File: test_runners.py

package info (click to toggle)
anthropic-sdk-python 0.76.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,432 kB
  • sloc: python: 30,183; sh: 186; makefile: 5
file content (615 lines) | stat: -rw-r--r-- 31,355 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import json
import logging
from typing import Any, Dict, List, Union
from typing_extensions import Literal, TypeVar

import pytest
from respx import MockRouter
from inline_snapshot import external, snapshot

from anthropic import Anthropic, AsyncAnthropic, beta_tool, beta_async_tool
from anthropic._utils import assert_signatures_in_sync
from anthropic._compat import PYDANTIC_V1
from anthropic.lib.tools import BetaFunctionToolResultType
from anthropic.lib.tools._beta_runner import BetaToolRunner
from anthropic.types.beta.beta_message import BetaMessage
from anthropic.types.beta.beta_message_param import BetaMessageParam
from anthropic.types.beta.beta_tool_result_block_param import BetaToolResultBlockParam

from ..utils import print_obj
from ...conftest import base_url
from ..snapshots import make_snapshot_request, make_async_snapshot_request, make_stream_snapshot_request

_T = TypeVar("_T")

# all the snapshots in this file are auto-generated from the live API
#
# you can update them with
#
# `ANTHROPIC_LIVE=1 ./scripts/test --inline-snapshot=fix -n0`

