1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
#include <assert.h>
#include <math.h>
#include <float.h>
#include <string.h>
#include "scriptmath.h"
#ifdef __BORLANDC__
#include <cmath>
// The C++Builder RTL doesn't pull the *f functions into the global namespace per default.
using namespace std;
#if __BORLANDC__ < 0x580
// C++Builder 6 and earlier don't come with any *f variants of the math functions at all.
inline float cosf (float arg) { return std::cos (arg); }
inline float sinf (float arg) { return std::sin (arg); }
inline float tanf (float arg) { return std::tan (arg); }
inline float atan2f (float y, float x) { return std::atan2 (y, x); }
inline float logf (float arg) { return std::log (arg); }
inline float powf (float x, float y) { return std::pow (x, y); }
inline float sqrtf (float arg) { return std::sqrt (arg); }
#endif
// C++Builder doesn't define most of the non-standard float-specific math functions with
// "*f" suffix; instead it provides overloads for the standard math functions which take
// "float" arguments.
inline float acosf (float arg) { return std::acos (arg); }
inline float asinf (float arg) { return std::asin (arg); }
inline float atanf (float arg) { return std::atan (arg); }
inline float coshf (float arg) { return std::cosh (arg); }
inline float sinhf (float arg) { return std::sinh (arg); }
inline float tanhf (float arg) { return std::tanh (arg); }
inline float log10f (float arg) { return std::log10 (arg); }
inline float ceilf (float arg) { return std::ceil (arg); }
inline float fabsf (float arg) { return std::fabs (arg); }
inline float floorf (float arg) { return std::floor (arg); }
// C++Builder doesn't define a non-standard "modff" function but rather an overload of "modf"
// for float arguments. However, BCC's float overload of fmod() is broken (QC #74816; fixed
// in C++Builder 2010).
inline float modff (float x, float *y)
{
double d;
float f = (float) modf((double) x, &d);
*y = (float) d;
return f;
}
#endif
BEGIN_AS_NAMESPACE
// Determine whether the float version should be registered, or the double version
#ifndef AS_USE_FLOAT
#if !defined(_WIN32_WCE) // WinCE doesn't have the float versions of the math functions
#define AS_USE_FLOAT 1
#endif
#endif
// The modf function doesn't seem very intuitive, so I'm writing this
// function that simply returns the fractional part of the float value
#if AS_USE_FLOAT
float fractionf(float v)
{
float intPart;
return modff(v, &intPart);
}
#else
double fraction(double v)
{
double intPart;
return modf(v, &intPart);
}
#endif
// As AngelScript doesn't allow bitwise manipulation of float types we'll provide a couple of
// functions for converting float values to IEEE 754 formatted values etc. This also allow us to
// provide a platform agnostic representation to the script so the scripts don't have to worry
// about whether the CPU uses IEEE 754 floats or some other representation
float fpFromIEEE(asUINT raw)
{
// TODO: Identify CPU family to provide proper conversion
// if the CPU doesn't natively use IEEE style floats
return *reinterpret_cast<float*>(&raw);
}
asUINT fpToIEEE(float fp)
{
return *reinterpret_cast<asUINT*>(&fp);
}
double fpFromIEEE(asQWORD raw)
{
return *reinterpret_cast<double*>(&raw);
}
asQWORD fpToIEEE(double fp)
{
return *reinterpret_cast<asQWORD*>(&fp);
}
// closeTo() is used to determine if the binary representation of two numbers are
// relatively close to each other. Numerical errors due to rounding errors build
// up over many operations, so it is almost impossible to get exact numbers and
// this is where closeTo() comes in.
//
// It shouldn't be used to determine if two numbers are mathematically close to
// each other.
