1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732
|
#include <string>
#include <algorithm>
#include <vector>
#include <algorithm>
#include "antsUtilities.h"
#include "ReadWriteData.h"
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageRegionIterator.h"
#include "itkMaskImageFilter.h"
#include "itkNumericSeriesFileNames.h"
#include "itkSymmetricSecondRankTensor.h"
#include "itkVectorImage.h"
#include "itkVectorIndexSelectionCastImageFilter.h"
#include "antsAtroposSegmentationImageFilter.h"
#include "antsBoxPlotQuantileListSampleFilter.h"
#include "antsCommandLineOption.h"
#include "antsCommandLineParser.h"
#include "antsGaussianListSampleFunction.h"
#include "antsLogEuclideanGaussianListSampleFunction.h"
#include "antsGrubbsRosnerListSampleFilter.h"
#include "antsHistogramParzenWindowsListSampleFunction.h"
#include "antsJointHistogramParzenShapeAndOrientationListSampleFunction.h"
#include "antsListSampleToListSampleFilter.h"
#include "antsManifoldParzenWindowsListSampleFunction.h"
#include "antsPassThroughListSampleFilter.h"
#include "antsPartialVolumeGaussianListSampleFunction.h"
#include "itkTimeProbe.h"
namespace ants
{
template <typename TFilter>
class CommandIterationUpdate final : public itk::Command
{
public:
using Self = CommandIterationUpdate<TFilter>;
using Superclass = itk::Command;
using Pointer = itk::SmartPointer<Self>;
itkNewMacro(Self);
protected:
CommandIterationUpdate() = default;
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
const auto * filter = dynamic_cast<const TFilter *>(object);
if (typeid(event) != typeid(itk::IterationEvent))
{
return;
}
std::cout << " Iteration " << filter->GetElapsedIterations() << " (of " << filter->GetMaximumNumberOfIterations()
<< "): ";
std::cout << "posterior probability = " << filter->GetCurrentPosteriorProbability();
using RealType = typename TFilter::RealType;
RealType annealingTemperature =
filter->GetInitialAnnealingTemperature() *
std::pow(filter->GetAnnealingRate(), static_cast<RealType>(filter->GetElapsedIterations()));
annealingTemperature = std::max(annealingTemperature, filter->GetMinimumAnnealingTemperature());
std::cout << " (annealing temperature = " << annealingTemperature << ")" << std::endl;
}
};
template <unsigned int ImageDimension>
int
AtroposSegmentation(itk::ants::CommandLineParser * parser)
{
using PixelType = float;
using RealType = float;
using InputImageType = itk::Image<PixelType, ImageDimension>;
using LabelType = unsigned int;
using LabelImageType = itk::Image<LabelType, ImageDimension>;
bool verbose = false;
typename itk::ants::CommandLineParser::OptionType::Pointer verboseOption = parser->GetOption("verbose");
if (verboseOption && verboseOption->GetNumberOfFunctions())
{
verbose = parser->Convert<bool>(verboseOption->GetFunction(0)->GetName());
}
if (verbose)
{
std::cout << std::endl << "Running Atropos for " << ImageDimension << "-dimensional images." << std::endl;
}
using SegmentationFilterType = itk::ants::AtroposSegmentationImageFilter<InputImageType, LabelImageType>;
typename SegmentationFilterType::Pointer segmenter = SegmentationFilterType::New();
if (verbose)
{
using CommandType = CommandIterationUpdate<SegmentationFilterType>;
typename CommandType::Pointer observer = CommandType::New();
segmenter->AddObserver(itk::IterationEvent(), observer);
}
/**
* memory-usage -- need to set before setting the prior probability images.
