File: itkDijkstrasAlgorithm.h

package info (click to toggle)
ants 2.1.0-5
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 10,656 kB
  • sloc: cpp: 84,137; sh: 11,419; perl: 694; xml: 115; makefile: 74; python: 48
file content (699 lines) | stat: -rw-r--r-- 19,395 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
/*=========================================================================

  Program:   Insight Segmentation & Registration Toolkit (ITK)
  Module:    $RCSfile: itkDijkstrasAlgorithm.h,v $ Language:  C++
  Date:      $Date: 2008/06/05 18:39:14 $
  Version:   $Revision: 1.8 $

Copyright (c) 2001 Insight Consortium
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

 * Redistributions of source code must retain the above copyright notice,
   this list of conditions and the following disclaimer.

 * Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

 * The name of the Insight Consortium, nor the names of any consortium members,
   nor of any contributors, may be used to endorse or promote products derived
   from this software without specific prior written permission.

  * Modified source versions must be plainly marked as such, and must not be
    misrepresented as being the original software.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

=========================================================================*/
#ifndef _itkDijkstrasAlgorithm_h_
#define _itkDijkstrasAlgorithm_h_

#include <string>
#include <iostream>
#include <stack>
#include <vector>
#include <list>
#include <queue>
#include <map>

#include "vnl/vnl_math.h"
// #include "vnl/vnl_matrix_fixed.h"
// #include "vnl/vnl_vector_fixed.h"
#include "itkImage.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkNeighborhoodIterator.h"
#include "itkVector.h"
using namespace std;

namespace itk
{
/** The GraphSearchNode class defines a general shortest path graph node.
*   The algorithm requires
*   the node to have a pointer to itself and entry for the cumulative cost.
*   We also define an index to its location and a couple of booleans
*   for keeping track of the graph node's state.
*   We assume the connectivity between nodes is defined externally.
*   The class will also be useful for minimum spanning trees and
*   other graph search algorithms.   Connectivity is defined externally.
*   May be worthwhile to implement arbitrary connectivity e.g. for random graphs.
*   One way to do this is to include a list of pointers which define
*   the neighbors of this node, similar to how the predecessor is defined.
*/
template <class TPixelType, typename TCoordRep = unsigned int,
          unsigned int NGraphDimension = 2>
class GraphSearchNode : public itk::LightObject
{
public:

  /* Standard typedefs.*/
  typedef GraphSearchNode          Self;
  typedef LightObject              Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;
  itkTypeMacro(GraphSearchNode, LightObject);
  itkNewMacro(Self);  /** Method for creation through the object factory.   */

  enum StateType { UnVisitedState, VisitedState, DeliveredState, UnVisitableState };
  enum { GraphDimension = NGraphDimension };
  typedef TPixelType                            PixelType; /** defines the cost data type */
  typedef TCoordRep                             CoordRep;  /** defines the location data type */
  typedef itk::Vector<CoordRep, GraphDimension> NodeLocationType;

//  typedef typename itk::Image<float,GraphDimension>::IndexType  NodeLocationType;

  typedef vector<Pointer> NodeListType;

//  typedef itk::Image<CoordRep,GraphDimension>::IndexType  NodeLocationType;

  inline void SetLocation(NodeLocationType loc)
  {
    m_Location = loc;
  }

  inline  NodeLocationType GetLocation()
  {
    return m_Location;
  }

  inline void SetTotalCost(TPixelType cost)
  {
    m_TotalCost = cost;
  }

  inline void SetValue(TPixelType cost, int which = 0)
  {
    if( which <= 0 )
      {
      m_Value1 = cost;
      }
    if( which == 1 )
      {
      m_Value2 = cost;
      }
    if( which == 2 )
      {
      m_Value3 = cost;
      }
    if( which >= 3 )
      {
      m_Value4 = cost;
      }
  }

  inline TPixelType GetValue(int which = 0)
  {
    if( which <= 0 )
      {
      return m_Value1;
      }
    if( which == 1 )
      {
      return m_Value2;
      }
    if( which == 2 )
      {
      return m_Value3;
      }
    if( which >= 3 )
      {
      return m_Value4;
      }
    return m_Value1;
  }

  inline void SetUnVisited()
  {
    m_State = UnVisitedState;
  }

  inline void SetUnVisitable()
  {
    m_State = UnVisitableState;
  }

  inline void SetVisited()
  {
    m_State = VisitedState;
  }

  inline void SetDelivered()
  {
    m_State = DeliveredState;
  }

  inline bool IsInQueue()
  {
    if( m_State == VisitedState )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  inline bool WasVisited()
  {
    if( m_State == VisitedState )
      {
      return true;
      }
    else if( m_State == DeliveredState )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  inline TPixelType GetTotalCost()
  {
    return m_TotalCost;
  }