snapshots = {
    "basic": {
        "responses": snapshot(
            [
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_0133AjAuLSKXatUZqNkpALPx", "type": "message", "role": "assistant", "content": [{"type": "tool_use", "id": "toolu_01DGiQScbZKPwUBYN79rFUb8", "name": "get_weather", "input": {"location": "San Francisco, CA", "units": "f"}}], "stop_reason": "tool_use", "stop_sequence": null, "usage": {"input_tokens": 656, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 74, "service_tier": "standard"}}',
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_014x2Sxq2p6sewFyUbJp8Mg3", "type": "message", "role": "assistant", "content": [{"type": "text", "text": "The weather in San Francisco, CA is currently **68\\u00b0F** and **Sunny**. It\'s a nice day! \\u2600\\ufe0f"}], "stop_reason": "end_turn", "stop_sequence": null, "usage": {"input_tokens": 770, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 33, "service_tier": "standard"}}',
            ]
        ),
        "result": snapshot(
            "ParsedBetaMessage(container=None, content=[ParsedBetaTextBlock(citations=None, parsed_output=None, text=\"The weather in San Francisco, CA is currently **68°F** and **Sunny**. It's a nice day! ☀️\", type='text')], context_management=None, id='msg_014x2Sxq2p6sewFyUbJp8Mg3', model='claude-haiku-4-5-20251001', role='assistant', stop_reason='end_turn', stop_sequence=None, type='message', usage=BetaUsage(cache_creation=BetaCacheCreation(ephemeral_1h_input_tokens=0, ephemeral_5m_input_tokens=0), cache_creation_input_tokens=0, cache_read_input_tokens=0, input_tokens=770, output_tokens=33, server_tool_use=None, service_tier='standard'))\n"
        ),
    },
    "custom": {
        "responses": snapshot(
            [
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_01FKEKbzbqHmJv5ozwH7tz99", "type": "message", "role": "assistant", "content": [{"type": "text", "text": "Let me check the weather for San Francisco for you in Celsius."}, {"type": "tool_use", "id": "toolu_01MxFFv4azdWzubHT3dXurMY", "name": "get_weather", "input": {"location": "San Francisco, CA", "units": "c"}}], "stop_reason": "tool_use", "stop_sequence": null, "usage": {"input_tokens": 659, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 88, "service_tier": "standard"}}',
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_01DSPL7PHKQYTe9VAFkHzsA3", "type": "message", "role": "assistant", "content": [{"type": "text", "text": "The weather in San Francisco, CA is currently **20\\u00b0C** and **Sunny**. Nice weather!"}], "stop_reason": "end_turn", "stop_sequence": null, "usage": {"input_tokens": 787, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 26, "service_tier": "standard"}}',
            ]
        ),
        "result": snapshot(
            "ParsedBetaMessage(container=None, content=[ParsedBetaTextBlock(citations=None, parsed_output=None, text='The weather in San Francisco, CA is currently **20°C** and **Sunny**. Nice weather!', type='text')], context_management=None, id='msg_01DSPL7PHKQYTe9VAFkHzsA3', model='claude-haiku-4-5-20251001', role='assistant', stop_reason='end_turn', stop_sequence=None, type='message', usage=BetaUsage(cache_creation=BetaCacheCreation(ephemeral_1h_input_tokens=0, ephemeral_5m_input_tokens=0), cache_creation_input_tokens=0, cache_read_input_tokens=0, input_tokens=787, output_tokens=26, server_tool_use=None, service_tier='standard'))\n"
        ),
    },
    "streaming": {
        "result": snapshot(
            "ParsedBetaMessage(container=None, content=[ParsedBetaTextBlock(citations=None, parsed_output=None, text='The weather in San Francisco, CA is currently **Sunny** with a temperature of **68°F**.', type='text')], context_management=None, id='msg_01Vm8Ddgc8qm4iuUSKbf6jku', model='claude-haiku-4-5-20251001', role='assistant', stop_reason='end_turn', stop_sequence=None, type='message', usage=BetaUsage(cache_creation=BetaCacheCreation(ephemeral_1h_input_tokens=0, ephemeral_5m_input_tokens=0), cache_creation_input_tokens=0, cache_read_input_tokens=0, input_tokens=781, output_tokens=25, server_tool_use=None, service_tier='standard'))\n"
        )
    },
    "tool_call": {
        "responses": snapshot(
            [
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_01NzLkujbJ7VQgzNHFx76Ab4", "type": "message", "role": "assistant", "content": [{"type": "tool_use", "id": "toolu_01SPe52JjANtJDVJ5yUZj4jz", "name": "get_weather", "input": {"location": "SF", "units": "c"}}], "stop_reason": "tool_use", "stop_sequence": null, "usage": {"input_tokens": 597, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 71, "service_tier": "standard"}}',
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_016bjf5SAczxp28ES4yX7Z7U", "type": "message", "role": "assistant", "content": [{"type": "text", "text": "The weather in SF (San Francisco) is currently **20\\u00b0C** and **sunny**!"}], "stop_reason": "end_turn", "stop_sequence": null, "usage": {"input_tokens": 705, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 23, "service_tier": "standard"}}',
            ]
        ),
    },
    "tool_call_error": {
        "responses": snapshot(
            [
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_01QhmJFoA3mxD2mxPFnjLHrT", "type": "message", "role": "assistant", "content": [{"type": "tool_use", "id": "toolu_01Do4cDVNxt51EuosKoxdmii", "name": "get_weather", "input": {"location": "San Francisco, CA", "units": "f"}}], "stop_reason": "tool_use", "stop_sequence": null, "usage": {"input_tokens": 656, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 74, "service_tier": "standard"}}',
                '{"model": "claude-haiku-4-5-20251001", "id": "msg_0137FupJYD4A3Mc6jUUxKpU6", "type": "message", "role": "assistant", "content": [{"type": "text", "text": "I apologize, but I encountered an error when trying to fetch the weather for San Francisco. This appears to be a temporary issue with the weather service. Could you please try again in a moment, or let me know if you\'d like me to attempt the lookup again?"}], "stop_reason": "end_turn", "stop_sequence": null, "usage": {"input_tokens": 760, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 58, "service_tier": "standard"}}',
            ]
        )
    },
}


@pytest.mark.skipif(PYDANTIC_V1, reason="tool runner not supported with pydantic v1")
class TestSyncRunTools:
    @pytest.mark.respx(base_url=base_url)
    def test_basic_call_sync(self, client: Anthropic, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
        @beta_tool
        def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
            """Lookup the weather for a given city in either celsius or fahrenheit

            Args:
                location: The city and state, e.g. San Francisco, CA
                units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
            Returns:
                A dictionary containing the location, temperature, and weather condition.
            """
            return json.dumps(_get_weather(location, units))

        message = make_snapshot_request(
            lambda c: c.beta.messages.tool_runner(
                max_tokens=1024,
                model="claude-haiku-4-5",
                tools=[get_weather],
                messages=[{"role": "user", "content": "What is the weather in SF?"}],
            ).until_done(),
            content_snapshot=snapshots["basic"]["responses"],
            path="/v1/messages",
            mock_client=client,
            respx_mock=respx_mock,
        )

        assert print_obj(message, monkeypatch) == snapshots["basic"]["result"]

