1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
#include <atomic>
#include <memory>
#include <mutex>
#include <string>
#include <utility>
#include <7zCrc.h>
#include <Xz.h>
#include <XzCrc64.h>
#include <unwindstack/Log.h>
#include "MemoryXz.h"
namespace unwindstack {
// Statistics (used only for optional debug log messages).
static constexpr bool kLogMemoryXzUsage = false;
std::atomic_size_t MemoryXz::total_used_ = 0;
std::atomic_size_t MemoryXz::total_size_ = 0;
std::atomic_size_t MemoryXz::total_open_ = 0;
MemoryXz::MemoryXz(Memory* memory, uint64_t addr, uint64_t size, const std::string& name)
: compressed_memory_(memory), compressed_addr_(addr), compressed_size_(size), name_(name) {
total_open_ += 1;
}
bool MemoryXz::Init() {
static std::once_flag crc_initialized;
std::call_once(crc_initialized, []() {
CrcGenerateTable();
Crc64GenerateTable();
});
if (compressed_size_ >= kMaxCompressedSize) {
return false;
}
if (!ReadBlocks()) {
return false;
}
// All blocks (except the last one) must have the same power-of-2 size.
if (blocks_.size() > 1) {
size_t block_size_log2 = __builtin_ctz(blocks_.front().decompressed_size);
auto correct_size = [=](XzBlock& b) { return b.decompressed_size == (1 << block_size_log2); };
if (std::all_of(blocks_.begin(), std::prev(blocks_.end()), correct_size) &&
blocks_.back().decompressed_size <= (1 << block_size_log2)) {
block_size_log2_ = block_size_log2;
} else {
// Inconsistent block-sizes. Decompress and merge everything now.
std::unique_ptr<uint8_t[]> data(new uint8_t[size_]);
size_t offset = 0;
for (XzBlock& block : blocks_) {
if (!Decompress(&block)) {
return false;
}
memcpy(data.get() + offset, block.decompressed_data.get(), block.decompressed_size);
offset += block.decompressed_size;
}
blocks_.clear();
blocks_.push_back(XzBlock{
.decompressed_data = std::move(data),
.decompressed_size = size_,
});
block_size_log2_ = 31; // Because 32 bits is too big (shift right by 32 is not allowed).
}
}
return true;
}
MemoryXz::~MemoryXz() {
total_used_ -= used_;
total_size_ -= size_;
total_open_ -= 1;
}
size_t MemoryXz::Read(uint64_t addr, void* buffer, size_t size) {
if (addr >= size_) {
return 0; // Read past the end.
}
uint8_t* dst = reinterpret_cast<uint8_t*>(buffer); // Position in the output buffer.
for (size_t i = addr >> block_size_log2_; i < blocks_.size(); i++) {
XzBlock* block = &blocks_[i];
if (block->decompressed_data == nullptr) {
if (!Decompress(block)) {
break;
}
}
size_t offset = (addr - (i << block_size_log2_)); // Start inside the block.
size_t copy_bytes = std::min<size_t>(size, block->decompressed_size - offset);
memcpy(dst, block->decompressed_data.get() + offset, copy_bytes);
dst += copy_bytes;
addr += copy_bytes;
size -= copy_bytes;
if (size == 0) {
break;
}
}
return dst - reinterpret_cast<uint8_t*>(buffer);
}
bool MemoryXz::ReadBlocks() {
static ISzAlloc alloc;
alloc.Alloc = [](ISzAllocPtr, size_t size) { return malloc(size); };
alloc.Free = [](ISzAllocPtr, void* ptr) { return free(ptr); };
// Read the compressed data, so we can quickly scan through the headers.
std::unique_ptr<uint8_t[]> compressed_data(new (std::nothrow) uint8_t[compressed_size_]);
if (compressed_data.get() == nullptr) {
return false;
}
if (!compressed_memory_->ReadFully(compressed_addr_, compressed_data.get(), compressed_size_)) {
return false;
}
// Implement the required interface for communication
// (written in C so we can not use virtual methods or member functions).
