
ANN Programming Manual

David M. Mount∗

Department of Computer Science and

Institute for Advanced Computer Studies

University of Maryland, College Park, Maryland.

ANN, Version 1.1.1

Copyright, 2006 David M. Mount

∗Email: mount@cs.umd.edu. The support of the National Science Foundation under grants CCR–9712379 and

CCR-0098151 is gratefully acknowledged.

Contents

1 Introduction 1
1.1 What is ANN? . 1
1.2 Downloading and Using ANN . 1
1.3 Compiling ANN . 2

1.3.1 Compiling on Unix/Linux Systems . 2
1.3.2 Compiling on Microsoft Windows Systems . 2
1.3.3 Precompiled Files for Microsoft Windows . 2

1.4 Compiling Applications that Use the Library . 3

2 The ANN Library 4
2.1 Using ANN . 4

2.1.1 Coordinates, Points, Distances, and Indices 5
2.1.2 Nearest Neighbor Search Structure . 6
2.1.3 Point Utility Procedures . 9
2.1.4 A Sample Program . 10
2.1.5 Compiling Sample Applications that use ANN 11

2.2 Configuring ANN . 13
2.2.1 Norms and Distances . 13
2.2.2 More on Points, Cordinates, and Distances 14
2.2.3 Self Matches . 15

2.3 Modifying the Search Structure . 15
2.3.1 ANN Data Structures . 16
2.3.2 Internal Tree Structure . 17
2.3.3 Splitting Rules for kd-trees . 18
2.3.4 Shrinking Rules for bd-trees . 20

2.4 Search Algorithms . 20
2.4.1 Standard Search . 21
2.4.2 Priority Search . 21
2.4.3 Early Termination Option . 22

2.5 Search Tree Utility Functions . 22
2.5.1 Printing the Search Structure . 22
2.5.2 Saving and Restoring the Search Structure on a File 23
2.5.3 Gathering Statistics on Tree Structure . 24

2.6 Compile-Time Options . 25

3 Utility Programs 26
3.1 ann test: A Test and Evaluation Program . 26

3.1.1 Operations . 26
3.1.2 Options Affecting Tree Structure: . 27
3.1.3 Options Affecting Data and Query Point Generation 28
3.1.4 Options Affecting Nearest Neighbor Searching 30
3.1.5 Options Affecting the Amount of Output . 30
3.1.6 Options Affecting the Validation . 31

3.2 ann2fig: Visualization Tool . 32

i

1 Introduction

1.1 What is ANN?

ANN is a library written in the C++ programming language to support both exact and approximate
nearest neighbor searching in spaces of various dimensions. It was implemented by David M.
Mount of the University of Maryland and Sunil Arya of the Hong Kong University of Science
and Technology. ANN (pronounced like the name “Ann”) stands for the Approximate Nearest

Neighbor library. ANN is also a testbed containing programs and procedures for generating data
sets, collecting and analyzing statistics on the performance of nearest neighbor algorithms and data
structures, and visualizing the geometric structure of these data structures.

In the nearest neighbor problem a set P of data points in d-dimensional space is given. These
points are preprocessed into a data structure, so that given any query point q, the nearest (or
generally k nearest) points of P to q can be reported efficiently. ANN is designed for data sets that
are small enough that the search structure can be stored in main memory (in contrast to approaches
from databases that assume that the data resides in secondary storage). Points are assumed to
be represented as coordinate vectors of reals (or integers). The distance between two points can
be defined in many ways. ANN assumes that distances are measured using any class of distance
functions called Minkowski metrics. These include the well known Euclidean distance, Manhattan
distance, and max distance.

Answering nearest neighbor queries efficiently, especially in higher dimensions, seems to be very
difficult problem. It is always possible to answer any query by a simple brute-force process of
computing the distances between the query point and each of the data points, but this may be too
slow for many applications that require that a large number of queries be answered on the same
data set. Instead the approach is to preprocess a set of data points into a data structure from which
nearest neighbor queries are then answered. There are a number of data structures that have been
proposed for solving this problem. See, for example, [AMN+98, Ben90, Cla97, Kle97, PS85, Spr91],
for more information on this problem.

One difficulty with exact nearest neighbor searching is that for virtually all methods other
than brute-force search, the running time or space grows exponentially as a function of dimension.
Consequently these methods are often not significantly better than brute-force search, except in
fairly small dimensions. However, it has been shown by Arya and Mount [AM93b] and Arya, et
al. [AMN+98] that if the user is willing to tolerate a small amount of error in the search (returning
a point that may not be the nearest neighbor, but is not significantly further away from the query
point than the true nearest neighbor) then it is possible to achieve significant improvements in run-
ning time. ANN is a system for answering nearest neighbor queries both exactly and approximately.

This manual describes how to download and install ANN, how to use the library, how to change
its configuration for different distance functions and data representations, and finally how to use
its utility programs for testing and visualizing the data structure.

1.2 Downloading and Using ANN

The current version of ANN is version 1.1.1. The ANN source code and documentation is available
from the ANN web page:

http://www.cs.umd.edu/~mount/ANN

The unbundled software consists of the following major files and directories.

ReadMe.txt: General description of the library.

1

Copyright.txt: Copyright information.

License.txt: Conditions of use for the library.

include: Include files for compiling programs that use the library.

src: The source files for the library.

sample: A small sample program, which illustrates how to input a point set, build a search structure
for the set, and answer nearest neighbor queries. (See Section 2.1.4.)

test: A program that provides a simple script input for building search trees and comparing their
performance on point sets that are either read from an input file or generated according to
some probability distribution. (See Section 3.1.)

ann2fig: A program that generates a visual representation (in fig format) of the tree’s spatial
decomposition. (See Section 3.2.)

lib: Where the compiled library is stored.

bin: Where the compiled executables are stored.

doc: This documentation.

MS Win32: Solution and project files for compilation under Microsoft Visual Studio .NET.

1.3 Compiling ANN

ANN requires an ANSI standard C++ compiler. It has been compiled successfully on Unix and
Linux systems including Sun Workstations running SunOS 5.X (Solaris), Linux Red Hat 2.X, and
on DEC Alphas running Digital Unix v4.X, on SGIs running IRIX 6.X. Makefiles for all these
systems. It has also been compiled under Microsoft Windows XP (under Visual Studio .NET).

1.3.1 Compiling on Unix/Linux Systems

After downloading the sources, change to the ANN root directory (from which directories such
as bin, doc, and include branch off) and enter the command “make”. This will provide a list of
platforms and options under which to compile ANN. If you do not see your particular configuration
on this list, then you might try modifying the file Make-config for your particular system. The
authors welcome any additions to the list of supported platforms.

There are some additional compilation options that can be enabled or disabled. These are
described in Section 2.6. To recompile the library, enter the command “make realclean” to delete
the library and utility programs, and then reenter the make command for compilation.

1.3.2 Compiling on Microsoft Windows Systems

To compile under Visual C++ running within Microsoft Visual Studio .NET, go to the directory
MS Win32. Open the solution file Ann.sln, select the “Release” configuration, and select “Build →
Build Solution.” After compilation, the file ANN.lib is stored in the directory MS Win32\dll\Release.
The file ANN.dll file and executables of the utility programs are stored in the directory bin (relative
to the ANN root directory). These two files, along with the files in the directory include/ANN are
needed for compiling applications that use ANN.

1.3.3 Precompiled Files for Microsoft Windows

For Microsoft Windows users that do not need to modify the software, a bundle containing all
the files you need to use ANN has been provided. This contains the include files in include/ANN

2

along with ANN.lib and ANN.dll. It can be downloaded directly from http://www.cs.umd.edu/

~mount/ANN. In order to use these with an application it is necessary to copy each of these files to
appropriate directories for the compiler and linker to locate them, and then to set the appropriate
compiler, linker, and path settings so the system can locate all these files. You should consult your
local system documentation for this information. An example of how to do this for the sample
program is given in Section 2.1.5.

1.4 Compiling Applications that Use the Library

In order to use ANN in a C++ program, the program must include the header file for ANN, which
contains the declarations for the ANN objects and procedures. This is done with the following
statement in the C++ source code.

#include <ANN/ANN.h>

This assumes that the ANN include directory is already on the compiler’s search path for include
files. On most Unix/Linux-based C++ compilers, this is done by setting the “-I” (capital letter
“i”) option on the compilation command line to point to the include directory in the ANN base
directory.

Then the program is linked with the ANN library. On Unix/Linux-based systems this is done
with the “-l” (lower-case letter “`”) option, assuming that the library search path has been set to
include the ANN library directory. The library search path can be set with the “-L” option. For
example, on my Unix system, the following command line could be used to compile the program
my program.cpp using the ANN library and the GNU C++ compiler. Let ann denote the path to
root ANN directory.

g++ my_program.cpp -Iann/include -Lann/lib -lANN

Some additional information on compiling applications that use ANN on Microsoft Windows
systems can be found in Section 2.1.5.

3

2 The ANN Library

ANN is a library of C++ objects and procedures that supports approximate nearest neighbor
searching. In nearest neighbor searching, we are given a set of data points S in real d-dimensional
space, R

d, and are to build a data structure such that, given any query point q ∈ R
d, the nearest

data point to q can be found efficiently. In general, we are given k ≥ 1, and are asked to return the
k-nearest neighbors to q in S.

In approximate nearest neighbor searching, an error bound ε ≥ 0 is also given. The search
algorithm returns k distinct points of S, such that for 1 ≤ i ≤ k, the ratio between the distance to
the ith reported point and the true ith nearest neighbor is at most 1 + ε.

ANN’s features include the following.

• It supports k-nearest neighbor searching, by specifying k with the query.

• It supports both exact and approximate nearest neighbor searching, by specifying an approx-
imation factor ε ≥ 0 with the query.

• It supports any Minkowski distance metric, including the L1 (Manhattan), L2 (Euclidean),
and L∞ (Max) metrics.

• Preprocessing time and space are both linear in the number of points n and the dimension d,
and are independent of ε. Thus the data structure requires storage that is only moderately
larger than the underlying data set.

ANN was written as a testbed for a class of nearest neighbor searching algorithms, particularly
those based on orthogonal decompositions of space. These include kd-trees [Ben90, FBF77], and
box-decomposition trees [AMN+98]. These will be described in Section 2.3.1. The library supports
a number of different methods for building these search structures. It also supports two methods for
searching these structures: standard tree-ordered search [AM93a] and priority search [AMN+98].
These will be described in Section 2.4.

