File: ANTSIntegrateVectorField.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (529 lines) | stat: -rw-r--r-- 19,433 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529


#include "antsUtilities.h"
#include "antsAllocImage.h"
#include <algorithm>

#include "itkVectorIndexSelectionCastImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "vnl/algo/vnl_determinant.h"
#include "itkWarpImageFilter.h"
#include "itkImageFileWriter.h"

#include "itkRescaleIntensityImageFilter.h"
#include "vnl/algo/vnl_determinant.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkVectorLinearInterpolateImageFunction.h"
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"
#include "itkLaplacianRecursiveGaussianImageFilter.h"
#include "itkGradientRecursiveGaussianImageFilter.h"

#include "ReadWriteData.h"

namespace ants
{
template <typename TField, typename TImage>
typename TImage::Pointer
GetVectorComponent(typename TField::Pointer field, unsigned int index)
{
  // Initialize the Moving to the displacement field
  using ImageType = TImage;

  typename ImageType::Pointer sfield = AllocImage<ImageType>(field);

  using Iterator = itk::ImageRegionIteratorWithIndex<TField>;
  Iterator vfIter(field, field->GetLargestPossibleRegion());
  for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
  {
    typename TField::PixelType v1 = vfIter.Get();
    sfield->SetPixel(vfIter.GetIndex(), v1[index]);
  }

  return sfield;
}

template <typename TImage>
typename TImage::Pointer
SmoothImage(typename TImage::Pointer image, float sig)
{
  // find min value
  using Iterator = itk::ImageRegionIteratorWithIndex<TImage>;
  Iterator vfIter(image, image->GetLargestPossibleRegion());
  for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
  {
    typename TImage::PixelType v1 = vfIter.Get();
    if (std::isnan(v1))
    {
      vfIter.Set(0);
    }
  }
  using dgf = itk::DiscreteGaussianImageFilter<TImage, TImage>;
  typename dgf::Pointer filter = dgf::New();
  filter->SetVariance(sig);
  filter->SetUseImageSpacing(true);
  filter->SetMaximumError(.01f);
  filter->SetInput(image);
  filter->Update();
  typename TImage::Pointer out = filter->GetOutput();

  return out;
}

template <typename TImage>
void
SmoothDeformation(typename TImage::Pointer vectorimage, float sig)
{
  using VectorType = itk::Vector<float, 3>;
  using ImageType = itk::Image<float, 3>;
  typename ImageType::Pointer subimgx = GetVectorComponent<TImage, ImageType>(vectorimage, 0);
  subimgx = SmoothImage<ImageType>(subimgx, sig);
  typename ImageType::Pointer subimgy = GetVectorComponent<TImage, ImageType>(vectorimage, 1);
  subimgy = SmoothImage<ImageType>(subimgy, sig);
  typename ImageType::Pointer subimgz = GetVectorComponent<TImage, ImageType>(vectorimage, 2);
  subimgz = SmoothImage<ImageType>(subimgz, sig);

  using IteratorType = itk::ImageRegionIteratorWithIndex<TImage>;
  IteratorType Iterator(vectorimage, vectorimage->GetLargestPossibleRegion().GetSize());
  Iterator.GoToBegin();
  while (!Iterator.IsAtEnd())
  {
    VectorType vec;
    vec[0] = subimgx->GetPixel(Iterator.GetIndex());
    vec[1] = subimgy->GetPixel(Iterator.GetIndex());
    vec[2] = subimgz->GetPixel(Iterator.GetIndex());
    Iterator.Set(vec);
    ++Iterator;
  }
}

template <typename TImage, typename TField, typename TInterp, typename TInterp2>
float
IntegrateLength(typename TImage::Pointer gmsurf,
                typename TImage::Pointer /* thickimage */,
                typename TImage::IndexType   velind,
                typename TField::Pointer     lapgrad,
                float                        itime,
                float                        starttime,
                const float                  deltaTime,
                typename TInterp::Pointer    vinterp,
                typename TImage::SpacingType spacing,
                float                        vecsign,
                float                        timesign,
                float                        gradsign)
{
  using VectorType = typename TField::PixelType;
  using DPointType = typename TField::PointType;
  using DefaultInterpolatorType = itk::VectorLinearInterpolateImageFunction<TField, float>;