//
// ref: http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
// ref: http://www.gamedev.net/topic/653449-scriptmath-and-closeto/
bool closeTo(float a, float b, float epsilon)
{
// Equal numbers and infinity will return immediately
if( a == b ) return true;
// When very close to 0, we can use the absolute comparison
float diff = fabsf(a - b);
if( (a == 0 || b == 0) && (diff < epsilon) )
return true;
// Otherwise we need to use relative comparison to account for precision
return diff / (fabs(a) + fabs(b)) < epsilon;
}
bool closeTo(double a, double b, double epsilon)
{
if( a == b ) return true;
double diff = fabs(a - b);
if( (a == 0 || b == 0) && (diff < epsilon) )
return true;
return diff / (fabs(a) + fabs(b)) < epsilon;
}
void RegisterScriptMath_Native(asIScriptEngine *engine)
{
int r;
// Conversion between floating point and IEEE bits representations
r = engine->RegisterGlobalFunction("float fpFromIEEE(uint)", asFUNCTIONPR(fpFromIEEE, (asUINT), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("uint fpToIEEE(float)", asFUNCTIONPR(fpToIEEE, (float), asUINT), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double fpFromIEEE(uint64)", asFUNCTIONPR(fpFromIEEE, (asQWORD), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("uint64 fpToIEEE(double)", asFUNCTIONPR(fpToIEEE, (double), asQWORD), asCALL_CDECL); assert( r >= 0 );
// Close to comparison with epsilon
r = engine->RegisterGlobalFunction("bool closeTo(float, float, float = 0.00001f)", asFUNCTIONPR(closeTo, (float, float, float), bool), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("bool closeTo(double, double, double = 0.0000000001)", asFUNCTIONPR(closeTo, (double, double, double), bool), asCALL_CDECL); assert( r >= 0 );
#if AS_USE_FLOAT
// Trigonometric functions
r = engine->RegisterGlobalFunction("float cos(float)", asFUNCTIONPR(cosf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float sin(float)", asFUNCTIONPR(sinf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float tan(float)", asFUNCTIONPR(tanf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float acos(float)", asFUNCTIONPR(acosf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float asin(float)", asFUNCTIONPR(asinf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float atan(float)", asFUNCTIONPR(atanf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float atan2(float,float)", asFUNCTIONPR(atan2f, (float, float), float), asCALL_CDECL); assert( r >= 0 );
// Hyberbolic functions
r = engine->RegisterGlobalFunction("float cosh(float)", asFUNCTIONPR(coshf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float sinh(float)", asFUNCTIONPR(sinhf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float tanh(float)", asFUNCTIONPR(tanhf, (float), float), asCALL_CDECL); assert( r >= 0 );
// Exponential and logarithmic functions
r = engine->RegisterGlobalFunction("float log(float)", asFUNCTIONPR(logf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float log10(float)", asFUNCTIONPR(log10f, (float), float), asCALL_CDECL); assert( r >= 0 );
// Power functions
r = engine->RegisterGlobalFunction("float pow(float, float)", asFUNCTIONPR(powf, (float, float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float sqrt(float)", asFUNCTIONPR(sqrtf, (float), float), asCALL_CDECL); assert( r >= 0 );
// Nearest integer, absolute value, and remainder functions
r = engine->RegisterGlobalFunction("float ceil(float)", asFUNCTIONPR(ceilf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float abs(float)", asFUNCTIONPR(fabsf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float floor(float)", asFUNCTIONPR(floorf, (float), float), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float fraction(float)", asFUNCTIONPR(fractionf, (float), float), asCALL_CDECL); assert( r >= 0 );
// Don't register modf because AngelScript already supports the % operator
#else
// double versions of the same
r = engine->RegisterGlobalFunction("double cos(double)", asFUNCTIONPR(cos, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double sin(double)", asFUNCTIONPR(sin, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double tan(double)", asFUNCTIONPR(tan, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double acos(double)", asFUNCTIONPR(acos, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double asin(double)", asFUNCTIONPR(asin, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double atan(double)", asFUNCTIONPR(atan, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double atan2(double,double)", asFUNCTIONPR(atan2, (double, double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double cosh(double)", asFUNCTIONPR(cosh, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double sinh(double)", asFUNCTIONPR(sinh, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double tanh(double)", asFUNCTIONPR(tanh, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double log(double)", asFUNCTIONPR(log, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double log10(double)", asFUNCTIONPR(log10, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double pow(double, double)", asFUNCTIONPR(pow, (double, double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double sqrt(double)", asFUNCTIONPR(sqrt, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double ceil(double)", asFUNCTIONPR(ceil, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double abs(double)", asFUNCTIONPR(fabs, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double floor(double)", asFUNCTIONPR(floor, (double), double), asCALL_CDECL); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double fraction(double)", asFUNCTIONPR(fraction, (double), double), asCALL_CDECL); assert( r >= 0 );
#endif
}
#if AS_USE_FLOAT
// This macro creates simple generic wrappers for functions of type 'float func(float)'
#define GENERICff(x) \
