1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
|
/*=========================================================================
Program: Advanced Normalization Tools
Module: $RCSfile: itkVectorGaussianInterpolateImageFunction.h,v $
Language: C++
Date: $Date: 2009/07/01 12:59:34 $
Version: $Revision: 1.5 $
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
http://sourceforge.net/projects/advants/files/ANTS/ANTSCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __itkVectorGaussianInterpolateImageFunction_h
#define __itkVectorGaussianInterpolateImageFunction_h
#include "itkInterpolateImageFunction.h"
#include "vnl/vnl_erf.h"
#include "itkImageRegionConstIteratorWithIndex.h"
namespace itk
{
/** \class VectorGaussianInterpolateImageFunction
* \brief Gaussianly interpolate an image at specified positions.
*
* VectorGaussianInterpolateImageFunction linearly interpolates image intensity at
* a non-integer pixel position. This class is templated
* over the input image type and the coordinate representation type
* (e.g. float or double).
*
* This function works for N-dimensional images.
*
* \ingroup ImageFunctions ImageInterpolators
*/
template <class TInputImage, class TCoordRep = double>
class VectorGaussianInterpolateImageFunction :
public InterpolateImageFunction<TInputImage, TCoordRep>
{
public:
/** Standard class typedefs. */
typedef VectorGaussianInterpolateImageFunction Self;
typedef InterpolateImageFunction<TInputImage, TCoordRep> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(VectorGaussianInterpolateImageFunction, InterpolateImageFunction);
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** OutputType typedef support. */
typedef typename Superclass::OutputType OutputType;
/** InputImageType typedef support. */
typedef typename Superclass::InputImageType InputImageType;
typedef typename Superclass::InputImageType::PixelType PixelType;
/** RealType typedef support. */
typedef typename Superclass::RealType RealType;
/** Dimension underlying input image. */
itkStaticConstMacro(VDim, unsigned int, Superclass::ImageDimension);
/** Index typedef support. */
typedef typename Superclass::IndexType IndexType;
/** ContinuousIndex typedef support. */
typedef typename Superclass::ContinuousIndexType ContinuousIndexType;
/** Compute internals */
virtual void ComputeBoundingBox()
{
const TInputImage *img = this->GetInputImage();
if( img == NULL )
{
return;
}
// Set the bounding box
for( size_t d = 0; d < VDim; d++ )
{
bb_start[d] = -0.5;
bb_end[d] = img->GetBufferedRegion().GetSize()[d] - 0.5;
nt[d] = (int)(bb_end[d] - bb_start[d] + 0.5);
dx[d].set_size(nt[d]);
gx[d].set_size(nt[d]);
this->sigma[d] = 1;
sf[d] = 1.0 / (sqrt(2.0) * this->sigma[d] / img->GetSpacing()[d]);
// std::cout << " sigma " << this->sigma[d] << " spc " << img->GetSpacing()[d] << " sf " << sf[d] <<
// std::endl;
cut[d] = this->sigma[d] * alpha / img->GetSpacing()[d];
}
this->m_ImageSize = this->GetInputImage()->GetLargestPossibleRegion().GetSize();
}
/** Set input */
virtual void SetInputImage(const TInputImage *img)
{
// Call parent method
Superclass::SetInputImage(img);
this->ComputeBoundingBox();
}
void SetParameters(double * /* sigma */, double Alpha)
{
// Set the parameters
for( size_t d = 0; d < VDim; d++ )
{
this->sigma[d] = 1.0; // sigma[d];
}
this->alpha = Alpha;
// If the image already set, recompute
this->ComputeBoundingBox();
}
/** Evaluate the function at a ContinuousIndex position
*
* Returns the linearly interpolated image intensity at a
* specified point position. No bounds checking is done.
* The point is assume to lie within the image buffer.