    @pytest.mark.respx(base_url=base_url)
    def test_tool_call_error(
        self,
        client: Anthropic,
        respx_mock: MockRouter,
        monkeypatch: pytest.MonkeyPatch,
        caplog: pytest.LogCaptureFixture,
    ) -> None:
        called = None

        @beta_tool
        def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
            """Lookup the weather for a given city in either celsius or fahrenheit

            Args:
                location: The city and state, e.g. San Francisco, CA
                units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
            Returns:
                A dictionary containing the location, temperature, and weather condition.
            """
            nonlocal called

            if called is None:
                called = True
                raise RuntimeError("Unexpected error, try again")
            return json.dumps(_get_weather(location, units))

        def tool_runner(client: Anthropic) -> List[Union[BetaMessageParam, None]]:
            runner = client.beta.messages.tool_runner(
                max_tokens=1024,
                model="claude-haiku-4-5",
                tools=[get_weather],
                messages=[{"role": "user", "content": "What is the weather in SF?"}],
            )

            actual_responses: List[Union[BetaMessageParam, None]] = []
            for _ in runner:
                tool_call_response = runner.generate_tool_call_response()
                if tool_call_response is not None:
                    actual_responses.append(tool_call_response)

            return actual_responses

        with caplog.at_level(logging.ERROR):
            message = make_snapshot_request(
                tool_runner,
                content_snapshot=snapshots["tool_call_error"]["responses"],
                path="/v1/messages",
                mock_client=client,
                respx_mock=respx_mock,
            )

        assert caplog.record_tuples == [
            (
                "anthropic.lib.tools._beta_runner",
                logging.ERROR,
                "Error occurred while calling tool: get_weather",
            ),
        ]
        assert print_obj(message, monkeypatch) == snapshot(
            "[{'role': 'user', 'content': [{'type': 'tool_result', 'tool_use_id': 'toolu_01Do4cDVNxt51EuosKoxdmii', 'content': \"RuntimeError('Unexpected error, try again')\", 'is_error': True}]}]\n"
        )

    @pytest.mark.respx(base_url=base_url)
    def test_custom_message_handling(
        self, client: Anthropic, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch
    ) -> None:
        @beta_tool
        def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
            """Lookup the weather for a given city in either celsius or fahrenheit

            Args:
                location: The city and state, e.g. San Francisco, CA
                units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
            Returns:
                A dictionary containing the location, temperature, and weather condition.
            """
            return json.dumps(_get_weather(location, units))

        def custom_message_handling(client: Anthropic) -> BetaMessage:
            runner = client.beta.messages.tool_runner(
                model="claude-haiku-4-5",
                messages=[{"role": "user", "content": "What's the weather in SF in Celsius?"}],
                tools=[get_weather],
                max_tokens=1024,
            )

            for message in runner:
                # handle only where there is a tool call
                if message.content[0].type == "tool_use":
                    runner.append_messages(
                        BetaMessageParam(
                            role="assistant",
                            content=[
                                BetaToolResultBlockParam(
                                    tool_use_id=message.content[0].id,
                                    content="The weather in San Francisco, CA is currently sunny with a temperature of 20°C.",
                                    type="tool_result",
                                )
                            ],
                        ),
                    )

            return runner.until_done()

        message = make_snapshot_request(
            custom_message_handling,
            content_snapshot=snapshots["custom"]["responses"],
            path="/v1/messages",
            mock_client=client,
            respx_mock=respx_mock,
        )

        assert print_obj(message, monkeypatch) == snapshots["custom"]["result"]

    @pytest.mark.respx(base_url=base_url)
    def test_tool_call_caching(self, client: Anthropic, respx_mock: MockRouter) -> None:
        called = None

        @beta_tool
        def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
            nonlocal called
            """Lookup the weather for a given city in either celsius or fahrenheit

            Args:
                location: The city and state, e.g. San Francisco, CA
                units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
            Returns:
                A dictionary containing the location, temperature, and weather condition.
            """
            if called is None:
                called = True
                return json.dumps(_get_weather(location, units))
            raise RuntimeError("This tool should not be called again")

        def tool_runner(client: Anthropic) -> None:
            runner = client.beta.messages.tool_runner(
                model="claude-haiku-4-5",
                messages=[{"role": "user", "content": "What's the weather in SF in Celsius?"}],
                tools=[get_weather],
                max_tokens=1024,
            )

            for _ in runner:
                response1 = runner.generate_tool_call_response()
                response2 = runner.generate_tool_call_response()

                if response1 is not None:
                    assert response1 is response2

        make_snapshot_request(
            tool_runner,
            content_snapshot=snapshots["tool_call"]["responses"],
            path="/v1/messages",
            mock_client=client,
            respx_mock=respx_mock,
        )