*/
typename itk::ants::CommandLineParser::OptionType::Pointer memoryOption = parser->GetOption("minimize-memory-usage");
if (memoryOption && memoryOption->GetNumberOfFunctions())
{
segmenter->SetMinimizeMemoryUsage(parser->Convert<bool>(memoryOption->GetFunction(0)->GetName()));
}
/**
* Initialization
*/
typename itk::ants::CommandLineParser::OptionType::Pointer initializationOption = parser->GetOption("initialization");
if (!initializationOption || !initializationOption->GetNumberOfFunctions())
{
std::cerr << "No initialization option specified." << std::endl;
return EXIT_FAILURE;
}
if (initializationOption && initializationOption->GetNumberOfFunctions() &&
initializationOption->GetFunction(0)->GetNumberOfParameters() < 1)
{
if (verbose)
{
std::cerr << "Incorrect initialization option specification." << std::endl;
std::cerr << " " << initializationOption->GetDescription() << std::endl;
}
return EXIT_FAILURE;
}
else
{
segmenter->SetNumberOfTissueClasses(
parser->Convert<unsigned int>(initializationOption->GetFunction(0)->GetParameter(0)));
std::string initializationStrategy = initializationOption->GetFunction(0)->GetName();
ConvertToLowerCase(initializationStrategy);
if (!initializationStrategy.compare(std::string("random")))
{
segmenter->SetInitializationStrategy(SegmentationFilterType::Random);
}
else if (!initializationStrategy.compare(std::string("otsu")))
{
segmenter->SetInitializationStrategy(SegmentationFilterType::Otsu);
}
else if (!initializationStrategy.compare(std::string("kmeans")))
{
segmenter->SetInitializationStrategy(SegmentationFilterType::KMeans);
if (initializationOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
std::vector<float> clusterCenters =
parser->ConvertVector<float>(initializationOption->GetFunction(0)->GetParameter(1));
if (clusterCenters.size() != segmenter->GetNumberOfTissueClasses())
{
if (verbose)
{
std::cerr << "The cluster center vector size does not equal the "
<< "specified number of classes." << std::endl;
}
return EXIT_FAILURE;
}
else
{
typename SegmentationFilterType::ParametersType parameters;
parameters.SetSize(segmenter->GetNumberOfTissueClasses());
for (unsigned int n = 0; n < parameters.GetSize(); n++)
{
parameters[n] = clusterCenters[n];
}
segmenter->SetInitialKMeansParameters(parameters);
}
}
}
else if (!initializationStrategy.compare(std::string("priorprobabilityimages")))
{
segmenter->SetInitializationStrategy(SegmentationFilterType::PriorProbabilityImages);
if (initializationOption->GetFunction(0)->GetNumberOfParameters() < 3)
{
if (verbose)
{
std::cerr << "Incorrect initialization option specification." << std::endl;
std::cerr << " " << initializationOption->GetDescription() << std::endl;
}
return EXIT_FAILURE;
}
segmenter->SetPriorProbabilityWeight(
parser->Convert<float>(initializationOption->GetFunction(0)->GetParameter(2)));
if (initializationOption->GetFunction(0)->GetNumberOfParameters() > 3)
{
segmenter->SetProbabilityThreshold(
parser->Convert<float>(initializationOption->GetFunction(0)->GetParameter(3)));
}
std::string filename = initializationOption->GetFunction(0)->GetParameter(1);
if (filename.find(std::string("%")) != std::string::npos)
{
itk::NumericSeriesFileNames::Pointer fileNamesCreator = itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex(1);
fileNamesCreator->SetEndIndex(segmenter->GetNumberOfTissueClasses());
fileNamesCreator->SetSeriesFormat(filename.c_str());
const std::vector<std::string> & imageNames = fileNamesCreator->GetFileNames();
for (unsigned int k = 0; k < imageNames.size(); k++)
{
typename InputImageType::Pointer image;
if (!ReadImage<InputImageType>(image, imageNames[k].c_str()))
{
std::cout << "Input prior probability image could not be read: " << imageNames[k] << std::endl;
return EXIT_FAILURE;
}
segmenter->SetPriorProbabilityImage(k + 1, image);
}
}
else
{
using VectorImageType = itk::VectorImage<PixelType, ImageDimension>;
typename VectorImageType::Pointer image;
if (!ReadImage<VectorImageType>(image, filename.c_str()))
{
std::cout << "Input prior probability image could not be read." << std::endl;
return EXIT_FAILURE;
}
if (image->GetNumberOfComponentsPerPixel() != segmenter->GetNumberOfTissueClasses())
{
if (verbose)
{
std::cerr << "The number of components does not match the number of "
<< "classes." << std::endl;
}
return EXIT_FAILURE;
}
using CasterType = itk::VectorIndexSelectionCastImageFilter<VectorImageType, InputImageType>;
typename CasterType::Pointer caster = CasterType::New();
caster->SetInput(image);
for (unsigned int k = 0; k < segmenter->GetNumberOfTissueClasses(); k++)
{
caster->SetIndex(k);
caster->Update();
segmenter->SetPriorProbabilityImage(k + 1, caster->GetOutput());
}
}
if (initializationOption->GetFunction(0)->GetNumberOfParameters() > 3)
{