In addition to the library there are two programs provided for testing and evaluating the per-
formance of various search methods. The first, called ann test, provides a primitive script language
that allows the user to generate data sets and query sets, either by reading from a file or randomly
through the use of a number of built-in point distributions. Any of a number of nearest neighbor
search structures can be built, and queries can be run through this structure. This program outputs
a number of performance statistics, including the average execution time, number of nodes visited
in the data structure, and the average error made in the case of approximate nearest neighbors. An
operation is provided to have the data structure dumped to a file and to load the data structure
from a dumped file.

The second program, called ann2fig, takes the dumped data structure and generates an illus-
tration of the data structure, which is output to a file in a simple graphics format. When the
dimension is higher than two, this program can output any planar 2-dimensional “slice” of the data
structure. An example is shown in Figure 1. The output of ann2fig is the same format used by the
Unix program xfig. Through the Unix program fig2dev, it is possible to convert this format to a
number of other picture formats, including encapsulated postscript.

2.1 Using ANN

This section discusses how to use ANN for answering nearest neighbors in its default configuration,
namely computing the nearest neighbor using Euclidean distance for points whose coordinates are

4

Figure 1: Sample output of ann2fig for a kd-tree and a box-decomposition tree.

of type double. Later in Section 2.2 we discuss how to customize ANN for different coordinate types
and different norms.

2.1.1 Coordinates, Points, Distances, and Indices

Each point in d-dimensional space is assumed to be expressed as a d-vector of coordinates

p = (p0, p1, . . . , pd−1).

(Indices start from 0, as is C++’s convention.) A coordinate is of type ANNcoord. By default,
ANNcoord is defined to be of type double, but it is possible to modify the ANN include files to
change this and other ANN types, as described in Section 2.2.2.

ANN defines the distance between two points to be their Euclidean distance, that is

dist(p, q) =





∑

0≤i<d

(pi − qi)
2





1/2

.

(Section 2.2.1 explains how to modify ANN for other Minkowski norms.) For the purposes of
comparing distances, it is not necessary to compute the final square root in the above expression.
ANN actually computes squared distances rather than true Euclidean distances. A squared distance
is defined to be of type ANNdist. It is defined to be double by default (but can be changed). By
using squared distances rather than true Euclidean distances, ANN not only saves on the time of
computing square roots, but has the advantage that integer types can be used instead to accurately
represent distances when integer type coordinates are used. (It worth emphasizing that, even
though ANN represents distances internally as squared distances, when it computes ε-approximate
nearest neighbors, the approximation is relative to the true, not squared, distance.)

The most basic object manipulated by ANN is a point, which is defined in C++ to be a dimen-
sionless array of coordinates, or more simply a pointer to a coordinate.1 Thus we define ANNpoint
to be

1It is natural to wonder why ANN does not define a special point class, which might store additional information

about points. This would then necessitate that the library be templated about the point type. Since compiler support

for templating was rather weak in the mid-90’s when ANN was first implemented designed, it was decided instead

to decouple the user’s point object from the ANN point type. In this way we allow the user to define a point object

in any way desired. The user then interfaces with ANN by simply providing a pointer to the point’s coordinates. In

many cases, this may just be a field in the user’s own point class.

5

typedef ANNcoord* ANNpoint; // a point

It is the user’s responsibility to allocate and deallocate storage for points. Each point must
have at least as many components allocated as the dimension of the space. Any extra components
are ignored.

Since ANN operates on arrays of points and distances, we also define dimensionless arrays of
these two objects:

typedef ANNpoint* ANNpointArray; // an array of points

typedef ANNdist* ANNdistArray; // an array of squared distances

We will see later that a set of data points is presented to ANN as an ANNpointArray. ANN
returns the results of a nearest neighbor query as an integer index into this array. To make it clear
when we are doing so, ANN defines the type ANNidx to be a psuedonym for int. The result of a k-
nearest neighbor query is returned as a pointer to an array of indices, which is of type ANNidxArray,
defined as follows.

typedef ANNidx* ANNidxArray; // an array of point indices

Finally, ANN provides a boolean type called ANNbool. (Although ANSI C++ provides a type
bool, this is not supported in some of the older compilers.) Its values are ANNfalse and ANNtrue.

2.1.2 Nearest Neighbor Search Structure

The principal structure that ANN uses for performing nearest neighbor searches is called an AN-
NpointSet. This is an abstract object which supports two search operations, annkSearch(), which
computes the approximate k nearest neighbors of a query point, and annKFRSearch(), which per-
forms a combination of a fixed-radius approximate k nearest neighbor search and a range search
(see the description below).

ANN provides three concrete instantiations of an ANNpointSet: ANNbruteForce, ANNkd tree,
and ANNbd tree. The first of these stores the points as an array, and implements a simple brute-
force search for nearest neighbors. It is provided primarily for the use of the implementors to
validate the correctness of the more sophisticated search structures, and should not be used for
actual nearest neighbor queries. Among the other two, we will first introduce only the more basic
one, the ANNkd tree, and leave the ANNbd tree to be discussed in Section 2.3. The ANNkd tree
supports the following operations.

Constructor: This builds a kd-tree from a set of n data points in dimension d, stored in a point
array pa. The procedure allocates the necessary storage for the data structure. It is assumed
that there is at least one data point (n ≥ 1) and that the dimension is strictly positive
(d ≥ 1). Warning: This procedure does virtually no error checking, and if these assumptions
are violated or if storage cannot be allocated, then the most likely result will be that the
program aborts.

A (simplified) prototype is given below. (See Section 2.3 for more complete information.) The
order in which the points appear in the points array is significant, because nearest neighbors
are returned by their index in this array. Following C++ conventions, the items are indexed
from 0 to n − 1.

ANNkd_tree::ANNkd_tree(

ANNpointArray pa, // data point array

int n, // number of points

int d); // dimension

6

To conserve space, the tree does not actually store the data points, but rather stores pointers
to the array pa. For this reason the contents of pa should be unchanged throughout the
lifetime of the data structure.

k-Nearest Neighbor Search: This member function is given a query point q, a nonnegative
integer k, an array of point indices, nn idx, and an array of distances, dists. Both arrays are
assumed to contain at least k elements. The procedure computes the k nearest neighbors to
q in the point set, and stores the indices of the nearest neighbors (relative to the point array
pa given in the constructor). The nearest neighbor is stored in nn idx[0], the second nearest
in nn idx[1], and so on. The squared distances to the corresponding points are stored in the
array dists.

Optionally, a real value ε ≥ 0 may be supplied. If so, then the ith nearest neighbor is a (1+ε)
approximation to the true ith nearest neighbor. That is, the true (not squared) distance to
this point may exceed the true distance to the real ith nearest neighbor of q by a factor of
(1 + ε). If ε is omitted then nearest neighbors are computed exactly.

ANN supports two different methods for searching the kd-tree. Here we present the simpler
one, which is the more efficient for small values of ε. Another searching algorithm, called
priority search, is presented later in Section 2.4.2.

virtual void ANNkd_tree::annkSearch(

ANNpoint q, // query point

int k, // number of near neighbors to find

ANNidxArray nn_idx, // nearest neighbor array (modified)

ANNdistArray dists, // dist to near neighbors (modified)

double eps=0.0); // error bound

Fixed-radius k-Nearest Neighbor Search: This member function is a modification of the above
procedure, which searches for up to k nearest neighbors, but confines the search to a fixed
radius bound. It is given a query point q, a (squared) radius bound sqRad, a nonnegative
integer k. Optionally, it is given an array of point indices, nn idx, an array of distances, dists.
If provided, both arrays are assumed to contain at least k elements.

This procedure performs two different types of search. First, if k is positive and the two
arrays nn idx and dists are provided, then among the points whose squared distance from
q is at most sqRad, it finds the k closest of these to q. If the number of points within the
squared radius bound is some value k′ < k, then only the first k′ entries of these arrays have
meaningful entries. The other entries of nn idx contain the special value ANN NULL IDX

and the other entries of dists contain the special value ANN DIST INF (which are defined
in ANN.h).

This is called a fixed-radius search, because it ignores all the points that lie outside of the
radius bound. It is not however, a true fixed-radius search, because it computes only the
closest k points that lie within the radius bound. Thus, if the value of k is less than the total
number of points k′ in the radius bound, the farthest k′ − k points within the radius will not
be reported. (This limitation is because ANN allocates all its arrays statically.)

It is easy, however, to determine whether any points were missed. The procedure returns a
count of the total number of points that lie within the radius bound. (This feature is always
enabled, even if k = 0.) In order to produce a true fixed-radius search, first set k = 0 and run

7

the procedure in order to obtain the number k′ of points that lie within the radius bound.
Then, allocate index and distance arrays of size k′ each, and repeat the fixed-radius search
by setting k = k′ and passing in these two arrays.

Optionally, a real value ε ≥ 0 may be supplied. If so, the squared radius bound is treated
as an approximate quantity in the following sense. Assuming that we are using Euclidean
distances, let r =

√
sqRad be the true radius bound. Every data point whose distance from q

is less than r/(1 + ε) will be considered, and any point whose distance from q is greater than
r will not be considered. The remaining points either may or may not be considered (at the
discretion of the search algorithm). Among the points that are considered, the ith elements
of nn idx and dists contain the ith closest point to q, and the procedure returns a count of
all the points under consideration.

Here is the prototype of the fixed-radius search procedure.

virtual int ANNkd_tree::annkFRSearch(

ANNpoint q, // query point

ANNdist sqRad, // squared radius

int k = 0, // number of near neighbors to return

ANNidxArray nn_idx = NULL, // nearest neighbor array (modified)

ANNdistArray dd = NULL, // dist to near neighbors (modified)

double eps = 0.0); // error bound

Unlike annkSearch(), there is no priority search version of of annkFRSearch(). Because it visits
all the points in the search radius one by one, the search procedure is rather inefficient if the
number of points in the radius bound is large.

Other Information: There are three functions provided for extracting information from a search
structure. These are particularly useful if the structure has been loaded from a file (through
the load constructor). The function theDim() returns the dimension of the space, nPoints()
returns the number of points in the structure, and thePoints() returns a pointer to the array
of data points.

virtual int ANNkd_tree::theDim(); // return the dimension of space

virtual int ANNkd_tree::nPoints(); // return the number of points

// return a pointer to points

virtual ANNpointArray ANNkd_tree::thePoints();

Destructor: The destructor deallocates the search structure. (It does not deallocate the points.)

