1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>
#include <memory>
#include <mutex>
#include <string>
#include <android-base/strings.h>
#include <unwindstack/Elf.h>
#include <unwindstack/MapInfo.h>
#include <unwindstack/Maps.h>
#include <unwindstack/Memory.h>
#include "MemoryFileAtOffset.h"
#include "MemoryRange.h"
namespace unwindstack {
bool MapInfo::ElfFileNotReadable() {
const std::string& map_name = name();
return memory_backed_elf() && !map_name.empty() && map_name[0] != '[' &&
!android::base::StartsWith(map_name, "/memfd:");
}
std::shared_ptr<MapInfo> MapInfo::GetPrevRealMap() {
if (name().empty()) {
return nullptr;
}
for (auto prev = prev_map(); prev != nullptr; prev = prev->prev_map()) {
if (!prev->IsBlank()) {
if (prev->name() == name()) {
return prev;
}
return nullptr;
}
}
return nullptr;
}
std::shared_ptr<MapInfo> MapInfo::GetNextRealMap() {
if (name().empty()) {
return nullptr;
}
for (auto next = next_map(); next != nullptr; next = next->next_map()) {
if (!next->IsBlank()) {
if (next->name() == name()) {
return next;
}
return nullptr;
}
}
return nullptr;
}
bool MapInfo::InitFileMemoryFromPreviousReadOnlyMap(MemoryFileAtOffset* memory) {
// One last attempt, see if the previous map is read-only with the
// same name and stretches across this map.
auto prev_real_map = GetPrevRealMap();
if (prev_real_map == nullptr || prev_real_map->flags() != PROT_READ ||
prev_real_map->offset() >= offset()) {
return false;
}
uint64_t map_size = end() - prev_real_map->end();
if (!memory->Init(name(), prev_real_map->offset(), map_size)) {
return false;
}
uint64_t max_size;
if (!Elf::GetInfo(memory, &max_size) || max_size < map_size) {
return false;
}
if (!memory->Init(name(), prev_real_map->offset(), max_size)) {
return false;
}
set_elf_offset(offset() - prev_real_map->offset());
set_elf_start_offset(prev_real_map->offset());
return true;
}
std::shared_ptr<Memory> MapInfo::CreateFileMemory() {
// Fail on device maps.
if (flags() & MAPS_FLAGS_DEVICE_MAP) {
return nullptr;
}
auto file_memory = std::make_shared<MemoryFileAtOffset>();
if (offset() == 0) {
if (file_memory->Init(name(), 0)) {
return file_memory;
}
return nullptr;
}
// These are the possibilities when the offset is non-zero.
// - There is an elf file embedded in a file, and the offset is the
// the start of the elf in the file.
// - There is an elf file embedded in a file, and the offset is the
// the start of the executable part of the file. The actual start
// of the elf is in the read-only segment preceeding this map.
// - The whole file is an elf file, and the offset needs to be saved.
//
// Map in just the part of the file for the map. If this is not
// a valid elf, then reinit as if the whole file is an elf file.
// If the offset is a valid elf, then determine the size of the map
// and reinit to that size. This is needed because the dynamic linker
// only maps in a portion of the original elf, and never the symbol
// file data.
//
// For maps with MAPS_FLAGS_JIT_SYMFILE_MAP, the map range is for a JIT function,
// which can be smaller than elf header size. So make sure map_size is large enough
// to read elf header.
uint64_t map_size = std::max<uint64_t>(end() - start(), sizeof(ElfTypes64::Ehdr));
if (!file_memory->Init(name(), offset(), map_size)) {
return nullptr;
}
// Check if the start of this map is an embedded elf.
uint64_t max_size = 0;
if (Elf::GetInfo(file_memory.get(), &max_size)) {
set_elf_start_offset(offset());
if (max_size > map_size) {
if (file_memory->Init(name(), offset(), max_size)) {
return file_memory;
}
// Try to reinit using the default map_size.
if (file_memory->Init(name(), offset(), map_size)) {
return file_memory;
}
set_elf_start_offset(0);
return nullptr;
}
return file_memory;
}
// No elf at offset, try to init as if the whole file is an elf.
if (file_memory->Init(name(), 0) && Elf::IsValidElf(file_memory.get())) {
set_elf_offset(offset());
return file_memory;
}
// See if the map previous to this one contains a read-only map
// that represents the real start of the elf data.
if (InitFileMemoryFromPreviousReadOnlyMap(file_memory.get())) {
return file_memory;
}
// Failed to find elf at start of file or at read-only map, return
// file object from the current map.