  inline void SetPredecessor(Pointer address)
  {
    m_PredecessorAddress = address;
  }

  inline Pointer GetPredecessor()
  {
    return m_PredecessorAddress;
  }

  inline void SetAncestor(Pointer address)
  {
    m_AncestorAddress = address;
  }

  inline Pointer GetAncestor()
  {
    return m_AncestorAddress;
  }

  inline bool GetUnVisited()
  {
    if( m_State == UnVisitedState )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  inline bool GetUnVisitable()
  {
    if( m_State == UnVisitableState )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  inline bool GetVisited()
  {
    if( m_State == VisitedState )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  inline bool GetDelivered()
  {
    if( m_State == DeliveredState )
      {
      return true;
      }
    else
      {
      return false;
      }
  }

  inline void SetState(StateType S)
  {
    m_State = S;
  }

  inline StateType GetState()
  {
    return m_State;
  }

  inline void SetIdentity(unsigned int i)
  {
    m_Identity = i;
  }

  inline unsigned int GetIdentity()
  {
    return m_Identity;
  }

  inline int GetNumberOfNeighbors()
  {
    return m_Neighbors.size();
  }

  inline Pointer GetNeighbor(int i)
  {
    return m_Neighbors[i];
  }

  void SetNeighborSize(int i)
  {
    m_Neighbors.resize(i);
  }

  NodeListType   m_Neighbors;
  unsigned short m_NumberOfNeighbors;
  unsigned int   m_Identity;
protected:

  GraphSearchNode()
  {
    m_TotalCost = 0.0;
    m_Value1 = 0.0;
    m_Value2 = 0.0;
    m_Value3 = 0.0;
    m_Value4 = 0.0;
    m_PredecessorAddress = NULL;
    m_AncestorAddress = NULL;
    m_State = UnVisitedState;
    m_NumberOfNeighbors = 0;
    m_Identity = 0;
  }

  ~GraphSearchNode()
  {
  }

private:
  TPixelType m_TotalCost; /** keeps track of the minimum accumulated cost. */
  TPixelType m_Value1;    /** keeps track of the minimum accumulated cost. */
  TPixelType m_Value2;    /** keeps track of the minimum accumulated cost. */
  TPixelType m_Value3;    /** keeps track of the minimum accumulated cost. */
  TPixelType m_Value4;    /** keeps track of the minimum accumulated cost. */

  StateType        m_State;
  NodeLocationType m_Location;           /** provides the location in the graph. */
  Pointer          m_PredecessorAddress; /** provides the best predecessor address */
  Pointer          m_AncestorAddress;    /** provides the best predecessor address */

  GraphSearchNode(const Self &); // purposely not implemented
  void operator=(const Self &);  // purposely not implemented
};

// Forward declaration of DijkstrasAlgorithm so it can be declared a friend
template <class TGraphSearchNode>
class DijkstrasAlgorithm;

template <class TGraphSearchNode>
class DijkstrasAlgorithmQueue : public itk::LightObject
/** \class DijkstrasAlgorithmQueue
the class containing the priority queue and associated data.
*/
{
private:

  template <class G>
  class GraphSearchNodePriority /* defines the comparison operator for the prioritiy queue */
  {
public:
    bool operator()( typename G::Pointer N1,
                     typename G::Pointer N2)
    {
      return N1->GetTotalCost() > N2->GetTotalCost();
    }
  };
public: /* Standard typedefs.*/
  typedef DijkstrasAlgorithmQueue  Self;
  typedef LightObject              Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;
  itkTypeMacro(DijkstrasAlgorithmQueue, LightObject);
  itkNewMacro(Self);  /** Method for creation through the object factory.   */

  typedef typename TGraphSearchNode::Pointer   TGraphSearchNodePointer;
  typedef typename TGraphSearchNode::PixelType PixelType; /** pixel type for the cost */
  typedef typename TGraphSearchNode::CoordRep  CoordRep;  /** type for coordinates */
  typedef typename std::priority_queue<typename TGraphSearchNode::Pointer,
                                       std::vector<typename TGraphSearchNode::Pointer>,
                                       GraphSearchNodePriority<TGraphSearchNode> > QType; /** the queue we are using */
  typedef vector<typename TGraphSearchNode::Pointer> NodeListType;
  inline QType GetQ()
  {
    return m_Q;
  }

  void   AddToPath(TGraphSearchNodePointer G)
  {
    this->m_Path.push_back(G);
  }

  inline NodeListType GetPath()
  {
    return m_Path;
  }

  void   EmptyPath()
  {
    m_Path.clear();
  }

  inline NodeListType GetSourceNodes()
  {
    return m_SourceNodes;
  }

  inline NodeListType GetSinkNodes()
  {
    return m_SinkNodes;
  }

  inline void IncrementTimer()
  {
    m_timer++;
  }

  inline long GetTimer()
  {
    return m_timer;
  }

  inline void EmptyQ()
  {
    while( !m_Q.empty() )
      {
      m_Q.pop();
      }

    m_timer = 0; m_SourceNodes.clear(); m_SinkNodes.clear();
  }

  NodeListType m_SinkNodes;
  NodeListType m_SourceNodes;
  QType        m_Q;
  NodeListType m_Path;
protected:
  friend class DijkstrasAlgorithm<TGraphSearchNode>; // so it can access this data easily