struct XzLookInStream : public ILookInStream, public ICompressProgress {
static SRes LookImpl(const ILookInStream* p, const void** buf, size_t* size) {
auto* ctx = reinterpret_cast<const XzLookInStream*>(p);
*buf = ctx->data + ctx->offset;
*size = std::min(*size, ctx->size - ctx->offset);
return SZ_OK;
}
static SRes SkipImpl(const ILookInStream* p, size_t len) {
auto* ctx = reinterpret_cast<XzLookInStream*>(const_cast<ILookInStream*>(p));
ctx->offset += len;
return SZ_OK;
}
static SRes ReadImpl(const ILookInStream* p, void* buf, size_t* size) {
auto* ctx = reinterpret_cast<const XzLookInStream*>(p);
*size = std::min(*size, ctx->size - ctx->offset);
memcpy(buf, ctx->data + ctx->offset, *size);
return SZ_OK;
}
static SRes SeekImpl(const ILookInStream* p, Int64* pos, ESzSeek origin) {
auto* ctx = reinterpret_cast<XzLookInStream*>(const_cast<ILookInStream*>(p));
switch (origin) {
case SZ_SEEK_SET:
ctx->offset = *pos;
break;
case SZ_SEEK_CUR:
ctx->offset += *pos;
break;
case SZ_SEEK_END:
ctx->offset = ctx->size + *pos;
break;
}
*pos = ctx->offset;
return SZ_OK;
}
static SRes ProgressImpl(const ICompressProgress*, UInt64, UInt64) { return SZ_OK; }
size_t offset;
uint8_t* data;
size_t size;
};
XzLookInStream callbacks;
callbacks.Look = &XzLookInStream::LookImpl;
callbacks.Skip = &XzLookInStream::SkipImpl;
callbacks.Read = &XzLookInStream::ReadImpl;
callbacks.Seek = &XzLookInStream::SeekImpl;
callbacks.Progress = &XzLookInStream::ProgressImpl;
callbacks.offset = 0;
callbacks.data = compressed_data.get();
callbacks.size = compressed_size_;
// Iterate over the internal XZ blocks without decompressing them.
CXzs xzs;
Xzs_Construct(&xzs);
Int64 end_offset = compressed_size_;
if (Xzs_ReadBackward(&xzs, &callbacks, &end_offset, &callbacks, &alloc) == SZ_OK) {
blocks_.reserve(Xzs_GetNumBlocks(&xzs));
size_t dst_offset = 0;
for (int s = xzs.num - 1; s >= 0; s--) {
const CXzStream& stream = xzs.streams[s];
size_t src_offset = stream.startOffset + XZ_STREAM_HEADER_SIZE;
for (size_t b = 0; b < stream.numBlocks; b++) {
const CXzBlockSizes& block = stream.blocks[b];
blocks_.push_back(XzBlock{
.decompressed_data = nullptr, // Lazy allocation and decompression.
.decompressed_size = static_cast<uint32_t>(block.unpackSize),
.compressed_offset = static_cast<uint32_t>(src_offset),
.compressed_size = static_cast<uint32_t>((block.totalSize + 3) & ~3u),
.stream_flags = stream.flags,
});
dst_offset += blocks_.back().decompressed_size;
src_offset += blocks_.back().compressed_size;
}
}
size_ = dst_offset;
total_size_ += dst_offset;
}
Xzs_Free(&xzs, &alloc);
return !blocks_.empty();
}
bool MemoryXz::Decompress(XzBlock* block) {
static ISzAlloc alloc;
alloc.Alloc = [](ISzAllocPtr, size_t size) { return malloc(size); };
alloc.Free = [](ISzAllocPtr, void* ptr) { return free(ptr); };
// Read the compressed data for this block.
std::unique_ptr<uint8_t[]> compressed_data(new (std::nothrow) uint8_t[block->compressed_size]);
if (compressed_data.get() == nullptr) {
return false;
}
if (!compressed_memory_->ReadFully(compressed_addr_ + block->compressed_offset,
compressed_data.get(), block->compressed_size)) {
return false;
}
// Allocate decompressed memory.
std::unique_ptr<uint8_t[]> decompressed_data(new uint8_t[block->decompressed_size]);
if (decompressed_data == nullptr) {
return false;
}
// Decompress.
CXzUnpacker state{};
XzUnpacker_Construct(&state, &alloc);
state.streamFlags = block->stream_flags;
XzUnpacker_PrepareToRandomBlockDecoding(&state);
size_t decompressed_size = block->decompressed_size;
size_t compressed_size = block->compressed_size;
ECoderStatus status;
XzUnpacker_SetOutBuf(&state, decompressed_data.get(), decompressed_size);
int return_val =
XzUnpacker_Code(&state, /*decompressed_data=*/nullptr, &decompressed_size,
compressed_data.get(), &compressed_size, true, CODER_FINISH_END, &status);
XzUnpacker_Free(&state);
if (return_val != SZ_OK || status != CODER_STATUS_FINISHED_WITH_MARK) {
Log::Error("Cannot decompress \"%s\"", name_.c_str());
return false;
}
used_ += block->decompressed_size;
total_used_ += block->decompressed_size;
if (kLogMemoryXzUsage) {
Log::Info("decompressed memory: %zi%% of %ziKB (%zi files), %i%% of %iKB (%s)",
100 * total_used_ / total_size_, total_size_ / 1024, total_open_.load(),
100 * used_ / size_, size_ / 1024, name_.c_str());
}
block->decompressed_data = std::move(decompressed_data);
return true;
}
} // namespace unwindstack
|