if (file_memory->Init(name(), offset(), map_size)) {
return file_memory;
}
return nullptr;
}
std::shared_ptr<Memory> MapInfo::CreateMemory(const std::shared_ptr<Memory>& process_memory) {
if (end() <= start()) {
return nullptr;
}
set_elf_offset(0);
// Fail on device maps.
if (flags() & MAPS_FLAGS_DEVICE_MAP) {
return nullptr;
}
// First try and use the file associated with the info.
if (!name().empty()) {
auto memory = CreateFileMemory();
if (memory != nullptr) {
return memory;
}
}
if (process_memory == nullptr) {
return nullptr;
}
set_memory_backed_elf(true);
// Need to verify that this elf is valid. It's possible that
// only part of the elf file to be mapped into memory is in the executable
// map. In this case, there will be another read-only map that includes the
// first part of the elf file. This is done if the linker rosegment
// option is used.
std::shared_ptr<Memory> memory_range(
new MemoryRange(process_memory, start(), end() - start(), 0));
if (Elf::IsValidElf(memory_range.get())) {
set_elf_start_offset(offset());
auto next_real_map = GetNextRealMap();
// Might need to peek at the next map to create a memory object that
// includes that map too.
if (offset() != 0 || next_real_map == nullptr || offset() >= next_real_map->offset()) {
return memory_range;
}
// There is a possibility that the elf object has already been created
// in the next map. Since this should be a very uncommon path, just
// redo the work. If this happens, the elf for this map will eventually
// be discarded.
MemoryRanges* ranges = new MemoryRanges;
std::shared_ptr<Memory> memory_ranges(ranges);
ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), 0));
ranges->Insert(new MemoryRange(process_memory, next_real_map->start(),
next_real_map->end() - next_real_map->start(),
next_real_map->offset() - offset()));
return memory_ranges;
}
auto prev_real_map = GetPrevRealMap();
// Find the read-only map by looking at the previous map. The linker
// doesn't guarantee that this invariant will always be true. However,
// if that changes, there is likely something else that will change and
// break something.
if (offset() == 0 || prev_real_map == nullptr || prev_real_map->offset() >= offset()) {
set_memory_backed_elf(false);
return nullptr;
}
// Make sure that relative pc values are corrected properly.
set_elf_offset(offset() - prev_real_map->offset());
// Use this as the elf start offset, otherwise, you always get offsets into
// the r-x section, which is not quite the right information.
set_elf_start_offset(prev_real_map->offset());
MemoryRanges* ranges = new MemoryRanges;
std::shared_ptr<Memory> memory_ranges(ranges);
if (!ranges->Insert(new MemoryRange(process_memory, prev_real_map->start(),
prev_real_map->end() - prev_real_map->start(), 0))) {
return nullptr;
}
if (!ranges->Insert(new MemoryRange(process_memory, start(), end() - start(), elf_offset()))) {
return nullptr;
}
return memory_ranges;
}
class ScopedElfCacheLock {
public:
ScopedElfCacheLock() {
if (Elf::CachingEnabled()) Elf::CacheLock();
}
~ScopedElfCacheLock() {
if (Elf::CachingEnabled()) Elf::CacheUnlock();
}
};
Elf* MapInfo::GetElf(const std::shared_ptr<Memory>& process_memory, ArchEnum expected_arch) {
// Make sure no other thread is trying to add the elf to this map.
std::lock_guard<std::mutex> guard(elf_mutex());
if (elf().get() != nullptr) {
return elf().get();
}
ScopedElfCacheLock elf_cache_lock;
if (Elf::CachingEnabled() && !name().empty()) {
if (Elf::CacheGet(this)) {
return elf().get();
}
}
auto elf_memory = CreateMemory(process_memory);
elf().reset(new Elf(elf_memory));
// If the init fails, keep the elf around as an invalid object so we
// don't try to reinit the object.
elf()->Init();
if (elf()->valid() && expected_arch != elf()->arch()) {
// Make the elf invalid, mismatch between arch and expected arch.
elf()->Invalidate();
}
if (!elf()->valid()) {
set_elf_start_offset(offset());
} else if (auto prev_real_map = GetPrevRealMap(); prev_real_map != nullptr &&
prev_real_map->flags() == PROT_READ &&
prev_real_map->offset() < offset()) {
// If there is a read-only map then a read-execute map that represents the
// same elf object, make sure the previous map is using the same elf
// object if it hasn't already been set. Locking this should not result
// in a deadlock as long as the invariant that the code only ever tries
// to lock the previous real map holds true.
std::lock_guard<std::mutex> guard(prev_real_map->elf_mutex());
if (prev_real_map->elf() == nullptr) {
// Need to verify if the map is the previous read-only map.