ANNkd_tree::~ANNkd_tree();

Closing ANN: The library allocates a small amount of storage, which is shared by all search struc-
tures built during the program’s lifetime. Because the data is shared, it is not deallocated,
even when the all the individual structures are deleted. To avoid the resulting (minor) mem-
ory leak, the following function can be called after all search structures have been destroyed.
(It is not a member function of the structure.)

void annClose();

8

2.1.3 Point Utility Procedures

As mentioned earlier ANNpoint, is of type ANNcoord*, a pointer to a dimensionless array of coordi-
nates (see Section 2.1.1). An ANNpointArray is a dimensionless array of such points, that is, of type
ANNpoint*. Since a point type does not record its own dimension, all procedures that operate on
points must be supplied the dimension. ANN provides a few utility procedures to aid in performing
some useful operations on points.

annDist: This returns the squared distance between two points p and q in dimension d. For
reasons of efficiency, ANN does not use this procedure for most of its distance computations.

ANNdist annDist(

int dim, // dimension of space

ANNpoint p,

ANNpoint q);

annAllocPt: This allocates storage for a point p in dimension d. That is, it allocates an array
of size d whose elements are of type ANNcoord. In addition to the dimension, it can also
be passed a coordinate value (0 by default), which it uses to initialize all coordinates of the
point. This procedure returns a pointer to the allocated point, and NULL if storage cannot
be allocated for any reason.

ANNpoint annAllocPt(

int dim, // dimension of the space

ANNcoord c = 0); // initial coordinate value

annDeallocPt: Deallocates storage for a point p as allocated by annAllocPt. As a side effect (for
safety) it assigns p the value NULL.

void annDeallocPt(

ANNpoint& p); // (set to NULL on return)

annAllocPts: This is used to allocate an array of points. It first allocates an array of n pointers
to points (each element is of type ANNpoint), and for each element it allocates storage for d
coordinates, and stores a pointer to this storage in the element. It returns a pointer to this
array of pointers. It performs no initialization of the coordinate values.

ANNpointArray annAllocPts(

int n, // number of points

int dim); // dimension

annDeallocPts: This deallocates the storage allocated by annAllocPts. This procedure should
only be applied to arrays of points allocated by annAllocPts. As a side effect (for safety) it
assigns pa the value NULL.

void annDeallocPts(

ANNpointArray& pa); // (set to NULL on return)

annCopyPt: This makes a copy of a point by first allocating storage for a new point and then
copying the contents of the source point to the new point. A pointer to the newly allocated
point is returned.

ANNpoint annCopyPt(

int dim, // dimension

ANNpoint source); // point to copy

9

2.1.4 A Sample Program

In this section we present is a sample program demonstrating the basic elements of ANN. The
program inputs command line arguments such as the dimension d, the number of nearest neighbors
k, the error bound ε, and the file names containing the query and data point. The program allocates
storage for data points, one query point, and results, consisting of the nearest neighbor indices and
the distances. The program inputs the data points and builds a kd-tree search structure for these
points. Then it reads query points, and for each computes k approximate nearest neighbors with
error bound ε, and outputs the results.

The presentation below shows only the most relevant elements of the program. The complete
source can be found in sample/ann sample.cpp. (All file names are given relative to the ANN root
directory.) To simplify the presentation, the procedures getArgs() and readPt() have been omitted.
The first reads command line arguments and initializes the global parameters. The second reads a
single point from an input stream, and returns false if the end of file is encountered.

#include <cstdlib> // C standard library

#include <fstream> // file I/O

#include <ANN/ANN.h> // ANN declarations

using namespace std; // make std:: accessible

void getArgs(int argc, char **argv) { ... } // get command-line arguments

bool readPt(istream& in, ANNpoint p) { ... } // read point (false on EOF)

//

// Global variables, initialized in getArgs

//

int k = 1; // number of nearest neighbors

int dim = 2; // dimension

double eps = 0; // error bound

int maxPts = 1000; // maximum number of data points

istream* dataIn = NULL; // input for data points

istream* queryIn = NULL; // input for query points

int main(int argc, char **argv)

{

int nPts; // actual number of data points

ANNpointArray dataPts; // data points

ANNpoint queryPt; // query point

ANNidxArray nnIdx; // near neighbor indices

ANNdistArray dists; // near neighbor distances

ANNkd_tree* kdTree; // search structure

getArgs(argc, argv); // read command-line arguments

queryPt = annAllocPt(dim); // allocate query point

dataPts = annAllocPts(maxPts, dim); // allocate data points

nnIdx = new ANNidx[k]; // allocate near neigh indices

dists = new ANNdist[k]; // allocate near neighbor dists

nPts = 0; // read data points

while (nPts < maxPts && readPt(*dataIn, dataPts[nPts])) nPts++;

10

kdTree = new ANNkd_tree(// build search structure

dataPts, // the data points

nPts, // number of points

dim); // dimension of space

while (readPt(*queryIn, queryPt)) { // read query points

kdTree->annkSearch(// search

queryPt, // query point

k, // number of near neighbors

nnIdx, // nearest neighbors (returned)

dists, // distance (returned)

eps); // error bound

cout << "NN: Index Distance\n";

for (int i = 0; i < k; i++) { // print summary

dists[i] = sqrt(dists[i]); // unsquare distance

cout << i << " " << nnIdx[i] << " " << dists[i] << "\n";

}

}

delete [] nnIdx; // clean things up

delete [] dists;

delete kdTree;

annClose(); // done with ANN

return EXIT_SUCCESS;

}

2.1.5 Compiling Sample Applications that use ANN

The sample program is typical in structure to applications that use ANN. If you are on a Unix/Linux
system, the sample program is automatically compiled when you the file sample/Makefile can be
used to compile the program (perhaps with minor modifications needed, depending on your system).
Assuming that ANN has already been compiled, the GNU g++ compiler is used, and ann denotes
the path to root ANN directory, the sample program can be compiled using:

g++ ann_sample.cpp -o ann_sample -Iann/include -Lann/lib -lANN

If you are working on a typical Microsoft Windows system with Microsoft Visual Studio .NET,
here are some hints as to how to compile the sample program. The procedure is basically the same
for any other C++ application that uses ANN. (Please note that I am not an experienced Windows
programmer, so please consult your system documentation if this does not work for you.)

If you have downloaded the entire ANN distribution, you can certainly compile the sample
program by opening the project file MS Win32\sample\sample.vcproj. This assumes that that you
have the full ANN distribution and have already compiled the ANN library.

It is possible to compile an application that uses ANN with just the following three elements,
which are available from the “Precompiled files for for users of Microsoft Windows 2000” link on
the ANN web page.

Include files: The directory ANN containing the three ANN include files, ANN.h, ANNx.h, and
ANNperf.h,

11

Library file: ANN.lib,

dll file: ANN.dll.

Let us now illustrate how to compile the sample program from scratch. First, you will need to
download the ANN full distribution, and make a copy of the file sample\ann sample.cpp.

Copy Files: First, copy all the above files to a location that suits your preferences. For the sake
of illustration, we will make the following assumptions in the subsequent presentation, but
you may use whatever directories you like (in fact, they can all just be the same directory).

Source file: Copy the file ann sample.cpp to a directory containing your project source files,
say, C:\My Sources.

Include files: Copy the contents of the directory ANN, which contains the three ANN include
files, to a directory where your include files are stored, say, C:\My Includes. (Alterna-
tively, you can store this in the default directory where the linker looks for standard li-
braries, something like C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\include.)

Lib file: Copy the file ANN.lib to a directory where your library files are stored, say, C:\My
Libs. (Alternatively, you can store this in the default directory where the linker looks
for standard libraries, something like, C:\Program Files\Microsoft Visual Studio .NET
2003\Vc7\lib.)

DLL file: Copy the file ANN.dll to a directory where your DLL files are stored, say, C:\My
DLLS. (Alternatively, you can store this in the system directory on your path environ-
ment variable, say, C:\WINDOWS\system32.)

Create a New Project: Open Visual Studio .NET and select the command “New Project.” Se-
lect the appropriate project type. For ann sample, this will be “WIN32 Console Project.”
Enter the desired project name (say, “ann sample”) and enter the path name of the directory
where you would like the project files to be stored. (This may just be the same directory that
contains ann sample.cpp sources.)

Add the Source: Select the menu option “Project” → “Add Existing Item” and use the browser
window to select your copy of the file ann sample.cpp.

Location of the include files: In the “Solution Explorer” window, find the entry for your project
name (say, “ann sample”) and right click and select “Properties.” From the resulting pop-up
window select “C/C++” → “General.” Locate the field named “Additional Include Directo-
ries” and enter the full path name of the directory into which you copied the directory ANN,
say, “C:\My Includes”. (If you chose to copy this directory to the default include directory,
this is not necessary.)

Location of the Library: In the “Solution Explorer” window, window, find the entry for your
project name (say, “ann sample”) and right click and select “Properties.” From the resulting
pop-up window select “Linker” → “General.” Locate the field named “Additional Library
Directories” and enter the full path name of the directory where you stored ANN.lib, say,
“C:\My Libs”. (If you chose to copy this file to the default library directory, this is not
necessary.)

Location of the DLL: The system searches the directories whose names appear in the Path en-
vironment variable for the locations of DLL files. If you have chosen to store ANN.dll in
your WINDOWS\system32 directory, then you not need to do anything more, since this will
be searched. If you stored the file in a different directory, then you need to add this name
to your Path variable. To do this, first open the Control Panel and select “System” (under

12

“Performance and Maintenance”). Click on the “Advanced” tab and select “Environment
Variables”. Find the variable “PATH” or “Path” (either under “System variables” or “User
variables”). If it does not exist, then add it and enter in it the full path name of the directory
where you stored the file ANN.dll, for example “C:\My Libs”. If it already exists, click the
variable name to highlight it, and then click the “Edit” button. At the end of this string
append a semicolon (“;”) followed by the above path name.

Compile your program: To compile the program return to Visual Studio .NET and select the
menu command “Build” → “Build Solution.” (It should not produce any error messages, but
if it complains about not being able to find ANN.h then recheck the above step about include
files. If it complains about not being able to find ANN.lib then recheck the above step about
the library file.)

At this point you should be able to execute the program. To do this, open a Command
Prompt window, and go to the directory containing the executable file ann sample.exe. Then enter
ann sample. It should print the program’s usage message. (If it complains that ANN.dll could not
be found, recheck the above step about DLL files.) This is not very interesting. If you copy the
files sample\data.pts and sample\query.pts from the full ANN distribution into this directory, then
the sample program can be run using the command:

ann_sample -df data.pts -qf query.pts

2.2 Configuring ANN

In this section we describe a number of methods for configuring ANN. These include dealing with
different distance measures, altering the types of coordinates, and dealing with the issue of whether
a point can be its own nearest neighbor. It was felt that these features are typically set once for
any given application, and that it would significantly complicate the library to allow support all
possible combinations of settings. For this reason, these changes are made by altering ANN’s main
header file include/ANN/ANN.h. Once set, they cannot be changed without recompiling the entire
library.