    @pytest.mark.respx(base_url=base_url)
    def test_streaming_call_sync(
        self, client: Anthropic, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch
    ) -> None:
        @beta_tool
        def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
            """Lookup the weather for a given city in either celsius or fahrenheit

            Args:
                location: The city and state, e.g. San Francisco, CA
                units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
            Returns:
                A dictionary containing the location, temperature, and weather condition.
            """
            return json.dumps(_get_weather(location, units))

        last_response_messsage = make_stream_snapshot_request(
            lambda c: c.beta.messages.tool_runner(
                max_tokens=1024,
                model="claude-haiku-4-5",
                tools=[get_weather],
                messages=[{"role": "user", "content": "What is the weather in SF?"}],
                stream=True,
            ).until_done(),
            content_snapshot=external("hash:cd8d3d185e7a*.json"),
            path="/v1/messages",
            mock_client=client,
            respx_mock=respx_mock,
        )

        assert print_obj(last_response_messsage, monkeypatch) == snapshots["streaming"]["result"]

    @pytest.mark.respx(base_url=base_url)
    def test_max_iterations(self, client: Anthropic, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch) -> None:
        @beta_tool
        def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
            """Lookup the weather for a given city in either celsius or fahrenheit

            Args:
                location: The city and state, e.g. San Francisco, CA
                units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
            Returns:
                A dictionary containing the location, temperature, and weather condition.
            """
            return json.dumps(_get_weather(location, units))

        def get_weather_answers(client: Anthropic) -> List[Union[BetaMessageParam, None]]:
            runner = client.beta.messages.tool_runner(
                max_tokens=1024,
                model="claude-haiku-4-5",
                tools=[get_weather],
                messages=[
                    {
                        "role": "user",
                        "content": (
                            "What's the weather in San Francisco, New York, London, Tokyo and Paris?"
                            "If you need to use tools, call only one tool at a time. Wait for the tool’s"
                            "response before making another call. Never call multiple tools at once."
                        ),
                    }
                ],
                max_iterations=2,
            )

            answers: List[Union[BetaMessageParam, None]] = []

            for _ in runner:
                answers.append(runner.generate_tool_call_response())

            return answers

        answers = make_snapshot_request(
            get_weather_answers,
            content_snapshot=snapshot(
                [
                    '{"model": "claude-haiku-4-5-20251001", "id": "msg_017GvdrboNn8hipoMJUcK8m6", "type": "message", "role": "assistant", "content": [{"type": "text", "text": "I\'ll get the weather for each of these cities one at a time. Let me start with San Francisco."}, {"type": "tool_use", "id": "toolu_011Q6hjHnpWegJvV1Zn6Cm1h", "name": "get_weather", "input": {"location": "San Francisco, CA", "units": "f"}}], "stop_reason": "tool_use", "stop_sequence": null, "usage": {"input_tokens": 701, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 96, "service_tier": "standard"}}',
                    '{"model": "claude-haiku-4-5-20251001", "id": "msg_01PYFQH4AkK3NBgSpFkWD16q", "type": "message", "role": "assistant", "content": [{"type": "text", "text": "Now let me check New York."}, {"type": "tool_use", "id": "toolu_011QaaAuMeNWTwHjkxcxce1D", "name": "get_weather", "input": {"location": "New York, NY", "units": "f"}}], "stop_reason": "tool_use", "stop_sequence": null, "usage": {"input_tokens": 837, "cache_creation_input_tokens": 0, "cache_read_input_tokens": 0, "cache_creation": {"ephemeral_5m_input_tokens": 0, "ephemeral_1h_input_tokens": 0}, "output_tokens": 81, "service_tier": "standard"}}',
                ]
            ),
            path="/v1/messages",
            mock_client=client,
            respx_mock=respx_mock,
        )

        assert print_obj(answers, monkeypatch) == snapshot(
            "[{'role': 'user', 'content': [{'type': 'tool_result', 'tool_use_id': 'toolu_011Q6hjHnpWegJvV1Zn6Cm1h', 'content': '{\"location\": \"San Francisco, CA\", \"temperature\": \"68\\\\u00b0F\", \"condition\": \"Sunny\"}'}]}, {'role': 'user', 'content': [{'type': 'tool_result', 'tool_use_id': 'toolu_011QaaAuMeNWTwHjkxcxce1D', 'content': '{\"location\": \"New York, NY\", \"temperature\": \"68\\\\u00b0F\", \"condition\": \"Sunny\"}'}]}]\n"
        )