prev_real_map->set_elf(elf());
prev_real_map->set_memory_backed_elf(memory_backed_elf());
prev_real_map->set_elf_start_offset(elf_start_offset());
prev_real_map->set_elf_offset(prev_real_map->offset() - elf_start_offset());
} else if (prev_real_map->elf_start_offset() == elf_start_offset()) {
// Discard this elf, and use the elf from the previous map instead.
set_elf(prev_real_map->elf());
}
}
// Cache the elf only after all of the above checks since we might
// discard the original elf we created.
if (Elf::CachingEnabled()) {
Elf::CacheAdd(this);
}
return elf().get();
}
bool MapInfo::GetFunctionName(uint64_t addr, SharedString* name, uint64_t* func_offset) {
{
// Make sure no other thread is trying to update this elf object.
std::lock_guard<std::mutex> guard(elf_mutex());
if (elf() == nullptr) {
return false;
}
}
// No longer need the lock, once the elf object is created, it is not deleted
// until this object is deleted.
return elf()->GetFunctionName(addr, name, func_offset);
}
uint64_t MapInfo::GetLoadBias() {
uint64_t cur_load_bias = load_bias().load();
if (cur_load_bias != UINT64_MAX) {
return cur_load_bias;
}
Elf* elf_obj = GetElfObj();
if (elf_obj == nullptr) {
return UINT64_MAX;
}
if (elf_obj->valid()) {
cur_load_bias = elf_obj->GetLoadBias();
set_load_bias(cur_load_bias);
return cur_load_bias;
}
set_load_bias(0);
return 0;
}
uint64_t MapInfo::GetLoadBias(const std::shared_ptr<Memory>& process_memory) {
uint64_t cur_load_bias = GetLoadBias();
if (cur_load_bias != UINT64_MAX) {
return cur_load_bias;
}
// Call lightweight static function that will only read enough of the
// elf data to get the load bias.
auto memory = CreateMemory(process_memory);
cur_load_bias = Elf::GetLoadBias(memory.get());
set_load_bias(cur_load_bias);
return cur_load_bias;
}
MapInfo::~MapInfo() {
ElfFields* elf_fields = elf_fields_.load();
if (elf_fields != nullptr) {
delete elf_fields->build_id_.load();
delete elf_fields;
}
}
std::string MapInfo::GetFullName() {
Elf* elf_obj = GetElfObj();
if (elf_obj == nullptr || elf_start_offset() == 0 || name().empty()) {
return name();
}
std::string soname = elf_obj->GetSoname();
if (soname.empty()) {
return name();
}
std::string full_name(name());
full_name += '!';
full_name += soname;
return full_name;
}
SharedString MapInfo::GetBuildID() {
SharedString* id = build_id().load();
if (id != nullptr) {
return *id;
}
// No need to lock, at worst if multiple threads do this at the same
// time it should be detected and only one thread should win and
// save the data.
std::string result;
Elf* elf_obj = GetElfObj();
if (elf_obj != nullptr) {
result = elf_obj->GetBuildID();
} else {
// This will only work if we can get the file associated with this memory.
// If this is only available in memory, then the section name information
// is not present and we will not be able to find the build id info.
auto file_memory = CreateFileMemory();
if (file_memory != nullptr) {
result = Elf::GetBuildID(file_memory.get());
}
}
return SetBuildID(std::move(result));
}
SharedString MapInfo::SetBuildID(std::string&& new_build_id) {
std::unique_ptr<SharedString> new_build_id_ptr(new SharedString(std::move(new_build_id)));
SharedString* expected_id = nullptr;
// Strong version since we need to reliably return the stored pointer.
if (build_id().compare_exchange_strong(expected_id, new_build_id_ptr.get())) {
// Value saved, so make sure the memory is not freed.
return *new_build_id_ptr.release();
} else {
// The expected value is set to the stored value on failure.
return *expected_id;
}
}
MapInfo::ElfFields& MapInfo::GetElfFields() {
ElfFields* elf_fields = elf_fields_.load(std::memory_order_acquire);
if (elf_fields != nullptr) {
return *elf_fields;
}
// Allocate and initialize the field in thread-safe way.
std::unique_ptr<ElfFields> desired(new ElfFields());
ElfFields* expected = nullptr;
// Strong version is reliable. Weak version might randomly return false.
if (elf_fields_.compare_exchange_strong(expected, desired.get())) {
return *desired.release(); // Success: we transferred the pointer ownership to the field.
} else {
return *expected; // Failure: 'expected' is updated to the value set by the other thread.
}
}
std::string MapInfo::GetPrintableBuildID() {
std::string raw_build_id = GetBuildID();
return Elf::GetPrintableBuildID(raw_build_id);
}
} // namespace unwindstack
|