segmenter->SetProbabilityThreshold(
parser->Convert<float>(initializationOption->GetFunction(0)->GetParameter(3)));
}
}
else if (!initializationStrategy.compare(std::string("priorlabelimage")))
{
segmenter->SetInitializationStrategy(SegmentationFilterType::PriorLabelImage);
if (initializationOption->GetFunction(0)->GetNumberOfParameters() < 3)
{
if (verbose)
{
std::cerr << "Incorrect initialization option specification." << std::endl;
std::cerr << " " << initializationOption->GetDescription() << std::endl;
}
return EXIT_FAILURE;
}
segmenter->SetPriorProbabilityWeight(
parser->Convert<float>(initializationOption->GetFunction(0)->GetParameter(2)));
std::string filename = initializationOption->GetFunction(0)->GetParameter(1);
typename LabelImageType::Pointer image;
if (!ReadImage<LabelImageType>(image, filename.c_str()))
{
std::cout << "Input prior label image could not be read." << std::endl;
return EXIT_FAILURE;
}
segmenter->SetPriorLabelImage(image);
}
else
{
if (verbose)
{
std::cerr << "Unrecognized initialization strategy request." << std::endl;
}
return EXIT_FAILURE;
}
}
/**
* Posterior probability formulation
*/
typename itk::ants::CommandLineParser::OptionType::Pointer posteriorOption =
parser->GetOption("posterior-formulation");
if (posteriorOption && posteriorOption->GetNumberOfFunctions())
{
if (posteriorOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
segmenter->SetUseMixtureModelProportions(parser->Convert<bool>(posteriorOption->GetFunction(0)->GetParameter(0)));
RealType annealingTemperature = 1.0;
if (posteriorOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
annealingTemperature = parser->Convert<RealType>(posteriorOption->GetFunction(0)->GetParameter(1));
if (annealingTemperature <= itk::NumericTraits<RealType>::ZeroValue())
{
if (verbose)
{
std::cerr << "Annealing temperature must be positive." << std::endl;
}
return EXIT_FAILURE;
}
}
segmenter->SetInitialAnnealingTemperature(annealingTemperature);
RealType annealingRate = 1.0;
if (posteriorOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
annealingRate = parser->Convert<RealType>(posteriorOption->GetFunction(0)->GetParameter(2));
if (annealingRate < itk::NumericTraits<RealType>::ZeroValue() ||
annealingRate > itk::NumericTraits<RealType>::OneValue())
{
if (verbose)
{
std::cerr << "Annealing rate must be in the range [0, 1]." << std::endl;
}
return EXIT_FAILURE;
}
}
segmenter->SetAnnealingRate(annealingRate);
if (posteriorOption->GetFunction(0)->GetNumberOfParameters() > 3)
{
auto minimumAnnealingTemperature = parser->Convert<RealType>(posteriorOption->GetFunction(0)->GetParameter(3));
segmenter->SetMinimumAnnealingTemperature(minimumAnnealingTemperature);
}
}
std::string posteriorStrategy = posteriorOption->GetFunction(0)->GetName();
ConvertToLowerCase(posteriorStrategy);
if (!posteriorStrategy.compare(std::string("socrates")))
{
segmenter->SetPosteriorProbabilityFormulation(SegmentationFilterType::Socrates);
}
else if (!posteriorStrategy.compare(std::string("plato")))
{
segmenter->SetPosteriorProbabilityFormulation(SegmentationFilterType::Plato);
}
else if (!posteriorStrategy.compare(std::string("aristotle")))
{
segmenter->SetPosteriorProbabilityFormulation(SegmentationFilterType::Aristotle);
}
else if (!posteriorStrategy.compare(std::string("sigmoid")))
{
segmenter->SetPosteriorProbabilityFormulation(SegmentationFilterType::Sigmoid);
}
}
/**
* convergence options
*/
typename itk::ants::CommandLineParser::OptionType::Pointer convergenceOption = parser->GetOption("convergence");
if (convergenceOption && convergenceOption->GetNumberOfFunctions())
{
if (convergenceOption->GetFunction(0)->GetNumberOfParameters() == 0)
{
segmenter->SetMaximumNumberOfIterations(
parser->Convert<unsigned int>(convergenceOption->GetFunction(0)->GetName()));
}
if (convergenceOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
segmenter->SetMaximumNumberOfIterations(
parser->Convert<unsigned int>(convergenceOption->GetFunction(0)->GetParameter(0)));
}
if (convergenceOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
segmenter->SetConvergenceThreshold(parser->Convert<float>(convergenceOption->GetFunction(0)->GetParameter(1)));
}
}
/**
* mask image
*/
typename itk::ants::CommandLineParser::OptionType::Pointer maskOption = parser->GetOption("mask-image");
if (maskOption && maskOption->GetNumberOfFunctions())
{
try
{
typename LabelImageType::Pointer image;
if (!ReadImage<LabelImageType>(image, maskOption->GetFunction(0)->GetName().c_str()))
{
std::cout << "Input mask image could not be read." << std::endl;
return EXIT_FAILURE;
}
segmenter->SetMaskImage(image);
// Check to see that the labels in the prior label image or the non-zero
// probability voxels in the prior probability images encompass the entire
// mask region.