  VectorType zero;
  zero.Fill(0);
  VectorType disp;
  disp.Fill(0);
  unsigned int                                          ct = 0;
  DPointType                                            pointIn1;
  DPointType                                            pointIn2;
  typename DefaultInterpolatorType::ContinuousIndexType vcontind;
  DPointType                                            pointIn3;
  enum
  {
    ImageDimension = TImage::ImageDimension
  };
  using IndexType = typename TImage::IndexType;
  unsigned int m_NumberOfTimePoints = 2;
  for (unsigned int jj = 0; jj < ImageDimension; jj++)
  {
    pointIn1[jj] = velind[jj] * lapgrad->GetSpacing()[jj];
  }
  itime = starttime;
  bool  timedone = false;
  float totalmag = 0;
  while (!timedone)
  {
    float scale = 1; // *m_DT[timeind]/m_DS[timeind];
    //     std::cout << " scale " << scale << std::endl;
    auto itimetn1 = static_cast<double>(itime - timesign * deltaTime * scale);
    auto itimetn1h = static_cast<double>(itime - timesign * deltaTime * 0.5f * scale);
    if (itimetn1h < 0)
    {
      itimetn1h = 0;
    }
    if (itimetn1h > m_NumberOfTimePoints - 1)
    {
      itimetn1h = m_NumberOfTimePoints - 1;
    }
    if (itimetn1 < 0)
    {
      itimetn1 = 0;
    }
    if (itimetn1 > m_NumberOfTimePoints - 1)
    {
      itimetn1 = m_NumberOfTimePoints - 1;
    }
    // first get current position of particle
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      pointIn1[jj] = velind[jj] * lapgrad->GetSpacing()[jj];
    }
    //      std::cout << " ind " << index  << std::endl;
    // now index the time varying field at that position.
    typename DefaultInterpolatorType::OutputType f1;
    f1.Fill(0);
    typename DefaultInterpolatorType::OutputType f2;
    f2.Fill(0);
    typename DefaultInterpolatorType::OutputType f3;
    f3.Fill(0);
    typename DefaultInterpolatorType::OutputType f4;
    f4.Fill(0);

    using ContinuousIndexType = typename DefaultInterpolatorType::ContinuousIndexType;
    ContinuousIndexType Y1;
    ContinuousIndexType Y2;
    ContinuousIndexType Y3;
    ContinuousIndexType Y4;
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      pointIn2[jj] = static_cast<typename DPointType::CoordRepType>(disp[jj]) + pointIn1[jj];
      vcontind[jj] = pointIn2[jj] / lapgrad->GetSpacing()[jj];
      Y1[jj] = vcontind[jj];
      Y2[jj] = vcontind[jj];
      Y3[jj] = vcontind[jj];
      Y4[jj] = vcontind[jj];
    }
    // Y1[ImageDimension]=itimetn1;
    // Y2[ImageDimension]=itimetn1h;
    // Y3[ImageDimension]=itimetn1h;
    //      Y4[ImageDimension]=itime;

    f1 = vinterp->EvaluateAtContinuousIndex(Y1);
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      Y2[jj] += static_cast<typename ContinuousIndexType::CoordRepType>(static_cast<float>(f1[jj]) * deltaTime * 0.5f);
    }
    bool isinside = true;
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      if (Y2[jj] < 1 || Y2[jj] > lapgrad->GetLargestPossibleRegion().GetSize()[jj] - 2)
      {
        isinside = false;
      }
    }
    if (isinside)
    {
      f2 = vinterp->EvaluateAtContinuousIndex(Y2);
    }
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      Y3[jj] += static_cast<typename ContinuousIndexType::CoordRepType>(static_cast<float>(f2[jj]) * deltaTime * 0.5f);
    }
    isinside = true;
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      if (Y3[jj] < 1 || Y3[jj] > lapgrad->GetLargestPossibleRegion().GetSize()[jj] - 2)
      {
        isinside = false;
      }
    }
    if (isinside)
    {
      f3 = vinterp->EvaluateAtContinuousIndex(Y3);
    }
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      Y4[jj] += static_cast<typename ContinuousIndexType::CoordRepType>(static_cast<float>(f3[jj]) * deltaTime);
    }
    isinside = true;
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      if (Y4[jj] < 1 || Y4[jj] > lapgrad->GetLargestPossibleRegion().GetSize()[jj] - 2)
      {
        isinside = false;
      }
    }
    if (isinside)
    {
      f4 = vinterp->EvaluateAtContinuousIndex(Y4);
    }
    using DPointCoordRepType = typename DPointType::CoordRepType;
    auto twoValue = static_cast<DPointCoordRepType>(2.0);
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      pointIn3[jj] =
        pointIn2[jj] + static_cast<DPointCoordRepType>(gradsign * vecsign * deltaTime / 6.0f) *
                         (static_cast<DPointCoordRepType>(f1[jj]) + twoValue * static_cast<DPointCoordRepType>(f2[jj]) +
                          twoValue * static_cast<DPointCoordRepType>(f3[jj]) + static_cast<DPointCoordRepType>(f4[jj]));
    }