  DijkstrasAlgorithmQueue()
  {
    m_timer = 0;
  }

  ~DijkstrasAlgorithmQueue()
  {
  }

private:
  unsigned long m_timer;
  DijkstrasAlgorithmQueue(const Self &); // purposely not implemented
  void operator=(const Self &);          // purposely not implemented
};

/**
 * \class DijkstrasAlgorithm
 * \brief General shortest path / greedy dynamic programming solver.
 *
 *  This class uses Dijkstra's algorithm to solve the shortest path problem.
 *  We use the stl priority queue which is not optimal for this problem, but which
 *  works o.k.  It's implemented to be used for general regularly connected
 *  graphs with fixed costs, or for the variational solution of an integral
 *  curve matching energy.
 *  Note: we assume all edge weights are positive.
 *  The class is implemented as a an abstract base class, with virtual functions for
 *  LocalCost, SearchEdgeSet and FindPath.  LocalCost must be implemented by derived classes.
 *  The connectivity of the graph defined
 *  here is always regular and is controlled by a set of neighborhood indices.
 *  the default is a radius 1 neighborhood with all entries used.  However, the
 *  user may also supply her own regular connectivity by selecting the size of
 *  the neighborhood and a subset of the indices which define the edges.  If
 *  the GraphSearchNode contains its edges, they may be used with minor modification
 *  to the function SearchEdgeSet.
 *  Another improvement would be to make the LocalCost function a pointer
 *  to a function which could be set.
 */
template <class TGraphSearchNode>
class DijkstrasAlgorithm : public itk::LightObject
{
public:
  typedef DijkstrasAlgorithm       Self;
  typedef LightObject              Superclass;
  typedef SmartPointer<Self>       Pointer;
  typedef SmartPointer<const Self> ConstPointer;
  itkTypeMacro(DijkstrasAlgorithm, LightObject);
  itkNewMacro(Self);

// Computation Data
  typedef TGraphSearchNode             SearchNode; /** dimension of the graph */
  typedef typename SearchNode::Pointer SearchNodePointer;
  enum { GraphDimension = SearchNode::GraphDimension };                          /** dimension of the graph */
  typedef typename SearchNode::PixelType                              PixelType; /**  pixel type for the cost */
  typedef typename SearchNode::CoordRep                               CoordRep;  /** coordinate type */
  typedef Image<SearchNodePointer, GraphDimension>                    GraphType;
  typedef typename GraphType::SizeType                                GraphSizeType;
  typedef ImageRegionIteratorWithIndex<GraphType>                     GraphIteratorType;
  typedef typename GraphType::RegionType                              GraphRegionType;
  typedef typename DijkstrasAlgorithmQueue<TGraphSearchNode>::Pointer QType;
  typedef typename DijkstrasAlgorithmQueue<TGraphSearchNode>::NodeListType
    NodeListType;
  typedef itk::NeighborhoodIterator<GraphType>
    GraphNeighborhoodIteratorType;
  typedef typename GraphNeighborhoodIteratorType::IndexType
    GraphNeighborhoodIndexType;
  typedef typename GraphNeighborhoodIteratorType::RadiusType
    RadiusType;
  typedef typename TGraphSearchNode::NodeLocationType NodeLocationType;
  typedef  typename GraphType::IndexType              IndexType;
// FUNCTIONS
  void InitializeGraph();  /** initializes all graph values appropriately */

  void InitializeQueue();  /** initializes all queue values appropriately
                                call AFTER source and sink are set*/

  void InitializeEdgeTemplate(); /** helper function initializes edge set appropriately */

  void InitializeEdgeTemplate(vector<unsigned int>, unsigned int);   /** user supplied edge template */

  void SetGraphSize(typename GraphType::SizeType Sz); /** the rectangular size of the graph */

  inline void EmptyQ()
  {
    m_QS->EmptyQ(); this->m_TotalCost = 0;
  }

  /* adds a source to the source set */
  void SetSource(typename TGraphSearchNode::Pointer G)
  {
    m_QS->m_SourceNodes.push_back(G);
    for( int i = 0; i < GraphDimension; i++ )
      {
      m_GraphIndex[i] = (long int)(G->GetLocation()[i] + 0.5);
//      ::std::cout << " mgi " << m_GraphIndex[i];
      }
    m_Graph->SetPixel(m_GraphIndex, G);
  };

  typename TGraphSearchNode::Pointer GetGraphNode(   IndexType index)
  {
    //    ::std::cout << " get node "  << index << std::endl;
    return m_Graph->GetPixel(index);
  };

