1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
|
/********************************************************************************
* Create a VTK mesh from the white matter image
*******************************************************************************/
#ifndef __BinaryImageToMeshFilter_h_
#define __BinaryImageToMeshFilter_h_
#include <vtkSmartPointer.h>
#include "itkImage.h"
#include "itkResampleImageFilter.h"
#include "itkWindowedSincInterpolateImageFunction.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkAntiAliasBinaryImageFilter.h"
#include "itkUnaryFunctorImageFilter.h"
// #include "itkBinaryWellComposed3DImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkCommand.h"
#include <vtkCellArray.h>
#include <vtkPolyData.h>
#include <vtkTriangleFilter.h>
#include <vtkImageMarchingCubes.h>
#include <vtkImageImport.h>
#include <itkVTKImageExport.h>
#include <vtkDecimatePro.h>
#include <vtkPolyDataConnectivityFilter.h>
#include <vtkStripper.h>
#include <vtkCleanPolyData.h>
#include <vtkSmoothPolyDataFilter.h>
#include <vtkImageData.h>
#include <iostream>
using namespace std;
template <class TImage>
void ConnectITKToVTK(itk::VTKImageExport<TImage> *fltExport, vtkImageImport *fltImport)
{
fltImport->SetUpdateInformationCallback( fltExport->GetUpdateInformationCallback() );
fltImport->SetPipelineModifiedCallback( fltExport->GetPipelineModifiedCallback() );
fltImport->SetWholeExtentCallback( fltExport->GetWholeExtentCallback() );
fltImport->SetSpacingCallback( fltExport->GetSpacingCallback() );
fltImport->SetOriginCallback( fltExport->GetOriginCallback() );
fltImport->SetScalarTypeCallback( fltExport->GetScalarTypeCallback() );
fltImport->SetNumberOfComponentsCallback( fltExport->GetNumberOfComponentsCallback() );
fltImport->SetPropagateUpdateExtentCallback( fltExport->GetPropagateUpdateExtentCallback() );
fltImport->SetUpdateDataCallback( fltExport->GetUpdateDataCallback() );
fltImport->SetDataExtentCallback( fltExport->GetDataExtentCallback() );
fltImport->SetBufferPointerCallback( fltExport->GetBufferPointerCallback() );
fltImport->SetCallbackUserData( fltExport->GetCallbackUserData() );
}
class UnaryFunctorBinaryToFloat
{
public:
UnaryFunctorBinaryToFloat()
{
m_InsideValue = 1.0f;
}
void SetInvertImage(bool invert)
{
m_InsideValue = invert ? -1.0f : 1.0f;
}
inline float operator()(short in)
{
return in == 0 ? -m_InsideValue : m_InsideValue;
}
inline bool operator !=(const UnaryFunctorBinaryToFloat & otro) const
{
return this->m_InsideValue != otro.m_InsideValue;
}
private:
float m_InsideValue;
};
template <class TImage>
class BinaryImageToMeshFilter : public itk::ProcessObject
{
public:
typedef BinaryImageToMeshFilter Self;
typedef itk::ProcessObject Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef itk::Image<float, 3> FloatImageType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Image dimension. */
itkStaticConstMacro(ImageDimension, unsigned int, TImage::ImageDimension);
/** Get the result mesh */
vtkPolyData * GetMesh()
{
return fltTriangle->GetOutput();
}
/** Get the intermediate antialiased image */
FloatImageType * GetAntiAliasImage()
{
return fltAlias->GetOutput();
}
/** Whether to invert the binary image */
itkSetMacro(InvertInput, bool);
itkGetMacro(InvertInput, bool);
/** Whether to invert the binary image */
itkSetMacro(ResampleScaleFactor, float);
itkGetMacro(ResampleScaleFactor, float);
/** Whether to decimate the mesh and how much, 0 for none*/
itkSetMacro(DecimateFactor, double);
itkGetMacro(DecimateFactor, double);
/** Smoothing iterations, or 0 for none */
itkSetMacro(SmoothingIterations, int);
itkGetMacro(SmoothingIterations, int);
