ptr_->weak_ptrs_.begin(), ptr_->weak_ptrs_.end(), this));
}
ptr_ = ptr;
if (ptr_) {
ptr_->weak_ptrs_.push_back(this);
}
}
private:
friend struct enable_weak_from_this<T>;
T* ptr_ = nullptr;
};
template <typename T>
struct enable_weak_from_this {
~enable_weak_from_this() {
if (!weak_ptrs_.empty()) {
fdevent_check_looper();
for (auto& weak : weak_ptrs_) {
weak->ptr_ = nullptr;
}
weak_ptrs_.clear();
}
}
weak_ptr<T> weak() { return weak_ptr<T>(static_cast<T*>(this)); }
void schedule_deletion() {
fdevent_run_on_looper([this]() { delete static_cast<T*>(this); });
}
private:
friend struct weak_ptr<T>;
std::vector<weak_ptr<T>*> weak_ptrs_;
};
|