    VectorType out;
    float      mag = 0, dmag = 0, voxmag = 0;
    for (unsigned int jj = 0; jj < ImageDimension; jj++)
    {
      out[jj] = pointIn3[jj] - pointIn1[jj];
      mag += static_cast<float>(itk::Math::sqr(pointIn3[jj] - pointIn2[jj]));
      dmag += static_cast<float>(itk::Math::sqr(pointIn3[jj] - pointIn1[jj]));
      voxmag += static_cast<float>(itk::Math::sqr((pointIn3[jj] - pointIn2[jj]) / spacing[jj]));
      disp[jj] = out[jj];
    }
    voxmag = static_cast<float>(std::sqrt(voxmag));
    dmag = static_cast<float>(std::sqrt(dmag));
    totalmag += static_cast<float>(std::sqrt(mag));

    ct++;
    //      if (!propagate) //thislength=dmag;//
    //         thislength += totalmag;
    itime = itime + deltaTime * timesign;
    IndexType myind;
    for (unsigned int qq = 0; qq < ImageDimension; qq++)
    {
      myind[qq] = (unsigned long)(pointIn3[qq] / spacing[qq] + 0.5);
    }

    if (gmsurf->GetPixel(myind) < 1)
    {
      timedone = true;
    }
    if (ct > 1000)
    {
      std::cout << " stopping b/c exceed 1000 points " << voxmag << std::endl;
      timedone = true;
    }
    if (voxmag < 0.1f)
    {
      timedone = true;
    }
  }

  return totalmag;
}

template <unsigned int ImageDimension>
int
IntegrateVectorField(int argc, char * argv[])
{
  using PixelType = float;
  using VectorType = itk::Vector<float, ImageDimension>;
  using DisplacementFieldType = itk::Image<VectorType, ImageDimension>;
  using ImageType = itk::Image<PixelType, ImageDimension>;
  using SpacingType = typename ImageType::SpacingType;

  constexpr float deltaTime = 0.001;
  float           gradstep = 1.f / deltaTime; // atof(argv[3])*(-1.0);
  std::string     vectorfn = std::string(argv[1]);
  std::string     roifn = std::string(argv[2]);
  int             argct = 3;
  argct++;
  std::string lenoutname = std::string("");
  if (argc > argct)
  {
    lenoutname = std::string(argv[argct]);
  }
  argct++;
  if (argc > argct)
  {
    gradstep *= static_cast<float>(atof(argv[argct]));
  }
  argct++;

  typename ImageType::Pointer ROIimage;
  ReadImage<ImageType>(ROIimage, roifn.c_str());
  typename ImageType::Pointer thickimage;
  ReadImage<ImageType>(thickimage, roifn.c_str());
  thickimage->FillBuffer(0);
  typename DisplacementFieldType::Pointer VECimage;
  ReadImage<DisplacementFieldType>(VECimage, vectorfn.c_str());
  SpacingType spacing = ROIimage->GetSpacing();
  using IteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;
  IteratorType Iterator(ROIimage, ROIimage->GetLargestPossibleRegion().GetSize());

  double timezero = 0;         // 1
  double timeone = 1;          // (s[ImageDimension]-1-timezero);
  float  starttime = timezero; // timezero;
  float  finishtime = timeone; // s[ImageDimension]-1;//timeone;

  typename DisplacementFieldType::IndexType velind;
  float                                     timesign = 1.0;
  if (starttime > finishtime)
  {
    timesign = -1.0;
  }
  using TimeVaryingVelocityFieldType = DisplacementFieldType;
  // UNUSED: typedef typename DisplacementFieldType::PointType                                      DPointType;
  using DefaultInterpolatorType = itk::VectorLinearInterpolateImageFunction<TimeVaryingVelocityFieldType, float>;
  typename DefaultInterpolatorType::Pointer vinterp = DefaultInterpolatorType::New();
  using ScalarInterpolatorType = itk::LinearInterpolateImageFunction<ImageType, float>;
  VectorType zero;
  zero.Fill(0);

