1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
|
from __future__ import annotations
from typing import Any, cast
import pytest
from pydantic import BaseModel
from anthropic import beta_tool
from anthropic._compat import PYDANTIC_V1
from anthropic.lib.tools._beta_functions import BaseFunctionTool
from anthropic.types.beta.beta_tool_param import InputSchema
@pytest.mark.skipif(PYDANTIC_V1, reason="only applicable in pydantic v2")
class TestFunctionTool:
def test_basic_function_schema_conversion(self) -> None:
"""Test basic function schema conversion with simple types."""
def get_weather(location: str, unit: str = "celsius") -> str:
"""Get the weather for a specific location."""
return f"Weather in {location} is 20 degrees {unit}"
function_tool = beta_tool(get_weather)
assert function_tool.name == "get_weather"
assert function_tool.description == "Get the weather for a specific location."
assert function_tool.input_schema == {
"additionalProperties": False,
"type": "object",
"properties": {
"location": {"title": "Location", "type": "string"},
"unit": {"title": "Unit", "type": "string", "default": "celsius"},
},
"required": ["location"],
}
assert function_tool(location="CA") == "Weather in CA is 20 degrees celsius"
# invalid types should be allowed because __call__ should just be the original function
assert function_tool(location=cast(Any, 1)) == "Weather in 1 is 20 degrees celsius"
def test_function_with_multiple_types(self) -> None:
"""Test function schema conversion with various Python types."""
def simple_function(
name: str,
age: int,
) -> str:
"""A simple function with basic parameter types."""
return f"Person: {name}, {age} years old"
function_tool = beta_tool(simple_function)
# Test that we can create the tool and call it
assert function_tool.name == "simple_function"
assert function_tool.description == "A simple function with basic parameter types."
# Test calling the function
result = function_tool.call(
{
"name": "John",
"age": 25,
}
)
assert result == "Person: John, 25 years old"
# Test schema structure
expected_schema = {
"additionalProperties": False,
"type": "object",
"properties": {
"name": {"title": "Name", "type": "string"},
"age": {"title": "Age", "type": "integer"},
},
"required": ["name", "age"],
}
assert function_tool.input_schema == expected_schema
def test_function_call_with_valid_input(self) -> None:
def add_numbers(a: int, b: int) -> str:
"""Add two numbers together."""
return str(a + b)
function_tool = beta_tool(add_numbers)
result = function_tool.call({"a": 5, "b": 3})
assert result == "8"
@pytest.mark.parametrize(
"input_data, expected_error_type, expected_error_msg",
[
pytest.param(
{"a": "not a number", "b": 3},
ValueError,
"Invalid arguments for function add_numbers",
id="invalid_argument_type",
),
pytest.param(
{"b": 3},
ValueError,
"Invalid arguments for function add_numbers",
id="missing_required_argument",
),
pytest.param(
None,
TypeError,
"Input must be a dictionary, got NoneType",
id="invalid_input_object",
),
],
)
def test_function_call_with_invalid_input(
self, input_data: dict[str, Any], expected_error_type: type[BaseException], expected_error_msg: str
) -> None:
def add_numbers(a: int, b: int) -> str:
return str(a + b)
function_tool = beta_tool(add_numbers)
with pytest.raises(expected_error_type, match=expected_error_msg):
function_tool.call(input_data)
def test_custom_name_and_description(self) -> None:
def some_function(x: int) -> str:
"""Original description."""
