1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
#include "meminspect.h"
#include <android-base/unique_fd.h>
#include "ziparchive/zip_archive.h"
using namespace std;
using namespace android::base;
using namespace ::android::base;
const static VmaRange VMA_RANGE_EMPTY = VmaRange(0, 0);
uint32_t VmaRange::end_offset() const {
return offset + length;
}
uint64_t VmaRangeGroup::compute_total_size() {
uint64_t total_size = 0;
for (auto&& range : ranges) {
total_size += range.length;
}
return total_size;
}
void VmaRangeGroup::apply_offset(uint64_t offset) {
for (auto&& range : ranges) {
range.offset += offset;
}
}
void VmaRangeGroup::compute_coverage(const VmaRange& range, VmaRangeGroup& out_memres) const {
for (auto&& resident_range : ranges) {
VmaRange intersect_res = resident_range.intersect(range);
if (!intersect_res.is_empty()) {
out_memres.ranges.push_back(intersect_res);
}
}
}
bool VmaRange::is_empty() const {
return length == 0;
}
VmaRange VmaRange::intersect(const VmaRange& target) const {
// First check if the slice is outside our range
if (target.end_offset() <= this->offset) {
return VMA_RANGE_EMPTY;
}
if (target.offset >= this->end_offset()) {
return VMA_RANGE_EMPTY;
}
VmaRange result;
// the slice should now be inside the range so compute the intersection.
result.offset = std::max(target.offset, this->offset);
uint32_t res_end = std::min(target.end_offset(), end_offset());
result.length = res_end - result.offset;
return result;
}
VmaRange VmaRange::union_merge(const VmaRange& target) const {
VmaRange result = intersect(target);
if (result.is_empty()) {
// Disjointed ranges, no merge.
return VMA_RANGE_EMPTY;
}
// Since there is an intersection, merge ranges between lowest
// and highest value.
result.offset = std::min(offset, target.offset);
uint32_t res_end = std::max(target.end_offset(), end_offset());
result.length = res_end - result.offset;
return result;
}
void align_ranges(std::vector<VmaRange>& vmas_to_align, unsigned int alignment) {
for (auto&& vma_to_align : vmas_to_align) {
uint32_t unaligned_offset = vma_to_align.offset % alignment;
vma_to_align.offset -= unaligned_offset;
vma_to_align.length += unaligned_offset;
}
}
bool compare_range(VmaRange& a, VmaRange& b) {
return a.offset < b.offset;
}
std::vector<VmaRange> merge_ranges(const std::vector<VmaRange>& ranges) {
if (ranges.size() <= 1) {
// Not enough ranges to perform a merge.
return ranges;
}
std::vector<VmaRange> to_merge_ranges = ranges;
std::vector<VmaRange> merged_ranges;
// Sort the ranges to make a slightly more efficient merging.
std::sort(to_merge_ranges.begin(), to_merge_ranges.end(), compare_range);
// The first element will always start as-is, then start merging with subsequent elements.
merged_ranges.push_back(to_merge_ranges[0]);
for (int iMerged = 0, iTarget = 1; iTarget < to_merge_ranges.size(); ++iTarget) {
VmaRange merged = merged_ranges[iMerged].union_merge(to_merge_ranges[iTarget]);
if (!merged.is_empty()) {
// Merge was successful, swallow range.
merged_ranges[iMerged] = merged;
} else {
// Merge failed, add disjointed range.
merged_ranges.push_back(to_merge_ranges[iTarget]);
++iMerged;
}
}
return merged_ranges;
}
int64_t get_file_size(const std::string& file) {
unique_fd file_ufd(open(file.c_str(), O_RDONLY));
int fd = file_ufd.get();
if (fd == -1) {
return -1;
}
struct stat fstat_res;
int res = fstat(fd, &fstat_res);
if (res == -1) {
return -1;
}
return fstat_res.st_size;
}
int probe_resident_memory(string probed_file,
/*out*/ VmaRangeGroup& resident_ranges, int pages_per_mincore) {
unique_fd probed_file_ufd(open(probed_file.c_str(), O_RDONLY));
int probe_fd = probed_file_ufd.get();
if (probe_fd == -1) {
return MEMINSPECT_FAIL_OPEN;
}
int64_t total_bytes = get_file_size(probed_file);
if (total_bytes < 0) {
return MEMINSPECT_FAIL_FSTAT;
}
char* base_address =
(char*)mmap(0, (uint64_t)total_bytes, PROT_READ, MAP_SHARED, probe_fd, /*offset*/ 0);
// this determines how many pages to inspect per mincore syscall
unsigned char* window = new unsigned char[pages_per_mincore];
unsigned int page_size = sysconf(_SC_PAGESIZE);
unsigned long bytes_inspected = 0;
// total bytes in inspection window
unsigned long window_bytes = page_size * pages_per_mincore;
char* window_base;
bool started_vma_range = false;
uint32_t resident_vma_start_offset = 0;
for (window_base = base_address; bytes_inspected < total_bytes;
window_base += window_bytes, bytes_inspected += window_bytes) {
int res = mincore(window_base, window_bytes, window);
if (res != 0) {
if (errno == ENOMEM) {
// Did not find page, maybe it's a hole.