2.2.1 Norms and Distances

ANN computes the distance between two points p and q as the length of the vector difference

p − q = (p0 − q0, p1 − q1, . . . , pd−1 − qd−1).

ANN’s internal structure is oriented towards this type of distance, and it does not support, nor
can it be easily modified, to handle other types of similarity measures, e.g., the cosine similarity
measure, which based on the inner products of two vectors.

ANN employs a simple (but not elegant) method for computing vector lengths, which allows all
the Minkowski norms. Given a vector v, and positive integer k, define the Minkowski Lk norm to
be

‖v‖k =





∑

0≤i<d

|vi|k




1/k

.

The familiar Euclidean norm is just the L2 norm, and is ANN’s default. The Manhattan norm is
the L1 distance. The max norm is the limiting case as k tends to infinity

‖v‖∞ = max
0≤i<d

|vi|.

13

As mentioned earlier, for the purposes of comparing the relative sizes of distances, it is not necessary
to compute the final power of 1/k, and so ANN does not do so. With some abuse of notation, we
refer to the resulting quantity as the squared norm (even though squaring is only applicable to the
Euclidean norm).

In general, ANN assumes that the distance between points p and q is computed as the length
of the difference vector v = p − q, by the following formula:

‖v‖ = root(pow(v0) ⊕ pow(v1) ⊕ · · · ⊕ pow(vd−1)),

where root(), pow() are unary functions and ⊕ is any associative and commutative binary operator.
For example, in the default case of the Euclidean norm, pow(x) = x2, x⊕y = x+y and root(x) =

√
x.

It is assumed that pow() takes an argument of type ANNcoord and returns an ANNdist. The operator
⊕ works on objects of type ANNdist, and root() takes an argument of type ANNdist and returns an
object of type double. ANN does not compute the root() function.

There is one more wrinkle in modifying distance computations. To speed-up the internal dis-
tance computations in nearest neighbor searching in high dimensional space, ANN uses a technique
called incremental distance calculation [AM93a]. In incremental distance calculation, we are given
two vectors u and v, which differ only in one known coordinate, i, such that |ui| < |vi|. Further,
suppose we already know ‖u‖. We can compute ‖v‖ in any Minkowski norm with only an addi-
tional constant number of computations (independent of the dimension). For this, we need a binary
operator 	, which behaves like an inverse for the ⊕ operator. Then

‖v‖ = ‖u‖ ⊕ (pow(ui) 	 pow(vi)).

When ⊕ is addition, then we define 	 to be subtraction. In the case of the L∞ norm, where ⊕ is
max, there is no inverse for ⊕. But we can exploit the facts that for this metric, pow is absolute
value, and |ui| ≤ |vi| and define x 	 y = y, to achieve the desired result.

The main header file, include/ANN/ANN.h, contains a set of macros which control the computa-
tion of norms. They are ANN POW, ANN SUM (for ⊕), ANN ROOT, and ANN DIFF (for). The
following table shows the values of these functions and corresponding macros for the Minkowski
norms.

Function Macro L1 L2 Lp L∞

pow(x) ANN POW(x) |x| x2 |x|p |x|
x ⊕ y ANN SUM(x,y) x + y x + y x + y max(x, y)

root(x) ANN ROOT(x) x
√

x x1/p x
x 	 y ANN DIFF(x,y) y − x y − x y − x y

To change the norm, make the appropriate changes in the header file, and recompile the library.

2.2.2 More on Points, Cordinates, and Distances

One of the basic issues in providing a general purpose library for nearest neighbor searching is
that of providing a method for defining the types used for point coordinates and distances. One
way to do this would be through the use of templates in C++ (as is done in CGAL [Ove96]) or by
replicating all of the basic procedures (as is done in OpenGL [Boa93]). In ANN we took the simpler,
but less flexible approach of making this a configuration parameter. As a consequence, ANN can

14

support any combination of coordinates and distances, but only one for any given compilation of
the library.

There are two data types defined in the file include/ANN/ANN.h which are used to define these
types. These are the data type for point coordinates, ANNcoord, and the type for squared distances,
ANNdist. Their default values are:

typedef double ANNcoord; // coordinate data type

typedef double ANNdist; // distance data type

In general, ANNcoord may be set to any signed numeric type: char, short, int, long, float, double.
(The reason for requiring that coordinates be signed is that the program computes differences of
numbers of unknown relative magnitudes.)

The type ANNdist may be set to the desired type to hold squared distances. Observe that
ANNdist should generally be of an equal or stronger type than ANNcoord. That is, if ANNcoord is
set to int, then ANNdist should be either int, long, float, or double. ANN does not check for overflows
in squared distance computations.

ANN assumes that there are two constant values defined in include/ANN/ANN.h. These are
ANN DBL MAX, which stores the maximum possible double value and ANN DIST INF, which stores
the maximum possible (squared) distance value. On most systems, ANN DBL MAX is assigned to
DBL MAX, which is defined in one of the C++ standard include files 〈limits.h〉 or 〈float.h〉.2 The
value of ANN DIST INF depends on the definition of ANNdist. For example, if ANNdist is double,
then ANN DIST INF can be set to ANN DBL MAX. If it is long, then the maximum long value (e.g.,
LONG MAX) can be used.

The routine that dumps a tree needs to know roughly how many significant digits there are
in a ANNcoord, so it can output points to full precision. This is defined as ANNcoordPrec. Its
value needs only be set of ANNcoord is a floating-point type. All of these entities are defined in
include/ANN/ANN.h.

2.2.3 Self Matches

In some applications of nearest neighbor searching, the nearest neighbor of a point is not allowed
to be the point itself. That is, the nearest neighbor is defined to be the point of strictly positive
distance that is closest to the query point. This occurs, for example, when computing the nearest
neighbor from each point in a set to a different point in the same set. By setting the parameter
ANN ALLOW SELF MATCH in the file include/ANN/ANN.h to ANNfalse and then recompiling the
package, the nearest neighbor must be of strictly positive distance from the query point. By default
this parameter is set to ANNtrue, allowing self matches.

2.3 Modifying the Search Structure

One of the goals of ANN is to provide a testbed for various data structures for approximate and
exact nearest neighbor searching. ANN provides a number of search structures, all within a common
framework. For optimum performance and speed, it is sometimes advantageous to modify the search
structure, depending on the nature of the data point or query point distributions. Before describing
these changes, it is important to understand a bit of how the basic data structures operate.

2Some older systems do not have these include files. If so, the library should be compiled with the option

-DANN NO LIMITS H, and an appropriate substitute should be provided in include/ANN/ANN.h.

15

2.3.1 ANN Data Structures

The two main data structures that ANN supports are kd-trees [Ben90, FBF77] and box-decomposition

trees (or bd-trees for short) [AMN+98]. Let us discuss each in greater detail.
The kd-tree data structure is based on a recursive subdivision of space into disjoint hyperrect-

angular regions called cells. (See Fig. 2.) Each node of the tree is associated with such region B,
called a box, and is associated with a set of data points that lie within this box. The root node of
the tree is associated with a bounding box that contains all the data points. Consider an arbitrary
node in the tree. As long as the number of data points associated with this node is greater than
a small quantity, called the bucket size, the box is split into two boxes by an axis-orthogonal hy-
perplane that intersects this box. There are a number of different splitting rules, which determine
how this hyperplane is selected. We will discuss these in detail later.

u

10
p

p
1

p

9
p

3
p

2
p

8
p

1
p

10
p5

p4
p

6
p

7 p

9
p

8
p

7
p

6
p

5
p

4
p

3
p

2

Figure 2: A kd-tree of bucket-size one and the corresponding spatial decomposition.

These two boxes are the cells associated with the two children of this node. The data points
lying in the original box are split between these two children, depending on which side of the
splitting hyperplane they lie. Points lying on the hyperplane itself may be associated with either
child (according to the dictates of the splitting rule). When the number of points that are associated
with the current box falls below the bucket size, then the resulting node is declared a leaf node,
and these points are stored with the node.

The problem with the splitting operation used in kd-trees is that, when points are highly
clustered, it may either take many splits to partition these points or the splits may result is highly
elongated boxes (which can be problematic when searching is performed). ANN supports the bd-
tree data structure to provide greater robustness for highly clustered data sets. The bd-tree is a
variant of the data structure described in [AMN+98]. It differs from the kd-tree mainly in that, in
addition to the splitting operation, there is a more general decomposition operation called shrinking.
As above, consider a node whose associate box B contains more points than the bucket size. A
shrinking rule is then invoked. This rule may opt to simply defer and perform a split according
to the prevailing splitting rule. Otherwise, it selects an axis-aligned box B ′ lying within B. The
points lying inside B′ are associated with one child and the points lying outside B ′ are associated
with the other child. As before, points lying on the boundary of B ′ may be associated with either
child.

Thus, in addition to the data points themselves, a kd-tree is specified by two additional pa-
rameters, the bucket size and a splitting rule. A box-decomposition tree is defined by these two
parameters as well, and an additional parameter, the shrinking rule. ANN provides a number of
different splitting rules and shrinking rules. It also provides reasonable default values for these
parameters.

The (almost) complete prototypes for the constructors for kd-trees and bd-trees are given below.

16

Refer back to Section 2.1.2 for definitions of the data point array pa, number of points n, and
dimension d. The types ANNsplitRule and ANNshrinkRule are splitting rules and shrinking rules.
They are described in later sections.

enum ANNsplitRule { // splitting rules for kd-trees

ANN_KD_STD, // standard kd-splitting rule

ANN_KD_MIDPT, // midpoint split

ANN_KD_FAIR, // fair-split

ANN_KD_SL_MIDPT, // sliding midpoint split

ANN_KD_SL_FAIR, // sliding fair-split

ANN_KD_SUGGEST}; // the authors’ suggestion for best

enum ANNshrinkRule { // shrinking rules for bd-trees

ANN_BD_NONE, // no shrinking at all (just kd-tree)

ANN_BD_SIMPLE, // simple splitting

ANN_BD_CENTROID, // centroid splitting

ANN_BD_SUGGEST}; // the authors’ suggested choice

ANNkd_tree(// build a kd-tree from a point array

ANNpointArray pa, // point array

int n, // number of points

int d, // dimension

int bs = 1, // bucket size

ANNsplitRule split = ANN_KD_SUGGEST); // splitting rule

ANNbd_tree(// build a bd-tree from a point array

ANNpointArray pa, // point array

int n, // number of points

int d, // dimension

int bs = 1, // bucket size

ANNsplitRule split = ANN_KD_SUGGEST, // splitting rule

ANNshrinkRule shrink = ANN_BD_SUGGEST); // shrinking rule

2.3.2 Internal Tree Structure

Before discussing the various splitting and shrinking rules, we digress to discuss the internal struc-
ture of these two trees. This material is not needed for using the data structures, but it provides
some background for understanding how the search algorithms work.