  // adds a sink to the sink set
  void SetSink(typename TGraphSearchNode::Pointer G)
  {
    m_QS->m_SinkNodes.push_back(G);
  }

  // Backtracks from the given node to its source node;
  void BackTrack(typename TGraphSearchNode::Pointer SinkNode)
  {
    m_QS->m_Path.clear();

    typename TGraphSearchNode::Pointer G = SinkNode;
    typename TGraphSearchNode::Pointer P = SinkNode->GetPredecessor();
    if( !P || !G )
      {
      return;
      }
    float highcost = G->GetValue();
    if( G->GetTotalCost() > P->GetValue() )
      {
      P->SetAncestor(G);
      P->SetValue(G->GetTotalCost() );
      highcost = G->GetTotalCost();
      }

    while( P && G != P )
      {
      m_QS->m_Path.push_back(G);
      G = P;
      P = G->GetPredecessor();
      if( P->GetValue() < highcost )
        {
        P->SetValue(highcost);
        P->SetAncestor(G);
        }
      }

    if( !P )
      {
      cout << " null pred ";       // else cout << " pred == self \n";
      }
    return;
  }

  // Inverse of backtrack - from the given node to its sink node;
  void ForwardTrack(typename TGraphSearchNode::Pointer SinkNode)
  {
    typename TGraphSearchNode::Pointer G = SinkNode;
    typename TGraphSearchNode::Pointer P = SinkNode->GetAncestor();
    while( P && G != P && G )
      {
      if( P->GetValue() > G->GetValue() )
        {
        G->SetValue(P->GetValue() );
        }
      if( G->GetValue() > P->GetValue() )
        {
        P->SetValue(G->GetValue() );
        }
      G = P;
      P = G->GetAncestor();
      }

    return;
  }

  virtual  bool TerminationCondition();  /** decides when the algorithm stops */

  virtual void SearchEdgeSet();  /** loops over the neighbors in the graph */

  void CheckNodeStatus();  /** checks if the node has been explored already, its cost, etc. */

  virtual PixelType LocalCost();      /* computes the local cost */

  /* alternatively, we could pass the function as a template parameter
     or set a function pointer.  the latter method is used in dijkstrasegment. */

  virtual void FindPath();  /* runs the algorithm */

  inline unsigned int GetPathSize()
  {
    return m_QS->m_Path.size();
  }

  inline typename TGraphSearchNode::Pointer GetPathAtIndex(unsigned int i)
  {
    return m_QS->m_Path[i];
  }

  inline typename TGraphSearchNode::Pointer GetNeighborNode()
  {
    return m_NeighborNode;
  }

  inline typename TGraphSearchNode::Pointer GetCurrentNode()
  {
    return m_CurrentNode;
  }

  void SetMaxCost(PixelType m)
  {
    m_MaxCost = m;
  }

  double GetTotalCost()
  {
    return m_TotalCost;
  }

  void SetSearchFinished(bool m)
  {
    m_SearchFinished = m;
  }

  /** sets the boolean that indicates if the algorithm is done */
protected:
  QType                m_QS;
  vector<unsigned int> m_EdgeTemplate;                        /** defines neighborhood connectivity */
  RadiusType           m_Radius;                              /** used by the neighborhood iterator */
  typename TGraphSearchNode::Pointer       m_PredecessorNode; /** holds the predecessor node */
  typename TGraphSearchNode::Pointer       m_CurrentNode;     /** holds the current node */
  typename TGraphSearchNode::Pointer       m_NeighborNode;    /** holds the current neighbor node */
  typename GraphType::Pointer        m_Graph;                 /** holds all the graph information */
  GraphRegionType m_GraphRegion;
  GraphSizeType   m_GraphSize;            /** rectangular size of graph */

  typename GraphType::IndexType      m_GraphIndex;
  bool      m_SearchFinished;
  PixelType m_NewCost;
  PixelType m_CurrentCost;
  PixelType m_MaxCost;                  // This creates an insurmountable barrier unless all costs are max

  double m_TotalCost;

  unsigned long m_NumberSearched;
  DijkstrasAlgorithm();
  ~DijkstrasAlgorithm()
  {
  };
private:

  DijkstrasAlgorithm(const Self &); // purposely not implemented
  void operator=(const Self &);     // purposely not implemented
};
} // end namespace itk

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkDijkstrasAlgorithm.cxx"
#endif

#endif