if (segmenter->GetInitializationStrategy() == SegmentationFilterType::PriorLabelImage)
{
itk::ImageRegionConstIterator<LabelImageType> ItM(segmenter->GetMaskImage(),
segmenter->GetMaskImage()->GetLargestPossibleRegion());
itk::ImageRegionConstIterator<LabelImageType> ItP(segmenter->GetPriorLabelImage(),
segmenter->GetPriorLabelImage()->GetLargestPossibleRegion());
for (ItM.GoToBegin(), ItP.GoToBegin(); !ItM.IsAtEnd(); ++ItM, ++ItP)
{
if (ItM.Get() != itk::NumericTraits<LabelType>::ZeroValue() && ItP.Get() == 0)
{
if (verbose)
{
std::cout << std::endl;
std::cout << "Warning: the labels in the the prior label image do "
<< "not encompass the entire mask region. As a result each unlabeled voxel will be "
<< "initially assigned a random label. The user might want to consider "
<< "various alternative strategies like assigning an additional "
<< "\"background\" label to the unlabeled voxels or propagating "
<< "the labels within the mask region." << std::endl;
std::cout << std::endl;
}
break;
}
}
}
else if (segmenter->GetInitializationStrategy() == SegmentationFilterType::PriorProbabilityImages)
{
itk::ImageRegionConstIteratorWithIndex<LabelImageType> ItM(
segmenter->GetMaskImage(), segmenter->GetMaskImage()->GetLargestPossibleRegion());
for (ItM.GoToBegin(); !ItM.IsAtEnd(); ++ItM)
{
if (ItM.Get() != itk::NumericTraits<LabelType>::ZeroValue())
{
RealType sumPriorProbability = 0.0;
for (unsigned int n = 0; n < segmenter->GetNumberOfTissueClasses(); n++)
{
sumPriorProbability += segmenter->GetPriorProbabilityImage(n + 1)->GetPixel(ItM.GetIndex());
}
if (sumPriorProbability < segmenter->GetProbabilityThreshold())
{
if (verbose)
{
std::cout << std::endl;
std::cout << "Warning: the sum of the priors from the the prior probability images are "
<< "less than the probability threshold within the mask region. As a result "
<< "each zero probability voxel will be "
<< "initially assigned a random label. The user might want to consider "
<< "various alternative strategies like assigning an additional "
<< "\"background\" label to the zero probability voxels or propagating "
<< "the probabilities within the mask region." << std::endl;
std::cout << std::endl;
}
break;
}
}
}
}
}
catch (...)