void x##_generic(asIScriptGeneric *gen) \
{ \
float f = *(float*)gen->GetAddressOfArg(0); \
*(float*)gen->GetAddressOfReturnLocation() = x(f); \
}
GENERICff(cosf)
GENERICff(sinf)
GENERICff(tanf)
GENERICff(acosf)
GENERICff(asinf)
GENERICff(atanf)
GENERICff(coshf)
GENERICff(sinhf)
GENERICff(tanhf)
GENERICff(logf)
GENERICff(log10f)
GENERICff(sqrtf)
GENERICff(ceilf)
GENERICff(fabsf)
GENERICff(floorf)
GENERICff(fractionf)
void powf_generic(asIScriptGeneric *gen)
{
float f1 = *(float*)gen->GetAddressOfArg(0);
float f2 = *(float*)gen->GetAddressOfArg(1);
*(float*)gen->GetAddressOfReturnLocation() = powf(f1, f2);
}
void atan2f_generic(asIScriptGeneric *gen)
{
float f1 = *(float*)gen->GetAddressOfArg(0);
float f2 = *(float*)gen->GetAddressOfArg(1);
*(float*)gen->GetAddressOfReturnLocation() = atan2f(f1, f2);
}
#else
// This macro creates simple generic wrappers for functions of type 'double func(double)'
#define GENERICdd(x) \
void x##_generic(asIScriptGeneric *gen) \
{ \
double f = *(double*)gen->GetAddressOfArg(0); \
*(double*)gen->GetAddressOfReturnLocation() = x(f); \
}
GENERICdd(cos)
GENERICdd(sin)
GENERICdd(tan)
GENERICdd(acos)
GENERICdd(asin)
GENERICdd(atan)
GENERICdd(cosh)
GENERICdd(sinh)
GENERICdd(tanh)
GENERICdd(log)
GENERICdd(log10)
GENERICdd(sqrt)
GENERICdd(ceil)
GENERICdd(fabs)
GENERICdd(floor)
GENERICdd(fraction)
void pow_generic(asIScriptGeneric *gen)
{
double f1 = *(double*)gen->GetAddressOfArg(0);
double f2 = *(double*)gen->GetAddressOfArg(1);
*(double*)gen->GetAddressOfReturnLocation() = pow(f1, f2);
}
void atan2_generic(asIScriptGeneric *gen)
{
double f1 = *(double*)gen->GetAddressOfArg(0);
double f2 = *(double*)gen->GetAddressOfArg(1);
*(double*)gen->GetAddressOfReturnLocation() = atan2(f1, f2);
}
#endif
void RegisterScriptMath_Generic(asIScriptEngine *engine)
{
int r;
#if AS_USE_FLOAT
// Trigonometric functions
r = engine->RegisterGlobalFunction("float cos(float)", asFUNCTION(cosf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float sin(float)", asFUNCTION(sinf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float tan(float)", asFUNCTION(tanf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float acos(float)", asFUNCTION(acosf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float asin(float)", asFUNCTION(asinf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float atan(float)", asFUNCTION(atanf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float atan2(float,float)", asFUNCTION(atan2f_generic), asCALL_GENERIC); assert( r >= 0 );
// Hyberbolic functions
r = engine->RegisterGlobalFunction("float cosh(float)", asFUNCTION(coshf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float sinh(float)", asFUNCTION(sinhf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float tanh(float)", asFUNCTION(tanhf_generic), asCALL_GENERIC); assert( r >= 0 );
// Exponential and logarithmic functions
r = engine->RegisterGlobalFunction("float log(float)", asFUNCTION(logf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float log10(float)", asFUNCTION(log10f_generic), asCALL_GENERIC); assert( r >= 0 );
// Power functions
r = engine->RegisterGlobalFunction("float pow(float, float)", asFUNCTION(powf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float sqrt(float)", asFUNCTION(sqrtf_generic), asCALL_GENERIC); assert( r >= 0 );
// Nearest integer, absolute value, and remainder functions
r = engine->RegisterGlobalFunction("float ceil(float)", asFUNCTION(ceilf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float abs(float)", asFUNCTION(fabsf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float floor(float)", asFUNCTION(floorf_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("float fraction(float)", asFUNCTION(fractionf_generic), asCALL_GENERIC); assert( r >= 0 );
// Don't register modf because AngelScript already supports the % operator
#else
// double versions of the same
r = engine->RegisterGlobalFunction("double cos(double)", asFUNCTION(cos_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double sin(double)", asFUNCTION(sin_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double tan(double)", asFUNCTION(tan_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double acos(double)", asFUNCTION(acos_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double asin(double)", asFUNCTION(asin_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double atan(double)", asFUNCTION(atan_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double atan2(double,double)", asFUNCTION(atan2_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double cosh(double)", asFUNCTION(cosh_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double sinh(double)", asFUNCTION(sinh_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double tanh(double)", asFUNCTION(tanh_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double log(double)", asFUNCTION(log_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double log10(double)", asFUNCTION(log10_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double pow(double, double)", asFUNCTION(pow_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double sqrt(double)", asFUNCTION(sqrt_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double ceil(double)", asFUNCTION(ceil_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double abs(double)", asFUNCTION(fabs_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double floor(double)", asFUNCTION(floor_generic), asCALL_GENERIC); assert( r >= 0 );
r = engine->RegisterGlobalFunction("double fraction(double)", asFUNCTION(fraction_generic), asCALL_GENERIC); assert( r >= 0 );
#endif
}
void RegisterScriptMath(asIScriptEngine *engine)
{
if( strstr(asGetLibraryOptions(), "AS_MAX_PORTABILITY") )
RegisterScriptMath_Generic(engine);
else
RegisterScriptMath_Native(engine);
}
END_AS_NAMESPACE
|