continue;
}
return MEMINSPECT_FAIL_MINCORE;
}
// Inspect the provided mincore window result sequentially
// and as soon as a change in residency happens a range is
// created or finished.
for (int iWin = 0; iWin < pages_per_mincore; ++iWin) {
if ((window[iWin] & (unsigned char)1) != 0) {
// Page is resident
if (!started_vma_range) {
// End of range
started_vma_range = true;
uint32_t window_offset = iWin * page_size;
resident_vma_start_offset = window_base + window_offset - base_address;
}
} else {
// Page is not resident
if (started_vma_range) {
// Start of range
started_vma_range = false;
uint32_t window_offset = iWin * page_size;
uint32_t resident_vma_end_offset = window_base + window_offset - base_address;
uint32_t resident_len = resident_vma_end_offset - resident_vma_start_offset;
VmaRange vma_range(resident_vma_start_offset, resident_len);
resident_ranges.ranges.push_back(vma_range);
}
}
}
}
// This was the last window, so close any opened vma range
if (started_vma_range) {
started_vma_range = false;
uint32_t in_memory_vma_end = window_base - base_address;
uint32_t resident_len = in_memory_vma_end - resident_vma_start_offset;
VmaRange vma_range(resident_vma_start_offset, resident_len);
resident_ranges.ranges.push_back(vma_range);
}
return 0;
}
ZipMemInspector::~ZipMemInspector() {
CloseArchive(handle_);
delete probe_resident_;
}
ZipEntryCoverage ZipEntryCoverage::compute_coverage(const VmaRangeGroup& probe) const {
ZipEntryCoverage file_coverage;
file_coverage.info = info;
// Compute coverage for each range in file against probe which represents a set of ranges.
for (auto&& range : coverage.ranges) {
probe.compute_coverage(range, file_coverage.coverage);
}
return file_coverage;
}
std::vector<ZipEntryCoverage> ZipMemInspector::compute_coverage(
const std::vector<ZipEntryCoverage>& files, VmaRangeGroup* probe) {
if (probe == nullptr) {
// No probe to calculate coverage against, so coverage is zero.
return std::vector<ZipEntryCoverage>();
}
std::vector<ZipEntryCoverage> file_coverages;
// Find the file coverage against provided probe.
for (auto&& file : files) {
// For each file, compute coverage against the probe which represents a list of ranges.
ZipEntryCoverage file_coverage = file.compute_coverage(*probe);
file_coverages.push_back(file_coverage);
}
return file_coverages;
}
void ZipMemInspector::add_file_info(ZipEntryInfo& file) {
entry_infos_.push_back(file);
}
int ZipMemInspector::compute_per_file_coverage() {
if (entry_infos_.empty()) {
// We haven't read the file information yet, so do it now.
if (read_files_and_offsets()) {
cerr << "Could not read zip entries to compute coverages." << endl;
return 1;
}
}
// All existing files should consider their whole memory as present by default.
std::vector<ZipEntryCoverage> entry_coverages;
for (auto&& entry_info : entry_infos_) {
ZipEntryCoverage entry_coverage;
entry_coverage.info = entry_info;
VmaRange file_vma_range(entry_info.offset_in_zip, entry_info.file_size_bytes);
entry_coverage.coverage.ranges.push_back(file_vma_range);
entry_coverage.coverage.compute_total_size();
entry_coverages.push_back(entry_coverage);
}
if (probe_resident_ != nullptr) {
// We decided to compute coverage based on a probe
entry_coverages_ = compute_coverage(entry_coverages, probe_resident_);
} else {
// No probe means whole file coverage
entry_coverages_ = entry_coverages;
}
return 0;
}
VmaRangeGroup* ZipMemInspector::get_probe() {
return probe_resident_;
}
void ZipMemInspector::set_existing_probe(VmaRangeGroup* probe) {
this->probe_resident_ = probe;
}
std::vector<ZipEntryCoverage>& ZipMemInspector::get_file_coverages() {
return entry_coverages_;
}
int ZipMemInspector::probe_resident() {
probe_resident_ = new VmaRangeGroup();
int res = probe_resident_memory(filename_, *probe_resident_);
if (res != 0) {
// Failed to probe
return res;
}
return 0;
}
std::vector<ZipEntryInfo>& ZipMemInspector::get_file_infos() {
return entry_infos_;
}
int ZipMemInspector::read_files_and_offsets() {
if (OpenArchive(filename_.c_str(), &handle_) < 0) {
return 1;
}
void* cookie;
int res = StartIteration(handle_, &cookie);
if (res != 0) {
return 1;
}
ZipEntry64 entry;
string name;
while (Next(cookie, &entry, &name) == 0) {
ZipEntryInfo file;
file.name = name;
file.offset_in_zip = entry.offset;
file.file_size_bytes = entry.compressed_length;
file.uncompressed_size = entry.uncompressed_length;
entry_infos_.push_back(file);
}
return 0;
}
|