return str(x * 2)
function_tool = beta_tool(some_function, name="custom_name", description="Custom description")
assert function_tool.name == "custom_name"
assert function_tool.description == "Custom description"
def test_custom_input_schema_with_dict(self) -> None:
def some_function(x: int) -> str:
return str(x * 2)
custom_schema: InputSchema = {
"additionalProperties": False,
"type": "object",
"properties": {"x": {"type": "number", "description": "A number to double"}},
"required": ["x"],
}
function_tool = beta_tool(some_function, input_schema=custom_schema)
assert function_tool.input_schema == custom_schema
def test_custom_input_schema_with_pydantic_model(self) -> None:
class WeatherInput(BaseModel):
location: str
unit: str = "celsius"
def get_weather(location: str, unit: str = "celsius") -> str: # noqa: ARG001
return f"Weather in {location}"
# Pass the Pydantic model class directly as input_schema
function_tool = beta_tool(get_weather, input_schema=WeatherInput)
# Pydantic model schemas include additional metadata
schema = function_tool.input_schema
assert schema == {
"title": "WeatherInput",
"type": "object",
"properties": {
"location": {"title": "Location", "type": "string"},
"unit": {"title": "Unit", "type": "string", "default": "celsius"},
},
"required": ["location"],
}
def test_to_dict_method(self) -> None:
def simple_func(message: str) -> str:
"""A simple function."""
return message
function_tool = beta_tool(simple_func)
tool_param = function_tool.to_dict()
assert tool_param == {
"name": "simple_func",
"description": "A simple function.",
"input_schema": {
"additionalProperties": False,
"type": "object",
"properties": {"message": {"title": "Message", "type": "string"}},
"required": ["message"],
},
}
def test_function_without_docstring(self) -> None:
def no_docs(x: int) -> str: # noqa: ARG001
return ""
function_tool = beta_tool(no_docs)
assert function_tool.description == ""
def test_function_without_type_hints(self) -> None:
def no_types(x, y=10): # pyright: ignore[reportUnknownParameterType, reportMissingParameterType]
return x + y # pyright: ignore[reportUnknownVariableType]
function_tool = beta_tool(no_types) # type: ignore
# Should still create a schema, though less precise (uses Any type)
assert function_tool.input_schema == {
"additionalProperties": False,
"type": "object",
"properties": {
"x": {"title": "X"}, # Any type gets title but no type
"y": {"title": "Y", "default": 10},
},
"required": ["x"],
}
@pytest.mark.parametrize(
"docstring",
[
pytest.param(
(
"""Get detailed weather information for a location.
This function retrieves current weather conditions and optionally
includes a forecast for the specified location.
Args:
location: The city or location to get weather for.
unit: Temperature unit, either 'celsius' or 'fahrenheit'.
include_forecast: Whether to include forecast data.
Returns:
Weather information as a formatted string
Examples:
>>> get_weather_detailed("London")
"London: 15°C, partly cloudy"
>>> get_weather_detailed("New York", "fahrenheit", True)
"New York: 59°F, sunny. Tomorrow: 62°F, cloudy"
"""
),
id="google_style_docstring",
),
pytest.param(
(
"""Get detailed weather information for a location.
This function retrieves current weather conditions and optionally
includes a forecast for the specified location.
:param location: The city or location to get weather for.
:type location: str
:param unit: Temperature unit, either 'celsius' or 'fahrenheit'.
:type unit: str
:param include_forecast: Whether to include forecast data.
:type include_forecast: bool
:returns: Weather information as a formatted string.
:rtype: str
:example:
>>> get_weather_detailed("London")
"London: 15°C, partly cloudy"
>>> get_weather_detailed("New York", "fahrenheit", True)
"New York: 59°F, sunny. Tomorrow: 62°F, cloudy
"""
),
id="rest_style_docstring",
),
pytest.param(
(
"""Get detailed weather information for a location.
This function retrieves current weather conditions and optionally
includes a forecast for the specified location.
Parameters
----------
location : str
The city or location to get weather for.
unit : str
Temperature unit, either 'celsius' or 'fahrenheit'.
include_forecast : bool
Whether to include forecast data.
Returns
-------
str
Weather information as a formatted string.
Examples
--------
>>> get_weather_detailed("London")
"London: 15°C, partly cloudy"
>>> get_weather_detailed("New York", "fahrenheit", True)
"New York: 59°F, sunny. Tomorrow: 62°F, cloudy"
"""
),
id="numpy_style_docstring",
),
pytest.param(
(
"""Get detailed weather information for a location.
This function retrieves current weather conditions and optionally
includes a forecast for the specified location.