{}
}
else
{
if (verbose)
{
std::cerr << "An image mask is required. Specify a mask image"
<< " with the -x option." << std::endl;
}
return EXIT_FAILURE;
}
/**
* BSpline options
*/
typename itk::ants::CommandLineParser::OptionType::Pointer bsplineOption = parser->GetOption("bspline");
if (bsplineOption && bsplineOption->GetNumberOfFunctions())
{
if (bsplineOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
std::vector<unsigned int> numLevels =
parser->ConvertVector<unsigned int>(bsplineOption->GetFunction(0)->GetParameter(0));
typename SegmentationFilterType::ArrayType numberOfFittingLevels;
if (numLevels.size() == 1)
{
numberOfFittingLevels.Fill(numLevels[0]);
}
else if (numLevels.size() == ImageDimension)
{
for (unsigned int d = 0; d < ImageDimension; d++)
{
numberOfFittingLevels[d] = numLevels[d];
}
}
else
{
if (verbose)
{
std::cerr << "Incorrect number of levels" << std::endl;
}
return EXIT_FAILURE;
}
segmenter->SetNumberOfLevels(numberOfFittingLevels);
}
if (bsplineOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
segmenter->SetSplineOrder(parser->Convert<unsigned int>(bsplineOption->GetFunction(0)->GetParameter(2)));
}
if (bsplineOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
std::vector<unsigned int> array =
parser->ConvertVector<unsigned int>(bsplineOption->GetFunction(0)->GetParameter(1));
typename SegmentationFilterType::ArrayType numberOfControlPoints;
if (array.size() == 1)
{
numberOfControlPoints.Fill(array[0] + segmenter->GetSplineOrder());
}
else if (array.size() == ImageDimension)
{
for (unsigned int d = 0; d < ImageDimension; d++)
{
numberOfControlPoints[d] = array[d] + segmenter->GetSplineOrder();
}
}
else
{
if (verbose)
{
std::cerr << "Incorrect mesh resolution" << std::endl;
}
return EXIT_FAILURE;
}
segmenter->SetNumberOfControlPoints(numberOfControlPoints);
}
}
/**
* labels
*/
typename itk::ants::CommandLineParser::OptionType::Pointer labelOption = parser->GetOption("label-propagation");
if (labelOption && labelOption->GetNumberOfFunctions())
{
if (labelOption->GetNumberOfFunctions() == 1 && (labelOption->GetFunction(0)->GetName()).empty())
{
typename SegmentationFilterType::LabelParameterMapType labelMap;
auto labelLambda = parser->Convert<float>(labelOption->GetFunction(0)->GetParameter(0));
float labelBoundaryProbability = 1.0;
if (labelOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
labelBoundaryProbability = parser->Convert<float>(labelOption->GetFunction(0)->GetParameter(1));
if (labelBoundaryProbability < itk::NumericTraits<float>::ZeroValue())
{
labelBoundaryProbability = itk::NumericTraits<float>::ZeroValue();
}
if (labelBoundaryProbability > itk::NumericTraits<float>::OneValue())
{
labelBoundaryProbability = itk::NumericTraits<float>::OneValue();
}
}
for (unsigned int n = 1; n <= segmenter->GetNumberOfTissueClasses(); n++)
{
typename SegmentationFilterType::LabelParametersType labelPair;
labelPair.first = labelLambda;
labelPair.second = labelBoundaryProbability;
labelMap[n] = labelPair;
}
segmenter->SetPriorLabelParameterMap(labelMap);
}
else
{
typename SegmentationFilterType::LabelParameterMapType labelMap;
for (unsigned int n = 0; n < labelOption->GetNumberOfFunctions(); n++)
{
typename SegmentationFilterType::LabelParametersType labelPair;
auto labelLambda = parser->Convert<float>(labelOption->GetFunction(n)->GetParameter(0));
float labelBoundaryProbability = 1.0;
if (labelOption->GetFunction(n)->GetNumberOfParameters() > 1)
{
labelBoundaryProbability = parser->Convert<float>(labelOption->GetFunction(n)->GetParameter(1));
if (labelBoundaryProbability < itk::NumericTraits<float>::ZeroValue())
{
labelBoundaryProbability = itk::NumericTraits<float>::ZeroValue();
}
if (labelBoundaryProbability > itk::NumericTraits<float>::OneValue())
{
labelBoundaryProbability = itk::NumericTraits<float>::OneValue();
}
}
labelPair.first = labelLambda;
labelPair.second = labelBoundaryProbability;
auto whichClass = parser->Convert<unsigned int>(labelOption->GetFunction(n)->GetName());
labelMap[whichClass] = labelPair;
}
segmenter->SetPriorLabelParameterMap(labelMap);
}
}
/**
* intensity images