The root structure for both kd- and bd-trees contains the same information. It contains global
information such as the number of points n, the dimension of the space d, and the bucket size, b.
It does not store the points, but rather maintains a pointer to the array pa of data points given
in the constructor. It allocates an n-element array pidx of point indices. It also stores a bounding
hyperrectangle that contains all the data points, and a pointer to the root of the kd- or bd-tree.

A leaf node in either type of tree stores the number of points that are associated with this node
(which ranges from 0 up to the bucket size) and an array of point indices. This point index array
is actually a subarray of pidx.

A splitting node in a kd-tree contains the following information. First, it stores the integer
cutting dimension (from 0 to d− 1) indicating the coordinate axis that is orthogonal to the cutting
hyperplane. Second it stores the cutting value where this plane intersects this axis. It also contains
the two pointers to the left and right children (containing points lying to the low and high side of
the cutting plane, respectively). The search algorithm uses a technique called incremental distance

17

computation [AM93a] for speeding up the computation of distances between the query point and
the associated cells of nodes of the tree. In order to implement incremental distance computation,
it also stores two associated pieces of information with the cell. Consider the two hyperplanes
bounding the cell that are parallel to the cutting plane. It stores the values at which these two
hyperplanes intersect the cutting dimension’s axis.

Leaf and splitting nodes in a bd-tree contain exactly the same information as in the kd-tree.
The only difference is that the tree may also contain shrinking nodes. A shrinking node consists
of a set of at most 2d orthogonal halfspaces. Each orthogonal halfspace is represented by storing
a cutting dimension, a cutting value (which together define an orthogonal hyperplane), and an
integer −1 or +1, which indicates to which side (negative or positive, respectively) of this plane
the halfspace lies. The node contains the number of orthogonal halfspaces bounding the inner box,
and an array of these halfspaces. (The reason for not storing all 2d bounding halfspaces is that in
high dimensional applications, the shrinking node may only involve a relatively small number of
halfspaces.)

2.3.3 Splitting Rules for kd-trees

This section describes the various splitting rules for kd-trees that are supported by ANN. Let S
denote the current subset of data points to be stored in the tree, let n denote the number of points
in S, let C denote the current cell. Let R(C) denote the bounding rectangle for the current cell.
The points of S are all contained in R(C). Let R(S) denote the bounding rectangle for S. This
rectangle is contained within (and may be equal to) R(C). Initially, S is the set of all data points,
and C is the root of the kd-tree, and R(C) is the enclosing bounding rectangle for S. Define the
aspect ratio of a rectangle to be the ratio between its longest and shortest side lengths. Given
a dimension, define the point spread of S along this dimension to be the difference between the
largest and smallest coordinate for this dimension. This is equivalent to the longest side of R(S).

Given a set of numbers A, a median partition of the n numbers is a partition of A into two
subsets, one with bn/2c elements whose values are no greater than the median of A, and the other
with dn/2e elements whose values are no less than the median of A.

ANN KD STD: This is called the standard kd-tree splitting rule. The splitting dimension is the
dimension of the maximum spread of S. The splitting point is the median of the coordinates
of S along this dimension. A median partition of the points S is then performed. This rule
guarantees that the final tree has height dlog2 ne, and size O(n), but the resulting cells may
have arbitrarily high aspect ratio.

ANN KD MIDPT: This is a simple splitting rule, which guarantees that cells have bounded aspect
ratio, and is called the midpoint splitting rule. It simply cuts the current cell through its
midpoint orthogonal to its longest side. It can be seen as a binary variant of a quad tree,
since with every d levels of the tree, a hypercube of side length x is partitioned into equal
hypercubes of side length x/2 each. If there are ties, it selects the dimension with the
maximum point spread.

This rule can produce trivial splits, meaning that all of the points of S lie to one side of the
splitting plane. As a result, the depth of and size of the resulting tree can be arbitrarily large,
and both may even exceed n if the points are highly clustered.

ANN KD SL MIDPT: This is a simple modification of the midpoint splitting rule, called the sliding-

midpoint rule. It first attempts to perform a midpoint split, by the same method described

18

above. If points of S lie on both sides of the splitting plane then the algorithm acts exactly
as it would for the midpoint split.

However, if a trivial split were to result, then it attempts to avoid this by “sliding” the
splitting plane toward the points until it encounters the first data point. More formally, if the
split is performed orthogonal to the ith coordinate, and all the points of S have i-coordinates
that are larger than that of the splitting plane, then the splitting plane is translated so that
its ith coordinate equals the minimum ith coordinate among all the points of S. Let this
point be p1. Then the points are partitioned with p1 in one part of the partition, and all the
other points of S in the other part. A symmetrical rule is applied if the points all have ith
coordinates smaller than the splitting plane.

This rule cannot result in any trivial splits, implying that the tree has maximum depth n and
size O(n). It is possible to generate a cell C of very high aspect ratio, but it can be shown
that if it does, then C is necessarily adjacent to a sibling cell C ′ that is fat along the same
dimension that C is skinny. It turns out that cells of high aspect ratio are not problematic
for nearest neighbor searching if this occurs.

ANN KD FAIR: This is a compromise between the standard kd-tree splitting rule (which always
splits data points at their median) and the midpoint splitting rule (which always splits a box
through its center. It is called the fair-split rule. The goal of this rule is to achieve as nicely
balanced a partition as possible, provided that the aspect ratio bound is never violated.

A constant FS ASPECT RATIO = 3 is defined in the source file src/kd split.cpp. Given a cell,
it first determines the sides of this cell that can be split in some way so that the ratio of the
longest to shortest side does not exceed FS ASPECT RATIO are identified. Among these sides,
it selects the one in which the points have the largest spread. It then splits the points in the
most even manner possible, subject to maintaining the bound on the ratio of the resulting
cells. To determine that the aspect ratio will be preserved, we determine the longest side
(other than this side), and determine how narrowly we can cut this side, without causing the
aspect ratio bound to be exceeded.

This procedure is more robust than either the kd-tree splitting rule or the pure midpoint
splitting rule when data points are highly clustered. However, like the midpoint splitting
rule, if points are highly clustered, it may generate a large number of trivial splits, and may
generate trees whose size exceeds O(n).

ANN KD SL FAIR: This rule is called sliding fair-split. It is a splitting rule that is designed to
combine the strengths of both fair-split with sliding midpoint split. Sliding fair-split is based
on the theory that there are two types of splits that are good: balanced splits that produce
fat boxes, and unbalanced splits provided the cell with fewer points is fat.

This splitting rule operates by first computing the longest side of the current bounding box.
Then it asks which sides could be split and still satisfy the aspect ratio bound with respect
to this side. Among these, it selects the side with the largest spread (just as fair-split would).
It then considers the most extreme cuts that would be allowed by the aspect ratio bound.
This is done by dividing the longest side of the box by the aspect ratio bound. If the median
cut lies between these extreme cuts, then we use the median cut. If not, then consider the
extreme cut that is closer to the median. If all the points lie to one side of this cut, then
we slide the cut until it hits the first point. This may violate the aspect ratio bound, but
will never generate empty cells. However the sibling of every such skinny cell is fat, as with
sliding midpoint split.

19

ANN KD SUGGEST: This is the default splitting rule. It is set to the splitting rule which, in the au-
thors’ opinion, performs best with typical data sets. It is currently set to ANN KD SL MIDPT,
the sliding midpoint rule.

2.3.4 Shrinking Rules for bd-trees

This section describes the various shrinking rules for bd-trees that are supported by ANN. Let S,
C, and n, be the same as defined in the previous section and let d denote the dimension

ANN first attempts to perform shrinking. Each of shrinking rules have the option of electing to
not shrink. If this is the case, then processing is passed to the current splitting rule instead.

ANN BD NONE: When this rule is selected, no shrinking is performed at all, only splitting. A
bd-tree generated with this shrinking rule is identical to a kd-tree.

ANN BD SIMPLE: This is called a simple shrink. It depends on two constants: BD GAP THRESH
whose value is 0.5, and BD CT THRESH whose value is 2. It first computes the tight bounding
box of the points, and computes the 2d gaps, that is, the distances between each side of the
tight enclosing rectangle for the data points R(S) and the corresponding side of the cell’s
bounding rectangle R(C). If at least BD CT THRESH of the gaps are larger than the length
the longest side of R(S) times BD GAP THRESH, then it shrinks all sides whose gaps are at
least this large. After the shrink has been performed, all of the points of S lie in the inner
box of the shrink, and the outer box contains no points. If none of the gaps is large enough,
then no shrinking is performed, and splitting is performed instead.

ANN BD CENTROID: This rule is called a centroid shrink. Its operation depends on two constants:
BD MAX SPLIT FAC and BD FRACTION, both of whose value are 0.5. It repeatedly applies
the current splitting rule (without actually generating new cells in the tree). In each case
we see which half of the partition contains the larger number of points, and we repeat the
splitting on this part. This is repeated until the number of points falls below a fraction of
BD FRACTION of the original size of S. If it takes more than dim*BD MAX SPLIT FAC splits
for this to happen, then we shrink to the final inner box. All the other points of S are placed
in the outer box. Otherwise, shrinking is not performed, and splitting is performed instead.

ANN BD SUGGEST: This is the default shrinking rule. It is set to the shrinking rule which, in the
authors’ opinion, performs best in most circumstances. It is currently set to ANN BD SIMPLE.

2.4 Search Algorithms

ANN supports two different methods for searching both kd- and bd-trees. The first is called standard

search. It is the simpler of the two methods, and visits cells in order based on the hierarchical
structure of the search tree. The second method, called priority search, visits cells in increasing
order of distance from the query point, and hence, should converge more rapidly on the true
nearest neighbor. However, priority search requires the use of a heap, and so has a somewhat
higher overhead. When the error bound is small, standard search seems to be slightly faster. When
larger error bounds are used, or when early termination is used (described in Section 2.4.3 below)
then priority search seems to be superior.