/** Set the input */
using Superclass::SetInput;
virtual void SetInput(TImage *image)
{
this->SetNthInput(0, image);
}
/** Update method (why?) */
void Update()
{
this->GenerateData();
}
/** Set the anti-aliasing quality parameter */
void SetAntiAliasMaxRMSError(double value)
{
fltAlias->SetMaximumRMSError(value);
}
/** Get the 'distance image' based on anti-aliasing the binary image */
FloatImageType * GetDistanceImage()
{
return fltAlias->GetOutput();
}
/** Get the floating point 'resampled' image, if resampling was enabled */
FloatImageType * GetResampledImage()
{
if( m_ResampleScaleFactor != 1.0f )
{
return fltResample->GetOutput();
}
else
{
return fltToFloat->GetOutput();
}
}
void PrintMeshStatistics(vtkPolyData *mesh)
{
vector<unsigned int> cellHist(100, 0);
for( vtkIdType i = 0; i < mesh->GetNumberOfCells(); i++ )
{
cellHist[mesh->GetCellType(i)]++;
}
cout << " mesh has " << mesh->GetNumberOfPoints() << " points." << endl;
cout << " mesh has " << mesh->GetNumberOfCells() << " cells. " << endl;
cout << " mesh has " << cellHist[VTK_VERTEX] << " vtk_vertex" << endl;
cout << " mesh has " << cellHist[VTK_LINE] << " vtk_line" << endl;
cout << " mesh has " << cellHist[VTK_POLY_LINE] << " vtk_poly_line" << endl;
cout << " mesh has " << cellHist[VTK_TRIANGLE] << " vtk_triangle" << endl;
cout << " mesh has " << cellHist[VTK_TRIANGLE_STRIP] << " vtk_triangle_strip" << endl;
}
protected:
BinaryImageToMeshFilter()
{
// Set the cardinality of the filter
this->SetNumberOfIndexedInputs(1);
this->SetNumberOfIndexedOutputs(1);
// Begin with the well-connectedness filter
// fltTopology = TopologyFilter::New();
// Create the converter to float
fltToFloat = ToFloatFilter::New();
// fltToFloat->SetInput(this->GetInput());//fltTopology->GetOutput());
typename FloatImageType::Pointer imgPipeEnd = fltToFloat->GetOutput();
// Initialize the interpolation function
fnInterpolate = ResampleFunction::New();
// Create a resampling image filter
fltResample = ResampleFilter::New();
fltResample->SetInput(imgPipeEnd);
fltResample->SetTransform(itk::IdentityTransform<double, 3>::New() );
fltResample->SetInterpolator(fnInterpolate);
imgPipeEnd = fltResample->GetOutput();
// Create an anti-aliasing image filter
fltAlias = AAFilter::New();
fltAlias->SetMaximumRMSError(0.024);
fltAlias->SetInput(imgPipeEnd);
imgPipeEnd = fltAlias->GetOutput();
// Cast the image to VTK
fltExport = ExportFilter::New();
fltImport = vtkImageImport::New();
fltExport->SetInput(imgPipeEnd);
ConnectITKToVTK(fltExport.GetPointer(), fltImport);
// Compute marching cubes
vtkImageData *importPipeEnd = fltImport->GetOutput();
fltMarching = vtkImageMarchingCubes::New();
fltMarching->SetInputData(importPipeEnd);
fltMarching->ComputeScalarsOff();
fltMarching->ComputeGradientsOff();
fltMarching->SetNumberOfContours(1);
fltMarching->SetValue(0, 0.0f);
vtkPolyData *meshPipeEnd = fltMarching->GetOutput();
// Keep the largest connected component
fltConnect = vtkPolyDataConnectivityFilter::New();
fltConnect->SetInputData(meshPipeEnd);
fltConnect->SetExtractionModeToLargestRegion();
meshPipeEnd = fltMarching->GetOutput();
fltClean = vtkCleanPolyData::New();
bool doclean = false;
if ( doclean )
{
// Clean up the data
fltClean->SetInputData(meshPipeEnd);
meshPipeEnd = fltClean->GetOutput();
// Decimate the data
fltDecimate = vtkDecimatePro::New();
fltDecimate->SetInputData(meshPipeEnd);
fltDecimate->PreserveTopologyOn();
meshPipeEnd = fltDecimate->GetOutput();
}
// Smooth the data, keeping it on the contour
vtkSmartPointer<vtkSmoothPolyDataFilter> smoothFilter =
vtkSmartPointer<vtkSmoothPolyDataFilter>::New();
smoothFilter->SetInputData(meshPipeEnd);