  using VIteratorType = itk::ImageRegionIteratorWithIndex<DisplacementFieldType>;
  VIteratorType VIterator(VECimage, VECimage->GetLargestPossibleRegion().GetSize());
  VIterator.GoToBegin();
  while (!VIterator.IsAtEnd())
  {
    VectorType vec = VIterator.Get();
    float      mag = 0;
    for (unsigned int qq = 0; qq < ImageDimension; qq++)
    {
      mag += vec[qq] * vec[qq];
    }
    mag = sqrt(mag);
    if (mag > 0)
    {
      vec = vec / mag;
    }
    VIterator.Set(vec * gradstep);
    ++VIterator;
  }

  Iterator.GoToBegin();
  while (!Iterator.IsAtEnd())
  {
    velind = Iterator.GetIndex();
    float      itime = starttime;
    VectorType disp;
    disp.Fill(0.0);
    if (itk::Math::FloatAlmostEqual(ROIimage->GetPixel(velind), static_cast<PixelType>(2)))
    {
      vinterp->SetInputImage(VECimage);
      float  gradsign = -1.0;
      double vecsign = -1.0;
      float  len1 =
        IntegrateLength<ImageType, DisplacementFieldType, DefaultInterpolatorType, ScalarInterpolatorType>(ROIimage,
                                                                                                           thickimage,
                                                                                                           velind,
                                                                                                           VECimage,
                                                                                                           itime,
                                                                                                           starttime,
                                                                                                           deltaTime,
                                                                                                           vinterp,
                                                                                                           spacing,
                                                                                                           vecsign,
                                                                                                           gradsign,
                                                                                                           timesign);

      gradsign = 1.0;
      vecsign = 1;
      const float len2 =
        IntegrateLength<ImageType, DisplacementFieldType, DefaultInterpolatorType, ScalarInterpolatorType>(ROIimage,
                                                                                                           thickimage,
                                                                                                           velind,
                                                                                                           VECimage,
                                                                                                           itime,
                                                                                                           starttime,
                                                                                                           deltaTime,
                                                                                                           vinterp,
                                                                                                           spacing,
                                                                                                           vecsign,
                                                                                                           gradsign,
                                                                                                           timesign);

      float totalength = len1 + len2;
      thickimage->SetPixel(velind, totalength);
      if ((totalength) > 0)
      {
        std::cout << " len1 " << len1 << " len2 " << len2 << " ind " << velind << std::endl;
      }
    }
    ++Iterator;
  }

  ANTs::WriteImage<ImageType>(thickimage, lenoutname.c_str());

  return EXIT_SUCCESS;
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
ANTSIntegrateVectorField(std::vector<std::string> args, std::ostream * /*out_stream = nullptr*/)
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "ANTSIntegrateVectorField");
  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc < 4)
  {
    std::cout << "Usage:   " << argv[0]
              << "  VecImageIN.nii.gz ROIMaskIN.nii.gz FibersOUT.vtk  LengthImageOUT.nii.gz   " << std::endl;
    std::cout << " The vector field should have vectors as voxels , the ROI is an integer image, fibers out will be "
                 "vtk text files .... "
              << std::endl;
    std::cout << "  ROI-Mask controls where the integration is performed and the start point region ... " << std::endl;
    std::cout << " e.g. the brain will have value 1 , the ROI has value 2 , then all starting seed points "
              << std::endl;
    std::cout << " for the integration will start in the region labeled 2 and be constrained to the region labeled 1. "
              << std::endl;
    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  std::string               ifn = std::string(argv[1]);
  itk::ImageIOBase::Pointer imageIO = itk::ImageIOFactory::CreateImageIO(ifn.c_str(), itk::IOFileModeEnum::ReadMode);
  imageIO->SetFileName(ifn.c_str());
  imageIO->ReadImageInformation();
  unsigned int dim = imageIO->GetNumberOfDimensions();

  switch (dim)
  {
    case 2:
    {
      IntegrateVectorField<2>(argc, argv);
    }
    break;
    case 3:
    {
      IntegrateVectorField<3>(argc, argv);
    }
    break;
    case 4:
    {
      IntegrateVectorField<4>(argc, argv);
    }
    break;
    default:
      std::cerr << "Unsupported dimension" << std::endl;
      return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}
} // namespace ants