20

2.4.1 Standard Search

Standard search is an adaptation of the search algorithm described by Friedman, Bentley, and Finkel
[FBF77], but for approximate nearest neighbor searching. The algorithm operates recursively.
When first encountering a node of the kd-tree the algorithm first visits the child that is closest to
the query point. On return, if the box containing the other child lies within 1/(1 + ε) times the
distance to the closest point seen so far, then the other child is visited recursively. The distance
between a box and the query point is computed exactly (not approximated), using incremental
distance updates, as described by Arya and Mount [AM93a].

The search is similar for bd-trees. For shrinking nodes we compute the distances to the inner
box and the outer box and recurse on the closer. In case of a tie, we favor the inner box.

The prototype is given below. The argument q is the query point, k is the number of nearest
neighbors, to return nn idx is an array of at least k point indices, and dists is an array of at least
k elements of type ANNdist, and eps is the (optional) error bound in nearest neighbor searching.
If eps is omitted or zero, then the k nearest neighbors are computed exactly. The k (approximate)
nearest neighbor squared distances are stored in the elements of dists, and the indices of the nearest
neighbors are returned in the elements of nn idx . An error results if k exceeds the number of data
points. The next two sections describe the search algorithms in greater detail.

virtual void annkSearch(// standard search

ANNpoint q, // query point

int k, // number of near neighbors to return

ANNidxArray nn_idx, // nearest neighbor array (returned)

ANNdistArray dists, // dists to near neighbors (returned)

double eps=0.0); // error bound

2.4.2 Priority Search

Priority search is described by Arya and Mount [AM93b]. The cell of the kd-tree containing the
query point is located, and cells are visited in increasing order of distance from the query point.
This is done as follows. Whenever we arrive at a nonleaf node, we compute the distances from the
query point to the cells of the two children. We enqueue the further child on a priority queue, sorted
by distance, and then visit the closer child recursively. On arriving at a leaf node, we compute
the distances to the points stored in this node, and continue by dequeing the next item from the
priority queue. The search stops either when the priority queue is empty (meaning that the entire
tree has been searched) or when the distance to the nearest cell on the priority queue exceeds the
distance to the nearest point seen by a factor of more than 1/(1 + ε).

The search is similar for bd-trees. For shrinking nodes we compute the distances to the inner
box and to the outer box. We visit the closer one and enqueue the further, breaking ties in favor of
the inner box. (Note that this differs slightly from the description in [AMN+98]. There the cell of
the outer child is the set theoretic difference between the inner box and the outer box, implying a
more complex distance computation.) The prototype for both trees is essentially the same as that
of the standard search, described above.

A priority-search variant of annkSearch() is provided, and the prototype is given below. There
is no priority-search variant of the fixed-radius search, annkFRSearch().

virtual void annkPriSearch(// priority search

ANNpoint q, // query point

int k, // number of near neighbors to return

ANNidxArray nn_idx, // nearest neighbor array (returned)

21

ANNdistArray dists, // dists to near neighbors (returned)

double eps=0.0); // error bound

2.4.3 Early Termination Option

In situations where response time is critical, the search algorithm (either standard or priority search)
can be forced to terminate prior to the normal termination conditions described earlier. This is
done by invoking the function annMaxPtsVisit(). The single integer argument is the maximum
number of points that the search algorithm will visit before terminating. The algorithm maintains
a count of the number of points visited, and tests this quantity before visiting each leaf node. Since
the test is only made prior to visiting each leaf, it may visit some additional points depending on
the bucket size.

The bound remains in effect until it is changed by a subsequent call to this function. To disable
early termination, call the function with the argument 0. This is not a member function, but a
free-standing procedure, which sets a global variable. Thus, if there are two search structures to
which queries are being performed, and different maximum point values are desired for each, then
it would be necessary to call this function prior to switching between the structures.

void annMaxPtsVisit(

int maxPts);

If this bound is set, the neraest neighbor search procedures may terminate before all of the k
nearest neighbors have been encountered. Therefore, this function should be invoked with care.

2.5 Search Tree Utility Functions

ANN provides a number of utility member functions for gathering statistics on kd-trees and bd-
trees, printing the tree in a format suitable for reading, and dumping the tree for the purpose of
reading it by another program. Since they are member functions, they are invoked in essentially
the same way as is the annkSearch procedure.

2.5.1 Printing the Search Structure

The procedure Print is used to print the contents of a kd- or bd-tree in a format that is suitable
for reading. This is provided primarily for debugging purposes. This procedure prints the nodes
of the tree according to a right-to-left inorder traversal. That is, for an internal node it first prints
the high (or outer) child, then the node itself, then the low (or inner) child. (This is done this way
because by tilting the output clockwise, the traversal appears to be left to right.)

For each leaf, it prints the number of points associated with the leaf, and for each point it
outputs the index of the point. For each splitting node, it outputs the cutting dimension (cd), the
cutting value (cv), the low bound (lbnd), and the high bound (hbnd) for the node. For shrinking
nodes it prints the set of bounding halfspaces, two per line. For each bounding halfspace it prints
the cutting dimension, the cutting value, and indicates whether the inner box lies on the greater
or lesser side of the cutting value.

The level of the node in the tree is indicated by its indentation in the output. If the boolean
with pts argument is true, then the data coordinates points are printed before the tree, otherwise
they are not printed. The other argument is the output stream to which the output is sent.

22

void Print(// print the tree (for debugging)

ANNbool with_pts, // print points as well?

ostream& out); // output stream

2.5.2 Saving and Restoring the Search Structure on a File

The member function Dump() copies a kd- or bd-tree and the associated points to a stream. (It
is currently not provided from the brute-force data structure.) The tree is printed in preorder,
first printing each node, then the low (or inner) child, followed by the high (or outer child). This
output format is not intended for human reading, but instead for saving the data structure for the
purposes of loading it later, or for consumption by another program (such as ann2fig), for analysis
of the tree.

As with Print, the first argument indicates whether the points are to be printed, and the second
argument is the output stream to which the output is sent.

void Dump(// dump entire tree

ANNbool with_pts, // print points as well?

ostream& out); // output stream

To restore a saved structure, there is a constructor, which is given an input stream, which is
assumed to have been created through the Dump() function, and creates a search structure from
the contents of this file. It is assumed that the file was saved with the points printed.

ANNkd_tree(// build structure from a dump file

istream& in); // input stream for dump file

For example, to save the current structure the tree to ostream foo and then load a new structure
from istream bar the following could be used.

ANNkd_tree* the_tree = new ANNkd_tree(...);

the_tree->Dump(ANNtrue, foo); // save the current tree contents

delete the_tree; // deallocate (to prevent memory leaks)

// ... (sometime later)

the_tree = new ANNkd_tree(bar); // restore a copy of the old tree

The dump output format consists of the following elements. All entries on a line are separated
by white space.

Header: A line containing #ANN followed the version number for ANN.

Points: If the parameter with pts is true, then this section is printed. It starts with a line beginning
with the word points, followed by the dimension of the space d, and the number of points
n. This is then followed by n lines, each containing the integer index of the point, followed
by the d coordinates of the point. One issue for floating point data is the desired output
precision. This is stored in the variable ANNcoordPrec in the file include/ANN/ANN.h.

Tree Structure: The tree structure describes the tree contents. It begins with a single header
entry followed by a series of entries, one for each node of the tree, given according to a preorder
traversal of the tree, as described above. There is no distinction made between kd-trees and
bd-trees, except that kd-trees have no shrinking nodes.

23

Header: This starts with a line containing the word tree, followed by the dimension d, the
number of points n, and the bucket size b. This is followed by 2 lines, giving the lower
endpoint and upper endpoint of the bounding box of the tree’s root cell.

Leaf node: The starts with the word leaf followed by the number of points m stored in this
leaf (from 0 to b), followed by the m integer indices of these points.

Splitting node: Starts with the word split followed by the cutting dimension, cutting value,
lower bound and upper bound for the node.

Shrinking node: Starts with the word shrink followed by the number of bounding sides m,
followed by m lines, each containing a cutting dimension, cutting value, and the side
indicator (1 or −1), for this bounding side.

2.5.3 Gathering Statistics on Tree Structure

The procedure getStats computes statistics on the shape and properties of the search tree. These
are returned in the structure ANNkdStats. This is something of a misnomer, because the stats
apply to both kd-trees and bd-trees. This structure is returned (as the argument) to the following
procedure.

void getStats(// compute tree statistics

ANNkdStats& st); // the statistics (returned)

The statistics structure contains the following public members, which are all set by the call to
getStats. The total number of leaves is stored in n lf. In order to save space, ANN distinguishes
between leaves that do and do not contain points. Leaves that contain no points are called trivial

leaves, and are counted in n tl. (Because some splitting rules may generate a large number of trivial
leaves, ANN saves space by storing just one canonical trivial leaf cell, and each trivial leaf generated
by the algorithm is implemented by a single pointer to this canonical cell.)

Internal nodes are of two types, splitting nodes and shrinking nodes. The former is counted in
n spl and the latter in n shr. Since kd-trees do not perform shrinking, the value of n shr is nonzero
only for bd-trees. The maximum depth of the tree is stored in depth. The aspect ratio of a leaf cell
is the ratio between the lengths of its longest and shortest sides. There is theoretical evidence that
nearest neighbor searching is most efficient when the aspect ratio is relatively small (say, less than
20). The average aspect ratio of all the leaf cells is stored in avg ar.

class ANNkdStats { // stats on kd-tree

public:

int dim; // dimension of space

int n_pts; // number of points

int bkt_size; // bucket size

int n_lf; // number of leaves

int n_tl; // number of trivial leaves

int n_spl; // number of splitting nodes

int n_shr; // number of shrinking nodes (bd-trees only)

int depth; // depth of tree

float avg_ar; // average leaf aspect ratio

}

24

2.6 Compile-Time Options

ANN contains a number of options that are activated when the program is compiled. These are
activated or deactivated by adding these parameters to the “CFLAGS” variable in the file Make-
config, before compiling the library. For example:

"CFLAGS = -O3 -Wall -DANN_PERF"

Some of these options are described below (see Make-config for others). By default, none of these
are active, except the “-O” for optimization.

-O: (or “-O3”) Produce code optimized for execution speed.

-DANN PERF: This causes code to be compiled that performs additional performance measure-
ments on the efficiency of the structure (e.g., the average CPU time per query). Setting this
option can slow execution by around 10%.

-DANN NO LIMITS H: Use this if your system does not have either of the include files 〈limits.h〉 or
〈float.h〉, which are needed for the definition of system-dependent quantities like DBL MAX.
(Also see include/ANN/ANN.h for other changes that may be needed.)