smoothFilter->SetNumberOfIterations(5);
meshPipeEnd = smoothFilter->GetOutput();
// Compute triangle strips for faster display
fltTriangle = vtkTriangleFilter::New();
fltTriangle->SetInputData(meshPipeEnd);
meshPipeEnd = fltTriangle->GetOutput();
// Set up progress
typedef itk::MemberCommand<Self> CommandType;
typename CommandType::Pointer cmd = CommandType::New();
cmd->SetCallbackFunction(this, &Self::ProgressCommand);
// Add progress to the two slow filters
fltResample->AddObserver(itk::ProgressEvent(), cmd);
fltAlias->AddObserver(itk::ProgressEvent(), cmd);
// Invert - NO
m_InvertInput = false;
// Resample - NO
m_ResampleScaleFactor = 1.0f;
// Decimate - NO
m_DecimateFactor = 0.0f;
}
~BinaryImageToMeshFilter()
{
// CLean up
fltMarching->Delete();
fltConnect->Delete();
fltImport->Delete();
fltTriangle->Delete();
fltClean->Delete();
fltDecimate->Delete();
fltSmoothMesh->Delete();
}
/** Generate Data */
virtual void GenerateData( void )
{
// Run the computation
cout << "Computing mesh from binary image" << endl;
// Get the input and output pointers
typename TImage::ConstPointer inputImage =
reinterpret_cast<TImage *>(this->GetInput(0) );
// Pass the input to the topology filter
// fltTopology->SetInputData(inputImage);
// Compute the max/min of the image to set fore/back
typedef itk::MinimumMaximumImageCalculator<TImage> CalcType;
typename CalcType::Pointer calc = CalcType::New();
calc->SetImage(inputImage);
calc->Compute();
// Set the background and foreground in the topology filter
// fltTopology->SetBackgroundValue(calc->GetMinimum());
// fltTopology->SetForegroundValue(calc->GetMaximum());
// fltTopology->Update();
// Pass the input to the remapper
fltToFloat->SetInput(inputImage);
// Set the inversion if necessary
m_ToFloatFunctor.SetInvertImage(m_InvertInput);
fltToFloat->SetFunctor(m_ToFloatFunctor);
// Convert the image to floats
fltToFloat->Update();
// Peform resampling only if necessary
if( m_ResampleScaleFactor != 1.0 )
{
// Include the filter in the pipeline
fltAlias->SetInput(fltResample->GetOutput() );
// Set the size parameter
FloatImageType::SizeType szOutput =
inputImage->GetBufferedRegion().GetSize();
szOutput[0] = (unsigned long) (szOutput[0] * m_ResampleScaleFactor);
szOutput[1] = (unsigned long) (szOutput[1] * m_ResampleScaleFactor);
szOutput[2] = (unsigned long) (szOutput[2] * m_ResampleScaleFactor);
fltResample->SetSize(szOutput);
// Set the scale and origin
FloatImageType::SpacingType xSpacing =
inputImage->GetSpacing();
xSpacing[0] /= m_ResampleScaleFactor;
xSpacing[1] /= m_ResampleScaleFactor;
xSpacing[2] /= m_ResampleScaleFactor;
fltResample->SetOutputSpacing(xSpacing);
fltResample->SetOutputOrigin(inputImage->GetOrigin() );
// Compute the resampling
cout << " resampling the image " << endl;
fltResample->Update();
cout << endl;
}
else
{
// Exclude the filter from the pipeline
fltAlias->SetInput(fltToFloat->GetOutput() );
}
// Run the filters
if( fltAlias->GetMaximumRMSError() > 0.0 )
{
cout << " anti-aliasing the image " << endl;
fltAlias->Update();
fltExport->SetInput(fltAlias->GetOutput() );
}
else
{
fltExport->SetInput(fltAlias->GetInput() );
}
bool verbose = true;
if( verbose )
{
cout << endl << " converting image to VTK" << endl;
}
fltImport->Update();
if( verbose )
{
cout << " running marching cubes algorithm" << endl;
}
fltMarching->Update();
if( verbose )
{
cout << " mesh has "
<< fltMarching->GetOutput()->GetNumberOfCells() << " cells and "
<< fltMarching->GetOutput()->GetNumberOfPoints() << " points. " << endl;
}
if( verbose )
{
cout << " extracting the largest component" << endl;
}
fltConnect->Update();
if( verbose )
{
cout << " mesh has "