*/
typename itk::ants::CommandLineParser::OptionType::Pointer imageOption = parser->GetOption("intensity-image");
if (imageOption && imageOption->GetNumberOfFunctions())
{
unsigned int count = 0;
for (int n = imageOption->GetNumberOfFunctions() - 1; n >= 0; n--)
{
std::string imagename;
if (imageOption->GetFunction(n)->GetNumberOfParameters() > 0)
{
imagename = imageOption->GetFunction(n)->GetParameter(0);
}
else
{
imagename = imageOption->GetFunction(n)->GetName();
}
typename InputImageType::Pointer image;
if (!ReadImage<InputImageType>(image, imagename.c_str()))
{
std::cout << "Input intensity image could not be read." << std::endl;
return EXIT_FAILURE;
}
segmenter->SetIntensityImage(count, image);
if (imageOption->GetFunction(count)->GetNumberOfParameters() > 1)
{
segmenter->SetAdaptiveSmoothingWeight(count,
parser->Convert<float>(imageOption->GetFunction(count)->GetParameter(1)));
}
else
{
segmenter->SetAdaptiveSmoothingWeight(count, 0.0);
}
count++;
}
}
else
{
if (verbose)
{
std::cerr << "No input images were specified. Specify an input image"
<< " with the -a option." << std::endl;
}
return EXIT_FAILURE;
}
/**
* MRF options
*/
typename itk::ants::CommandLineParser::OptionType::Pointer mrfOption = parser->GetOption("mrf");
if (mrfOption && mrfOption->GetNumberOfFunctions())
{
if (mrfOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
try
{
using MRFCoefficientImageType = typename SegmentationFilterType::RealImageType;
using MRFNeighborhoodImageReaderType = itk::ImageFileReader<MRFCoefficientImageType>;
typename MRFNeighborhoodImageReaderType::Pointer mrfNeighborhoodReader = MRFNeighborhoodImageReaderType::New();
mrfNeighborhoodReader->SetFileName(mrfOption->GetFunction(0)->GetParameter(0));
typename MRFCoefficientImageType::Pointer mrfCoefficientImage = mrfNeighborhoodReader->GetOutput();
mrfCoefficientImage->Update();
mrfCoefficientImage->DisconnectPipeline();
segmenter->SetMRFCoefficientImage(mrfCoefficientImage);
}
catch (...)
{
segmenter->SetMRFSmoothingFactor(parser->Convert<float>(mrfOption->GetFunction(0)->GetParameter(0)));
}
}
if (mrfOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
std::vector<unsigned int> array = parser->ConvertVector<unsigned int>(mrfOption->GetFunction(0)->GetParameter(1));
typename SegmentationFilterType::ArrayType radius;
if (array.size() == 1)
{
radius.Fill(array[0]);
}
else if (array.size() == ImageDimension)
{
for (unsigned int d = 0; d < ImageDimension; d++)
{
radius[d] = array[d];
}
}
else
{
if (verbose)
{
std::cerr << "MRF radius size needs to be equal to the image dimension." << std::endl;
}
return EXIT_FAILURE;
}
segmenter->SetMRFRadius(radius);
}
}
/**
* ICM options
*/
typename itk::ants::CommandLineParser::OptionType::Pointer icmOption = parser->GetOption("icm");
if (icmOption && icmOption->GetNumberOfFunctions() == 1)
{
segmenter->SetUseAsynchronousUpdating(parser->Convert<bool>(icmOption->GetFunction(0)->GetName()));
}
if (icmOption && icmOption->GetNumberOfFunctions())
{
if (icmOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
segmenter->SetUseAsynchronousUpdating(parser->Convert<bool>(icmOption->GetFunction(0)->GetParameter(0)));
}
if (icmOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
segmenter->SetMaximumNumberOfICMIterations(
parser->Convert<unsigned int>(icmOption->GetFunction(0)->GetParameter(1)));
}
}
/**
* random seed
*/
typename itk::ants::CommandLineParser::OptionType::Pointer seedOption = parser->GetOption("use-random-seed");
if (seedOption && seedOption->GetNumberOfFunctions())
{
bool useRandomSeed = parser->Convert<bool>(seedOption->GetFunction(0)->GetName());
if (!useRandomSeed)
{
// assign seed from itkMersenneTwisterRandomVariateGenerator.h (line 347)
segmenter->SetRandomizerInitializationSeed(19650218UL);
}
}
/**
* euclidean distance
*/
typename itk::ants::CommandLineParser::OptionType::Pointer distanceOption =
parser->GetOption("use-euclidean-distance");
if (distanceOption && distanceOption->GetNumberOfFunctions())
{
segmenter->SetUseEuclideanDistanceForPriorLabels(parser->Convert<bool>(distanceOption->GetFunction(0)->GetName()));
}
/**