-DANN NO RANDOM: Use this if your system does not support the built-in pseudo-random num-
ber generators srandom() or random(). Pseudo-random number generation is used in the
utility program test/ann test. (It is not required if you just want to compile the ANN li-
brary.) Virtually all C++ systems provide a simple pseudo-random number in the form of
two build-in functions srand() and rand(). However, these functions are inferior to the less
widely available functions srandom() and random(). By setting this option, the program will
use functions srand() and rand() instead. This is needed on most Microsoft Visual C++
systems.

25

3 Utility Programs

As mentioned earlier, ANN is not just a library for nearest neighbor searching, but it is also provides
a testbed for nearest neighbor data structures and algorithms. There are two utility programs
provided with ANN for the purpose of evaluating and visualizing search structures (under various
splitting and shrinking rules) for a number of different data distributions. These are ann test and
ann2fig, described in the following sections. If you are just interested in the ANN library, you do
not need to compile these two programs.

3.1 ann test: A Test and Evaluation Program

The program ann test provides a simple script language for setting up experiments involving ANN.
It allows the user to generate data and query sets of various sizes, dimensions, and distributions, to
build kd- and bd-trees of various types, and then run queries and outputting various performance
statistics.

The program reads commands from the standard input and writes its results to the standard
output. The input consists of a sequence of directives, each consisting of a directive name, followed
by list of 0 or more arguments (depending on the directive). Arguments and directives are separated
by white space (blank, tab, and newline). String arguments are not quoted, and consist of a sequence
of nonwhite characters. The character “#” denotes a comment. The following characters up to
the end of line are ignored. Comments may only be inserted between directives (not within the
argument list of a directive).

Directives are of two general types: operations, which cause some action to be performed and
parameter settings, which set the values of various parameters that affect later operations. As each
line of the input file is read, the appropriate operation is performed or the appropriate parameter
value is set. For example, to build a kd-tree with a certain splitting rule, first set the parameter
that controls the splitting rule, and then invoke the operation for building the tree.

A number of the operations (particularly those involving data generation) involve generation of
pseudo-random numbers. The pseudo-random number generator can be controlled by an integer
seed parameter. Once the seed is set, the subsequent sequence of pseudo-random numbers is
completely determined. For example, to generate identical but pseudo-random data point sets and
query point sets, first set the seed to some desired value, issue the operation to generate the data
points, then reset the seed to this same value, and then issue the operation to generate the query
points.

The following section lists the basic operations (directives that perform actions), and the remain-
ing sections describe various parameters that affect how these operations are performed. Arguments
and their type are indicated with angled brackets. For example 〈string〉 means that the argument
is a character string. String and filename arguments consist of a sequence of characters with no
embedded whitespaces (blank, tab, or newline). No quoting is needed (nor is it allowed). Currently
there is no facility for placing comments within the script file.

3.1.1 Operations

output label 〈string〉: Prints the string to the output file.

gen data pts: Generates a set of pseudo-random data points. The number of points is determined
by the data size parameter, the number of coordinates is determined by the dim parameter,
and the point distribution is determined by the distribution parameter. Data points generated

26

by an earlier call to this operation or the read data pts operation are discarded. Relevant
parameters: data size, dim, std dev, corr coef, colors, seed, and distribution.

gen query pts: Same as gen data pts but for the current query point set. Relevant parameters:
data size, dim, std dev, corr coef, colors, seed, and distribution.

read data pts 〈file〉: Reads a set of data points from the given file. Each point consists of a sequence
of dim numbers (of type ANNcoord) separated by whitespace (blank, newline, or tab). It is
assumed that the file contains no more points than given by the data size parameter, otherwise
only this many points of the data set are input. Relevant parameters: data size, dim.

read query pts 〈file〉: Same as read data pts but for the current query point set. The parameter
query size indicates the maximum number of points. Relevant parameters: query size, dim.

build ann: Builds either a kd-tree or bd-tree for the current data point set according to current
splitting rule (see the split rule parameter) and shrinking rule (see shrink rule). If the shrinking
rule is “none” then a kd-tree results, and otherwise a bd-tree results. Relevant parameters:
split rule, shrink rule.

run queries 〈string〉: Apply nearest neighbor searching to the current query point set using the
current approximate nearest neighbor structure (resulting from build ann, for the current
number of nearest neighbors (see near neigh), and the current error bound (see epsilon), and
with the search strategy specified in the argument. Possible strategies are:

standard: Standard search. (See Section 2.4.1.)

priority: Priority search. (See Section 2.4.2.)

Relevant parameters: epsilon, near neigh, max pts visit.

dump 〈file〉: Dump the current search structure to the specified file. See Section 2.5.2. If the dump
file is to be read by the ann2fig program, then the file name should end with the suffix “.dmp”.

load 〈file〉: Loads a tree from a data file that was created by the dump operation. Any existing tree
structure and data point storage will be deallocated.

3.1.2 Options Affecting Tree Structure:

split rule 〈string〉: Type of splitting rule to use in building a kd-tree or bd-tree. Choices are as
follows. See Section 2.3.3 for further information.

standard: Perform standard optimized kd-tree splitting.

midpt: Perform midpoint splitting.

fair: Perform fair-split splitting.

sl midpt: Perform sliding midpoint splitting.

sl fair: Perform sliding fair-split splitting.

suggest: Perform the authors’ suggested choice for the best splitting rule. (Currently sl midpt.)

Default: suggest.

27

shrink rule 〈string〉: Specifies the type of shrinking rule to use in building a bd-tree data structure.
If none is specified, then no shrinking is performed and the result is a kd-tree. Choices are as
follows. See Section 2.3.4 for further information.

none: Perform no shrinking.

simple: Perform simple shrinking.

centroid: Perform centroid shrinking.

suggest: Perform the authors’ suggested choice for best. (Currently none.)

Default: none.

bucket size 〈int〉: Bucket size, that is, the maximum number of points stored in each leaf node of
the search tree. Bucket sizes larger than 1 are recommended for the “midpt” splitting rule
when the dimension is 3 or higher. It is also recommended when performance evaluation
shows that there are a large number of trivial leaf cells. Default: 1.

3.1.3 Options Affecting Data and Query Point Generation

The test program generates points according to the following probability distributions.

uniform: Each coordinate is chosen uniformly from the interval [−1, 1].

gauss: Each coordinate is chosen from the Gaussian distribution with the current standard deviation
(see std dev) and mean 0.

clus gauss: Some number of cluster centers (set by the parameter colors below) are chosen from the
above uniform distribution. Then each point is generated by selecting a random cluster center,
and generating a point with a Gaussian distribution with the current standard deviation (see
std dev) centered about this cluster center.

Note that once the cluster centers have been set, they are not changed for the remainder of
the execution of the program. This is done so that subsequent calls to generate points from
a clustered distribution will be generated under the same distribution.

laplace: Each coordinate is chosen from the Laplacian distribution with zero mean and the standard
deviation one.

Correlated distributions: The following two distributions have been chosen to model data from
applications in speech processing. These two point distributions were formed by grouping the
output of autoregressive sources into vectors of length d. It uses the following recurrence to
generate successive outputs:

Xi = ρXi−1 + Wi,

where Wn is a sequence of zero-mean, independent, identically distributed random variables.
The recurrence depends on three parameters, the choice of X1, the choice of Wi, and the
value of the correlation coefficient, ρ. For both of the distributions below, ρ, is set to the
current value of the parameter corr coef. The values of X1 and Wi are defined below. The first
component X1 is selected from the corresponding uncorrelated distribution (either Gaussian
or Laplacian) and the remaining components are generated by the above equation. Wn is
chosen by marginal density of Xn is normal with the current standard deviation.

28

co gauss: Both X1 and Wi are chosen from the Gaussian distribution with the current stan-
dard deviation (see std dev) and mean 0.

co laplace: Both X1 and Wi are chosen from the Laplacian distribution zero mean and the
standard deviation one.

clus orth flats: This distribution consists of a set points clustered among a collection of lower di-
mensional flats (hyperplanes) within the hypercube [−1, 1]d. A set of color orthogonal flats
are generated each of whose dimension is a random integer between 1 and max clus dim.
The points are evenly distributed among the clusters. For each cluster, we generate points
uniformly distributed along the flat within the hypercube, and with a Gaussian error with
standard deviation std dev added. (See parameters color, std dev, and max clus dim below.)

clus ellipsoids: This distribution consists of a set points clustered among a collection of lower dimen-
sional ellipsoids. A set of color clusters are generated each of which is centered about a point
chosen uniformly from [−1, 1]d. Each cluster has a dimension, which is selected randomly
from 1 to max clus dim. For each of the unselected coordinates, the coordinate is centered
around the cluster center with a Gaussian error with a standard deviation std dev (which
is presumably small). Otherwise, for the selected coordinates, a standard deviation for this
coordinate and cluster is generated uniformly in the range [std dev lo, std dev hi]. The points
are evenly distributed among the clusters. (See parameters color, std dev, std dev, std dev,
and max clus dim below.)

planted: In high dimensional spaces, interpoint distances tend to be highly clustered around the
mean value. Approximate nearest neighbor searching makes little sense in this context, unless
it is the case that each query point is significantly closer to its nearest neighbor than to other
points. Thus, the query points should be planted close to the data points. Given a source
data set, this procedure generates a set of query points having this property.

A source data array and a standard deviation are given. A random point is generated as
follows. We select a random point from the source data set, and we generate a Gaussian point
centered about this random point and perturbed by a normal distributed random variable
with mean zero and the given standard deviation along each coordinate. (Note that this
essentially the same a clustered Gaussian distribution, but where the cluster centers are given
by the source data set.)

Here are the parameters that affect point generation and representation.

dim 〈int〉: The dimension of the space. (Warning: Once set, if this value is changed then new data
points and query points should be generated.) Default: 2.

seed 〈int〉: Set the seed for future pseudo-random number generation. Default: 0.

data size 〈int〉: The number of data points. When reading data points from a file, this indicates
the maximum number of points for purposes of storage allocation. Default: 100.

query size 〈int〉: The number of query points. When reading query data points from a file, this
indicates the maximum number of points for purposes of storage allocation. Default: 100.

std dev 〈float〉: The standard deviation (used in gauss, clus gauss, and clus orth flats distributions).
For the clus ellipsoids distribution it is the small distribution for the unselected dimensions.
Default: 1.