    @pytest.mark.respx(base_url=base_url)
    def test_streaming_call_sync_events(self, client: Anthropic, respx_mock: MockRouter) -> None:
        @beta_tool
        def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
            """Lookup the weather for a given city in either celsius or fahrenheit

            Args:
                location: The city and state, e.g. San Francisco, CA
                units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
            Returns:
                A dictionary containing the location, temperature, and weather condition.
            """
            return json.dumps(_get_weather(location, units))

        def accumulate_events(client: Anthropic) -> List[str]:
            events: list[str] = []
            runner = client.beta.messages.tool_runner(
                max_tokens=1024,
                model="claude-haiku-4-5",
                tools=[get_weather],
                messages=[{"role": "user", "content": "What is the weather in SF?"}],
                stream=True,
            )

            for stream in runner:
                for event in stream:
                    events.append(event.type)
            return events

        events = make_stream_snapshot_request(
            accumulate_events,
            content_snapshot=external("uuid:9cb114c8-69bd-4111-841b-edee30333afd.json"),
            path="/v1/messages",
            mock_client=client,
            respx_mock=respx_mock,
        )
        assert set(events) == snapshot(
            {
                "content_block_delta",
                "content_block_start",
                "content_block_stop",
                "input_json",
                "message_delta",
                "message_start",
                "message_stop",
                "text",
            }
        )

    @pytest.mark.respx(base_url=base_url)
    def test_compaction_control(
        self, client: Anthropic, respx_mock: MockRouter, caplog: pytest.LogCaptureFixture
    ) -> None:
        @beta_tool
        def submit_analysis(summary: str) -> str:  # noqa: ARG001
            """Call this LAST with your final analysis."""
            return "Analysis submitted"

        def tool_runner(client: Anthropic) -> BetaToolRunner[None]:
            runner = client.beta.messages.tool_runner(
                model="claude-sonnet-4-5",
                max_tokens=4000,
                tools=[submit_analysis],
                messages=[
                    {
                        "role": "user",
                        "content": (
                            "Write a detailed 500 word essay about dogs, cats, and birds. "
                            "Call the tool submit_analysis with the information about all three animals. "
                            "Note that you should call it only once at the end of your essay."
                        ),
                    }
                ],
                betas=["structured-outputs-2025-11-13"],
                compaction_control={"enabled": True, "context_token_threshold": 500},
                max_iterations=1,
            )

            next(runner)
            runner.until_done()
            return runner

        with caplog.at_level(logging.INFO, logger="anthropic.lib.tools._beta_runner"):
            runner = make_snapshot_request(
                tool_runner,
                content_snapshot=external("uuid:ab7b2edd-9c2d-4f53-9c04-92bb659b9caa.json"),
                path="/v1/messages",
                mock_client=client,
                respx_mock=respx_mock,
            )

        messages = list(runner._params["messages"])
        assert len(messages) == 1
        assert messages[0]["role"] == "user"

        content = list(messages[0]["content"])[0]
        assert isinstance(content, dict)
        assert content["type"] == "text"
        assert content["text"] == snapshot("""\
<summary>
## 1. Task Overview
The user requests a 500-word essay about dogs, cats, and birds, followed by a single call to the `submit_analysis` tool at the end containing information about all three animals. \n\

**Key constraints:**
- Essay must be detailed and approximately 500 words
- Must cover all three animals: dogs, cats, and birds
- Tool `submit_analysis` must be called exactly once, at the end
- Tool call should contain information about all three animals

## 2. Current State
**Completed:** Nothing has been completed yet.

**Status:** The task has been acknowledged but no essay has been written and no tool has been called.

**Artifacts produced:** None yet.

## 3. Important Discoveries
**Technical requirements:**
- Need to understand the parameters/schema for `submit_analysis` tool (not yet verified)
- Must structure the tool call to include data about all three animal types in a single invocation

**Approach to take:**
- Write a comprehensive 500-word essay discussing dogs, cats, and birds
- Essay should cover characteristics, behaviors, and comparisons between the three
- Extract/organize key information about each animal for the tool call
- Call `submit_analysis` once with consolidated data about all three animals