* likelihood
*/
typename itk::ants::CommandLineParser::OptionType::Pointer likelihoodOption = parser->GetOption("likelihood-model");
if (likelihoodOption && likelihoodOption->GetNumberOfFunctions())
{
std::string likelihoodModel = likelihoodOption->GetFunction(0)->GetName();
ConvertToLowerCase(likelihoodModel);
if (!likelihoodModel.compare(std::string("gaussian")))
{
using SampleType = typename SegmentationFilterType::SampleType;
using LikelihoodType = itk::ants::Statistics::GaussianListSampleFunction<SampleType, float, float>;
for (unsigned int n = 0; n < segmenter->GetNumberOfTissueClasses(); n++)
{
typename LikelihoodType::Pointer gaussianLikelihood = LikelihoodType::New();
segmenter->SetLikelihoodFunction(n, gaussianLikelihood);
}
}
else if (!likelihoodModel.compare(std::string("manifoldparzenwindows")))
{
using SampleType = typename SegmentationFilterType::SampleType;
using LikelihoodType = itk::ants::Statistics::ManifoldParzenWindowsListSampleFunction<SampleType, float, float>;
float regularizationSigma = 1.0;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
regularizationSigma = parser->Convert<float>(likelihoodOption->GetFunction(0)->GetParameter(0));
}
unsigned int evalNeighborhood = 50;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
evalNeighborhood = parser->Convert<unsigned int>(likelihoodOption->GetFunction(0)->GetParameter(1));
}
unsigned int covNeighborhood = 0;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
covNeighborhood = parser->Convert<unsigned int>(likelihoodOption->GetFunction(0)->GetParameter(2));
}
float covSigma = 1.0;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 3)
{
covSigma = parser->Convert<float>(likelihoodOption->GetFunction(0)->GetParameter(3));
}
for (unsigned int n = 0; n < segmenter->GetNumberOfTissueClasses(); n++)
{
typename LikelihoodType::Pointer mpwLikelihood = LikelihoodType::New();
mpwLikelihood->SetRegularizationSigma(regularizationSigma);
mpwLikelihood->SetEvaluationKNeighborhood(evalNeighborhood);
mpwLikelihood->SetCovarianceKNeighborhood(covNeighborhood);
mpwLikelihood->SetKernelSigma(covSigma);
segmenter->SetLikelihoodFunction(n, mpwLikelihood);
}
}
else if (!likelihoodModel.compare(std::string("histogramparzenwindows")))
{
using SampleType = typename SegmentationFilterType::SampleType;
using LikelihoodType = itk::ants::Statistics::HistogramParzenWindowsListSampleFunction<SampleType, float, float>;
float sigma = 1.0;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
sigma = parser->Convert<float>(likelihoodOption->GetFunction(0)->GetParameter(0));
}
unsigned int numberOfBins = 32;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
numberOfBins = parser->Convert<unsigned int>(likelihoodOption->GetFunction(0)->GetParameter(1));
}
for (unsigned int n = 0; n < segmenter->GetNumberOfTissueClasses(); n++)
{
typename LikelihoodType::Pointer hpwLikelihood = LikelihoodType::New();
hpwLikelihood->SetSigma(sigma);
hpwLikelihood->SetNumberOfHistogramBins(numberOfBins);
segmenter->SetLikelihoodFunction(n, hpwLikelihood);
}
}
else if (!likelihoodModel.compare(std::string("jointshapeandorientationprobability")))
{
if (segmenter->GetNumberOfIntensityImages() !=
static_cast<unsigned int>(ImageDimension * (ImageDimension + 1) / 2))
{
if (verbose)
{
std::cerr << " Expect images in upper triangular order " << std::endl;
std::cerr << " xx xy xz yy yz zz " << std::endl;
std::cerr << "Incorrect number of intensity images specified." << std::endl;
}
return EXIT_FAILURE;
}
using SampleType = typename SegmentationFilterType::SampleType;
using LikelihoodType =
itk::ants::Statistics::JointHistogramParzenShapeAndOrientationListSampleFunction<SampleType, float, float>;
float shapeSigma = 2.0;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
shapeSigma = parser->Convert<float>(likelihoodOption->GetFunction(0)->GetParameter(0));
}
unsigned int numberOfShapeBins = 64;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
numberOfShapeBins = parser->Convert<unsigned int>(likelihoodOption->GetFunction(0)->GetParameter(1));
}
float orientationSigma = 1.0;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