29

std dev lo 〈float〉: (and std dev hi) are the standard deviations for the selected dimensions in the
clus ellipsoids distribution. Default: 1.

corr coef 〈float〉: The correlation coefficient (used in co gauss and co lapace distributions). Default:
0.05.

colors 〈int〉: The number of color classes (clusters) (used in the clus gauss and clus orth flats distri-
butions). Default: 5.

max clus dim 〈int〉: Maximum number of dimensions in each flat of the clus orth flats and clus ellipsoids
distributions. Default: 1.

distribution 〈string〉: The type of point distribution. These can be selected from the list given above.
Default: uniform.

3.1.4 Options Affecting Nearest Neighbor Searching

epsilon 〈float〉: The relative error bound for approximate nearest neighbor searching. Default: 0.

near neigh 〈int〉: The number of nearest neighbors to report. This must not exceed the number of
data points, or an error will result. Default: 1.

max pts visit 〈int〉: The maximum number of points to visit before terminating. If set to zero, then
the search runs until its natural termination condition is satisfied. Default: 0 (use the natural
termination condition).

radius bound 〈float〉: Sets an upper bound on the nearest neighbor search radius. If the bound
is positive, then fixed-radius nearest neighbor searching is performed, and the count of the
number of points in the range is returned. If the bound is zero, then standard search is used.
This can only be used with standard, not priority, search. Default = 0 (uses standard search.)

3.1.5 Options Affecting the Amount of Output

The program has a various levels of output “verbosity.” At the lowest level (silent) no output is
generated, and at the highest level (show struct) the contents of the tree, all results, and statistics
are printed. The output levels grow monotonically, so that each subsequent level prints all the
information from the previous levels.

stats 〈string〉: The parameter value may be any of the following.

silent: No output is generated.

exec time: Prints the execution time in CPU seconds for queries.

prep stats: Prints preprocessing statistics for the tree structure and time to construct are
printed after the build ann operation has been performed. This includes the CPU time
to build the structure, the depth of the search tree and the number of various types of
nodes in the tree.

query stats: Prints statistics about the query processing after the run queries operation has
been performed. These are described in greater detail below.

query res: Prints the results of the queries, that is, the indices of the k nearest neighbors as
reported by the algorithm after run queries has been performed.

30

show pts: This causes data points (or query points) to be printed after operations like gen data pts
and read data pts have been performed.

show struct: This causes the contents of the search tree to be printed after the operation
build ann has been performed.

3.1.6 Options Affecting the Validation

One of the interesting aspects of approximate nearest neighbor searching is that the program
typically produces average approximation errors that are much smaller (often by a factor of 10)
than allowed by the error parameter eps.

This program can be used to measure the average error over a set of queries. This is done
by first running the queries using the approximation algorithm and saving the results, and then
running the queries using exact nearest neighbor searching (which is done by the brute-force data
structure). The average error for a single reported nearest neighbor at distance x, is computed by
first finding the distance x∗ to the corresponding true nearest neighbor. If x = x∗ = 0 then the
error is defined to be 0, and otherwise it is (x − x∗)/x∗. These errors are computed for all query
points and over all k nearest neighbors for each query point.

As part of the validation process, the program checks that no error exceeds eps, and issues an
error message if this is violated.

The second type of error is called the rank error. Define the rank of the data point as the
number of data points that are at least as close as this point is to the query point. Thus the
nearest neighbor has rank 1 (assuming no other points are of equal distance). To compute the rank
error of each result, we compute its rank r among the true nearest neighbors that were computed.
(If it is further from all the true nearest, then r is true nn + 1.) If this point is reported as the j-th
nearest neighbor (where the closest point is j = 1) then the rank error for this point is max(0, j−r).
The rank error is computed for all query points and all the k nearest neighbors for each query point.

validate 〈string〉: This enables validation. This is used for debugging and error analysis (described
further below). When validation is enabled, some number of exact nearest neighbors (as
indicated by the parameter true near neigh) are computed by a simple brute force algorithm,
and average errors and rank errors are computed.

Because the brute-force algorithm is used, the validation process can take a very long time,
especially for large data sets in high dimensional spaces. Valid arguments are: either on or
off. Default: off.

true near neigh 〈int〉: This parameter indicates the number of true nearest neighbors to compute
for the validation process. This information is used in computing rank errors and average
errors. Its value should be at least as high as the value of near neighbor. The default value of
this parameter is 10 more than the value of near neigh, the number of nearest neighbors for
each query.

Here is an annotated example of an input to the ann test program. The comments to the right
are not part of the file. The parameters have been indented to distinguish them from operations.

output_label test-run-0 # output a label for this run

validate on # enable validation

dim 16 # points in dimension 16

stats query_stats # output performance statistics for queries

31

seed 121212 # pseudo-random number seed

data_size 1000

distribution uniform

gen_data_pts # generate 1000 uniform data points in dim 16

query_size 100

colors 10

std_dev 0.05

distribution clus_gauss

gen_query_pts # generate 100 query points in 10 clusters

bucket_size 2

split_rule fair

shrink_rule none

build_ann # build a kd-tree with fair-split and bucket size 2

epsilon 0.1

near_neigh 5

max_pts_visit 100 # stop search if more than 100 points seen

true_near_neigh 20 # compute 20 nearest neighbors when validating

run_queries standard # run queries; 5 near neighbors, allowing 10% error

data_size 500

read_data_pts data.in # read up to 500 points from file data.in

split_rule sl_midpt

shrink_rule simple

build_ann # build bd-tree; sliding midpoint and simple shrink

epsilon 0

run_queries priority # run the same queries; with no allowable error

3.2 ann2fig: Visualization Tool

The program ann2fig inputs an ANN dump file, as generated by the dump operation of the ann test
program, and (optionally) the coordinates of the data points, and generates a 2-dimensional display
of the geometric structure of the search tree. The output form is called fig format, e.g., as used by
the xfig program (Ver 3.1). The resulting fig file may then be displayed using xfig, or converted to
any of a number of other formats using the Unix program fig2dev. An example is shown in Fig. 1
in Section 2.

If the points are in dimension 2, then the entire tree is displayed. If the dimension is larger than
2 then the user has the option of selecting any orthogonal 2-dimensional “slice” to be displayed. A
slice is an axis-aligned 2-dimensional plane in d-dimensional space. We assume that dimensions are
numbered from 0 to d−1. The slice is specified giving the two plane dimensions that correspond to
the x- and y-dimensions of the final output, and then giving the values at which this plane cuts each
of the remaining coordinate axes, called slicing values. There are two ways to specify the slicing
values. The first is by giving a real default slicing value, z, which means that the slicing plane cuts
all the coordinate axes (other than the plane dimensions) at the value z. The other is by specifying
a set of slicing pairs each consisting of a dimension i, 0 ≤ i < d, and value z, which means that
the plane cuts the ith coordinate axis at value z. For example, given a 4-dimensional space, with
coordinates 0 through 3, the 2-dimensional plane x2 = 0.5, x3 = −2.4, could be specified by the
slicing pairs (2, 0.5) and (3,−2.4).

Given the slicing plane, a leaf cell is either disjoint from the slicing plane or it intersects the
slicing plane in a rectangle. In the former case, the leaf cell is not displayed. In the latter case the
rectangle of intersection is drawn, and all data points lying within the cell are projected orthogonally
onto the slicing plane and then drawn as small circles.

32

The input to ann2fig is a dump file as generated by the dump operation. It is assumed that the
file name ends with the suffix “.dmp”. The command-line arguments to ann2fig (given below) specify
the plane dimensions and the default slicing value and any slicing pairs. The plane dimensions are
specified by the -dx and -dy command-line options. By default, the plane dimensions are 0 and 1
for the x- and y- display dimensions, respectively. The default slicing value is specified by the -sv
options. Its default value is 0. Each slicing pair is specified by the -sl option, which is followed
by two numbers, the slicing dimension and the slicing value. There may be any number of slicing
pairs specified by repeating the -sl option. Other than the plane dimensions, if slicing pairs are not
specified for a dimension, then the default slicing value is used instead.

The figure is bounded by the intersection of the bounding box of the kd- or bd-tree with the
slicing plane. The size and placement of this bounding box in the final figure is controlled by
specifying the x- and y-offsets of the box (through the -x and -y relative to the upper left corner of
the figure (in inches), and the length of the longer side of the box (through the sz option). The box
is translated and scaled to match this offset and longest side length before drawing. By default the
offsets are each 1 inch, and the size is 5 inches.

There are also command-line arguments to specify the number of fig units per inch (the -upi
option), and the radius of the circles used for drawing points (the -ps option, given in fig units).
The default units per inch value is 1200, and the default point size value is 10 fig units.

Here is a summary of the command line arguments. Square brackets are used to represent
optional arguments, the asterisk (∗) means that the argument may be repeated zero or more times.
The file name is given without the “.dmp” suffix, and the output is written to a file with the same
name, but with the suffix “.fig”.

ann2fig [-upi scale] [-x xoffset] [-y yoffset] [-sz size] [-dx dimx] [-dy dim y]
[-sl dim value]∗ [-ps pointsize] file

33

References

[AM93a] S. Arya and D. M. Mount. Algorithms for fast vector quantization. In J. A. Storer and
M. Cohn, editors, Proc. of DCC ’93: Data Compression Conference, pages 381–390.
IEEE Press, 1993.

[AM93b] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed dimensions.
In Proc. 4th ACM-SIAM Sympos. Discrete Algorithms, pages 271–280, 1993.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Wu. An optimal
algorithm for approximate nearest neighbor searching. J. ACM, 45:891–923, 1998.

[Ben90] J. L. Bentley. K-d trees for semidynamic point sets. In Proc. 6th Ann. ACM Sympos.

Comput. Geom., pages 187–197, 1990.

[Boa93] OpenGL Architecture Review Board. OpenGL Programming Guide. Addison-Wesley,
Reading, MA, 1993.

[Cla97] K. L. Clarkson. Nearest neighbor queries in metric spaces. In Proc. 29th Annu. ACM

Sympos. Theory Comput., pages 609–617, 1997.

[FBF77] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best matches
in logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–
226, 1977.

[Kle97] J. Kleinberg. Two algorithms for nearest-neighbor search in high dimension. In Proc.

29th Annu. ACM Sympos. Theory Comput., pages 599–608, 1997.

[Ove96] M. H. Overmars. Designing the computational geometry algorithms library cgal. In
Proc. 1st ACM Workshop on Appl. Comput. Geom., pages 113–119, May 1996.

[PS85] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag, New York, NY, 1985.

[Spr91] R. L. Sproull. Refinements to nearest-neighbor searching. Algorithmica, 6:579–589,
1991.

34