## 4. Next Steps
1. **Write the 500-word essay** covering:
   - Dogs: characteristics, behavior, relationship with humans
   - Cats: characteristics, behavior, relationship with humans
   - Birds: characteristics, behavior, diversity
   - Comparisons and contrasts between the three
   \n\
2. **Determine the schema for `submit_analysis` tool** - check what parameters it accepts and how to structure data about multiple animals

3. **Call `submit_analysis` once** with information about all three animals in the appropriate format

4. **Verify word count** is approximately 500 words

## 5. Context to Preserve
- User emphasized calling the tool "only once at the end"
- Essay should be "detailed" - not superficial
- The tool call must encompass information about all three animals, not separate calls per animal
- This appears to be a test of following multi-step instructions precisely
</summary>\
""")
        assert caplog.record_tuples == snapshot(
            [
                (
                    "anthropic.lib.tools._beta_runner",
                    20,
                    "Token usage 1615 has exceeded the threshold of 500. Performing compaction.",
                ),
                ("anthropic.lib.tools._beta_runner", 20, "Compaction complete. New token usage: 496"),
            ]
        )

    @pytest.mark.parametrize("client", [False], indirect=True)
    @pytest.mark.respx(base_url=base_url)
    def test_server_side_tool(
        self,
        client: Anthropic,
        respx_mock: MockRouter,
    ) -> None:
        def tool_runner(client: Anthropic) -> BetaToolRunner[None]:
            runner = client.beta.messages.tool_runner(
                model="claude-haiku-4-5",
                messages=[{"role": "user", "content": "What is the weather in SF?"}],
                tools=[
                    {
                        "type": "web_search_20250305",
                        "name": "web_search",
                    }
                ],
                max_tokens=1024,
            )

            message = next(runner)

            content_types = [content.type for content in message.content]

            assert "server_tool_use" in content_types
            assert "web_search_tool_result" in content_types

            return runner

        make_snapshot_request(
            tool_runner,
            content_snapshot=external("uuid:a0a711eb-ee0e-4a42-88d6-5c7f83c0f25a.txt"),
            path="/v1/messages",
            mock_client=client,
            respx_mock=respx_mock,
        )


@pytest.mark.skipif(PYDANTIC_V1, reason="tool runner not supported with pydantic v1")
@pytest.mark.respx(base_url=base_url)
async def test_basic_call_async(
    async_client: AsyncAnthropic, respx_mock: MockRouter, monkeypatch: pytest.MonkeyPatch
) -> None:
    @beta_async_tool
    async def get_weather(location: str, units: Literal["c", "f"]) -> BetaFunctionToolResultType:
        """Lookup the weather for a given city in either celsius or fahrenheit

        Args:
            location: The city and state, e.g. San Francisco, CA
            units: Unit for the output, either 'c' for celsius or 'f' for fahrenheit
        Returns:
            A dictionary containing the location, temperature, and weather condition.
        """
        return json.dumps(_get_weather(location, units))

    message = await make_async_snapshot_request(
        lambda c: c.beta.messages.tool_runner(
            max_tokens=1024,
            model="claude-3-7",
            tools=[get_weather],
            messages=[{"role": "user", "content": "What is the weather in SF?"}],
        ).until_done(),
        content_snapshot=snapshots["basic"]["responses"],
        path="/v1/messages",
        mock_client=async_client,
        respx_mock=respx_mock,
    )

    assert print_obj(message, monkeypatch) == snapshots["basic"]["result"]


def _get_weather(location: str, units: Literal["c", "f"]) -> Dict[str, Any]:
    # Simulate a weather API call
    print(f"Fetching weather for {location} in {units}")

    if units == "c":
        return {
            "location": location,
            "temperature": "20°C",
            "condition": "Sunny",
        }
    else:
        return {
            "location": location,
            "temperature": "68°F",
            "condition": "Sunny",
        }


@pytest.mark.parametrize("sync", [True, False], ids=["sync", "async"])
def test_tool_runner_method_in_sync(sync: bool, client: Anthropic, async_client: AsyncAnthropic) -> None:
    checking_client: "Anthropic | AsyncAnthropic" = client if sync else async_client

    assert_signatures_in_sync(
        checking_client.beta.messages.create,
        checking_client.beta.messages.tool_runner,
        exclude_params={
            "tools",
            "output_format",
            # TODO
            "stream",
        },
    )