*
* ImageFunction::IsInsideBuffer() can be used to check bounds before
* calling the method. */
virtual OutputType EvaluateAtContinuousIndex(
const ContinuousIndexType & index ) const
{
return EvaluateAtContinuousIndex(index, NULL);
}
virtual OutputType EvaluateAtContinuousIndex(
const ContinuousIndexType & index,
OutputType *grad) const
{
OutputType Vout;
Vout.Fill(0);
// The bound variables for x, y, z
int i0[VDim], i1[VDim];
// Compute the ERF difference arrays
// std::cout << " index " << index << " VD " << VDim << std::endl;
for( size_t d = 0; d < VDim; d++ )
{
if( index[d] <= 0 || index[d] >= this->m_ImageSize[d] - 1 || vnl_math_isnan(index[d]) ||
vnl_math_isinf(index[d]) )
{
return Vout;
}
double *pdx = const_cast<double *>(dx[d].data_block() );
double *pgx = grad ? const_cast<double *>(gx[d].data_block() ) : ITK_NULLPTR;
compute_erf_array(pdx, i0[d], i1[d], bb_start[d], nt[d], cut[d], index[d], sf[d], pgx);
}
// Get a pointer to the output value
// loop over vector length
for( unsigned int qq = 0; qq < Vout.Size(); qq++ )
{
double sum_me = 0.0, sum_m = 0.0;
vnl_vector_fixed<double, VDim> dsum_me(0.0), dsum_m(0.0), dw;
// Loop over the voxels in the region identified
ImageRegion<VDim> region;
for( size_t d = 0; d < VDim; d++ )
{
region.SetIndex(d, i0[d]);
region.SetSize(d, i1[d] - i0[d]);
}
for(
ImageRegionConstIteratorWithIndex<InputImageType> it(this->GetInputImage(), region);
!it.IsAtEnd(); ++it )
{
size_t j = it.GetIndex()[0];
double w = dx[0][j];
if( grad )
{
dw[0] = gx[0][j];
for( size_t d = 1; d < VDim; d++ )
{
dw[d] = dx[0][j];
}
}
for( size_t d = 1; d < VDim; d++ )
{
j = it.GetIndex()[d];
w *= dx[d][j];
if( grad )
{
for( size_t q = 0; q < VDim; q++ )
{
dw[q] *= (d == q) ? gx[d][j] : dx[d][j];
}
}
}
double V = it.Get()[qq];
sum_me += V * w;
sum_m += w;
if( grad )
{
for( size_t q = 0; q < VDim; q++ )
{
dsum_me[q] += V * dw[q];
dsum_m[q] += dw[q];
}
}
}
double rc = sum_me / sum_m;
if( grad )
{
for( size_t q = 0; q < VDim; q++ )
{
grad[q] = (dsum_me[q] - rc * dsum_m[q]) / sum_m;
grad[q] /= -1.4142135623730951 * this->sigma[q];
}
}
if( vnl_math_isnan(rc) )
{
rc = 0;
}
Vout[qq] = rc;
}
// std::cout << " gaussian " << std::endl;
// return sum_me / sum_m;
return Vout;
}
protected:
VectorGaussianInterpolateImageFunction()
{
}
~VectorGaussianInterpolateImageFunction()
{
};
void PrintSelf(std::ostream& os, Indent indent) const
{
this->Superclass::PrintSelf(os, indent);
}
private:
VectorGaussianInterpolateImageFunction( const Self & ); // purposely not implemented
void operator=( const Self & ); // purposely not implemented
/** Number of neighbors used in the interpolation */
static const unsigned long m_Neighbors;
typename InputImageType::SizeType m_ImageSize;
vnl_vector<double> dx[VDim], gx[VDim];
double bb_start[VDim], bb_end[VDim], sf[VDim], cut[VDim];
int nt[VDim], stride[VDim];
double sigma[VDim], alpha;
void compute_erf_array(
double *dx_erf, // The output array of erf(p+i+1) - erf(p+i)
int & k0, int & k1, // The range of integration 0 <= k0 < k1 <= n
double b, // Lower bound of the bounding box
int n, // Size of the bounding box in steps
double Cut, // The distance at which to cut off
double p, // the value p
double sfac, // scaling factor 1 / (Sqrt[2] sigma)
double *gx_erf = ITK_NULLPTR // Output derivative/erf array (optional)
) const
{
// Determine the range of voxels along the line where to evaluate erf
k0 = (int) floor(p - b - Cut);
k1 = (int) ceil(p - b + Cut);
if( k0 < 0 )
{
k0 = 0;
}
if( k1 > n )
{
k1 = n;
}
// Start at the first voxel
double t = (b - p + k0) * sfac;
// std::cout << " t " << t << " b " << b << " p " << p << " k0 " << k0 << " sfat " << sfac <<
// std::endl;
double e_last = vnl_erf(t);
double g_last = gx_erf ? 1.128379167095513 * exp(-t * t) : 0.0;
for( int i = k0; i < k1; i++ )
{
t += sfac;
// std::cout << " t2 " << t << std::endl;
double e_now = vnl_erf(t);
dx_erf[i] = e_now - e_last;
if( gx_erf )
{
double g_now = 1.128379167095513 * exp(-t * t);
gx_erf[i] = g_now - g_last;
g_last = g_now;
}
e_last = e_now;
}
}
};
} // end namespace itk
// Define instantiation macro for this template.
#define ITK_TEMPLATE_VectorGaussianInterpolateImageFunction(_, EXPORT, x, y) namespace itk { \
_(2 (class EXPORT VectorGaussianInterpolateImageFunction<ITK_TEMPLATE_2 x> ) ) \
namespace Templates { typedef VectorGaussianInterpolateImageFunction<ITK_TEMPLATE_2 x> \
VectorGaussianInterpolateImageFunction##y; } \
}
#endif
|