<< fltConnect->GetOutput()->GetNumberOfCells() << " cells and "
<< fltConnect->GetOutput()->GetNumberOfPoints() << " points. " << endl;
}
bool doclean = false;
if ( doclean )
{
if (verbose) cout << " cleaning the mesh " << endl;
fltClean->Update();
if (verbose) cout << " after clean step mesh uses " << m_DecimateFactor << " decimation "
<< fltClean->GetOutput()->GetNumberOfCells() << " cells and "
<< fltClean->GetOutput()->GetNumberOfPoints() << " points. " << endl;
}
std::cout << " to decimation with factor " << m_DecimateFactor << std::endl;
// If decimation is on, run it
if( m_DecimateFactor > 0.0 )
{
if( verbose )
{
cout << " decimating the mesh by factor of " << m_DecimateFactor << endl;
}
fltDecimate->SetTargetReduction(m_DecimateFactor);
fltDecimate->SetInputData(fltConnect->GetOutput());
fltDecimate->Update();
fltTriangle->SetInputData(fltDecimate->GetOutput() );
// if (verbose) cout << " mesh has "
// << fltClean->GetOutput()->GetNumberOfCells() << " cells and "
// << fltClean->GetOutput()->GetNumberOfPoints() << " points. " << endl;
}
else
{
fltTriangle->SetInputData(fltConnect->GetOutput());
}
if( verbose )
{
cout << " converting mesh to triangles" << endl;
}
fltTriangle->Update();
m_Result = fltTriangle->GetOutput();
if( verbose )
{
cout << " mesh has "
<< m_Result->GetNumberOfCells() << " cells and "
<< m_Result->GetNumberOfPoints() << " points. " << endl;
}
// If smoothing is on, run it
if( m_SmoothingIterations > 0 )
{
if( verbose )
{
cout << " smoothing the mesh " << m_SmoothingIterations << endl;
}
fltSmoothMesh->SetNumberOfIterations(m_SmoothingIterations);
fltSmoothMesh->SetInputData(m_Result);
// fltSmoothMesh->SetInputConnection(m_Result); // BA FIXME
fltSmoothMesh->Update();
m_Result = fltSmoothMesh->GetOutput();
std::cout << " Done " << std::endl;
}
}
private:
typedef itk::ImageRegionIterator<TImage> IteratorType;
typedef itk::ImageRegionConstIterator<TImage> ConstIteratorType;
// Topology correction filter
// typedef itk::BinaryWellComposed3DImageFilter<TImage> TopologyFilter;
// Functor for remapping to float
UnaryFunctorBinaryToFloat m_ToFloatFunctor;
// Filter to remap image to floating point
typedef itk::UnaryFunctorImageFilter<
TImage, FloatImageType, UnaryFunctorBinaryToFloat> ToFloatFilter;
// Windowed sinc for resampling
typedef itk::Function::WelchWindowFunction<4> WindowFunction;
typedef itk::NearestNeighborInterpolateImageFunction<
FloatImageType, double> ResampleFunction;
// Filter to resample image
typedef itk::ResampleImageFilter<FloatImageType, FloatImageType> ResampleFilter;
// Antialiasing filter
typedef itk::AntiAliasBinaryImageFilter<FloatImageType, FloatImageType> AAFilter;
// Export to VTK filter
typedef itk::VTKImageExport<FloatImageType> ExportFilter;
// typename TopologyFilter::Pointer fltTopology;
typename AAFilter::Pointer fltAlias;
typename ExportFilter::Pointer fltExport;
typename ToFloatFilter::Pointer fltToFloat;
typename ResampleFilter::Pointer fltResample;
typename ResampleFunction::Pointer fnInterpolate;
vtkImageImport * fltImport;
vtkImageMarchingCubes * fltMarching;
vtkPolyDataConnectivityFilter *fltConnect;
vtkCleanPolyData * fltClean;
vtkTriangleFilter * fltTriangle;
vtkDecimatePro * fltDecimate;
vtkSmoothPolyDataFilter * fltSmoothMesh;
bool m_InvertInput;
float m_ResampleScaleFactor;
double m_DecimateFactor;
int m_SmoothingIterations;
vtkPolyData *m_Result;
void ProgressCommand(itk::Object *source, const itk::EventObject & /*evt*/)
{
// Get the elapsed progress
itk::ProcessObject *po = reinterpret_cast<ProcessObject *>(source);
float progress = po->GetProgress();
cout << setprecision(4) << (100 * progress) << " " << flush;
}
};
#endif
|