@param location: The city or location to get weather for.
@type location: str
@param unit: Temperature unit, either 'celsius' or 'fahrenheit'.
@type unit: str
@param include_forecast: Whether to include forecast data.
@type include_forecast: bool
@return: Weather information as a formatted string.
@rtype: str
@example:
>>> get_weather_detailed("London")
"London: 15°C, partly cloudy"
>>> get_weather_detailed("New York", "fahrenheit", True)
"New York: 59°F, sunny. Tomorrow: 62°F, cloudy"
"""
),
id="epydoc_style_docstring",
),
],
)
def test_docstring_parsing_with_parameters(self, docstring: str) -> None:
def get_weather_detailed(location: str, unit: str = "celsius", include_forecast: bool = False) -> str: # noqa: ARG001
return f"Weather for {location}"
get_weather_detailed.__doc__ = docstring
function_tool = beta_tool(get_weather_detailed)
expected_description = (
"Get detailed weather information for a location.\n\n"
"This function retrieves current weather conditions and optionally\n"
"includes a forecast for the specified location."
)
expected_schema = {
"additionalProperties": False,
"type": "object",
"properties": {
"location": {
"title": "Location",
"type": "string",
"description": "The city or location to get weather for.",
},
"unit": {
"title": "Unit",
"type": "string",
"default": "celsius",
"description": "Temperature unit, either 'celsius' or 'fahrenheit'.",
},
"include_forecast": {
"title": "Include Forecast",
"type": "boolean",
"default": False,
"description": "Whether to include forecast data.",
},
},
"required": ["location"],
}
assert function_tool.description == expected_description
assert function_tool.input_schema == expected_schema
def test_decorator_without_parentheses(self) -> None:
"""Test using @function_tool decorator without parentheses."""
@beta_tool
def multiply(x: int, y: int) -> str:
"""Multiply two numbers."""
return str(x * y)
assert multiply.name == "multiply"
assert multiply.description == "Multiply two numbers."
assert multiply.call({"x": 3, "y": 4}) == "12"
expected_schema = {
"additionalProperties": False,
"type": "object",
"properties": {
"x": {"title": "X", "type": "integer"},
"y": {"title": "Y", "type": "integer"},
},
"required": ["x", "y"],
}
assert multiply.input_schema == expected_schema
def test_decorator_with_parentheses(self) -> None:
"""Test using @function_tool() decorator with parentheses."""
@beta_tool()
def divide(a: float, b: float) -> str:
"""Divide two numbers."""
return str(a / b)
assert divide.name == "divide"
assert divide.description == "Divide two numbers."
assert divide.call({"a": 10.0, "b": 2.0}) == "5.0"
def test_decorator_with_custom_parameters(self) -> None:
"""Test using @function_tool() decorator with custom name and description."""
@beta_tool(name="custom_calculator", description="A custom calculator function")
def calculate(value: int) -> str:
"""Original description that should be overridden."""
return str(value * 2)
assert calculate.name == "custom_calculator"
assert calculate.description == "A custom calculator function"
assert calculate.call({"value": 5}) == "10"
def test_docstring_parsing_simple(self) -> None:
"""Test that simple docstrings still work correctly."""
def simple_add(a: int, b: int) -> str:
"""Add two numbers together."""
return str(a + b)
function_tool = beta_tool(simple_add)
assert function_tool.description == "Add two numbers together."
assert _get_parameters_info(function_tool) == {}
# Schema should not have descriptions for parameters
expected_schema = {
"additionalProperties": False,
"type": "object",
"properties": {"a": {"title": "A", "type": "integer"}, "b": {"title": "B", "type": "integer"}},
"required": ["a", "b"],
}
assert function_tool.input_schema == expected_schema
def _get_parameters_info(fn: BaseFunctionTool[Any]) -> dict[str, str]:
param_info: dict[str, str] = {}
for param in fn._parsed_docstring.params:
if param.description:
param_info[param.arg_name] = param.description.strip()
return param_info
|