orientationSigma = parser->Convert<float>(likelihoodOption->GetFunction(0)->GetParameter(2));
}
unsigned int numberOfOrientationBins = 32;
if (likelihoodOption->GetFunction(0)->GetNumberOfParameters() > 3)
{
numberOfOrientationBins = parser->Convert<unsigned int>(likelihoodOption->GetFunction(0)->GetParameter(3));
}
for (unsigned int n = 0; n < segmenter->GetNumberOfTissueClasses(); n++)
{
typename LikelihoodType::Pointer hpwLikelihood = LikelihoodType::New();
hpwLikelihood->SetShapeSigma(shapeSigma);
hpwLikelihood->SetOrientationSigma(orientationSigma);
hpwLikelihood->SetNumberOfShapeJointHistogramBins(numberOfShapeBins);
hpwLikelihood->SetNumberOfOrientationJointHistogramBins(numberOfOrientationBins);
segmenter->SetLikelihoodFunction(n, hpwLikelihood);
}
}
else if (!likelihoodModel.compare(std::string("logeuclideangaussian")))
{
if (segmenter->GetNumberOfIntensityImages() !=
static_cast<unsigned int>(ImageDimension * (ImageDimension + 1) / 2))
{
if (verbose)
{
std::cerr << " Expect images in upper triangular order " << std::endl;
std::cerr << " xx xy xz yy yz zz " << std::endl;
std::cerr << "Incorrect number of intensity images specified." << std::endl;
}
return EXIT_FAILURE;
}
using SampleType = typename SegmentationFilterType::SampleType;
using LikelihoodType = itk::ants::Statistics::LogEuclideanGaussianListSampleFunction<SampleType, float, float>;
for (unsigned int n = 0; n < segmenter->GetNumberOfTissueClasses(); n++)
{
typename LikelihoodType::Pointer gaussianLikelihood = LikelihoodType::New();
segmenter->SetLikelihoodFunction(n, gaussianLikelihood);
}
}
else
{
if (verbose)
{
std::cerr << "Unrecognized likelihood model request." << std::endl;
}
return EXIT_FAILURE;
}
}
/**
* partial volume
*/
typename itk::ants::CommandLineParser::OptionType::Pointer pvOption = parser->GetOption("partial-volume-label-set");
if (pvOption && pvOption->GetNumberOfFunctions())
{
unsigned int labelSetCount = 0;
for (int n = pvOption->GetNumberOfFunctions() - 1; n >= 0; n--)
{
typename SegmentationFilterType::PartialVolumeLabelSetType labelSet =
parser->ConvertVector<LabelType>(pvOption->GetFunction(n)->GetName());
if (labelSet.size() != 2)
{
if (verbose)
{
std::cerr << "Error: Currently Atropos only supports partial "
<< "volume label sets of size equal to 2." << std::endl;
}
return EXIT_FAILURE;
}
segmenter->AddPartialVolumeLabelSet(labelSet);
using SampleType = typename SegmentationFilterType::SampleType;
using LikelihoodType = itk::ants::Statistics::PartialVolumeGaussianListSampleFunction<SampleType, float, float>;
typename LikelihoodType::Pointer partialVolumeLikelihood = LikelihoodType::New();
segmenter->SetLikelihoodFunction(labelSetCount + segmenter->GetNumberOfTissueClasses(), partialVolumeLikelihood);
labelSetCount++;
}
typename itk::ants::CommandLineParser::OptionType::Pointer pvlOption =
parser->GetOption("use-partial-volume-likelihoods");
bool useLikelihoods = false;
if (pvlOption && pvlOption->GetNumberOfFunctions())
{
std::string value = pvlOption->GetFunction(0)->GetName();
ConvertToLowerCase(value);
if (!value.compare("true") || !value.compare("1"))
{
useLikelihoods = true;
}
else
{
useLikelihoods = false;
}
}
segmenter->SetUsePartialVolumeLikelihoods(useLikelihoods);
}
/**
* outliers handling
*/
typename itk::ants::CommandLineParser::OptionType::Pointer outlierOption = parser->GetOption("winsorize-outliers");
if (outlierOption && outlierOption->GetNumberOfFunctions())
{
std::string outlierStrategy = outlierOption->GetFunction(0)->GetName();
ConvertToLowerCase(outlierStrategy);
if (!outlierStrategy.compare(std::string("boxplot")))
{
using SampleType = typename SegmentationFilterType::SampleType;
using SampleFilterType = itk::ants::Statistics::BoxPlotQuantileListSampleFilter<SampleType>;
typename SampleFilterType::Pointer boxplotFilter = SampleFilterType::New();
if (outlierOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
boxplotFilter->SetLowerPercentile(parser->Convert<float>(outlierOption->GetFunction(0)->GetParameter(0)));
}
if (outlierOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
boxplotFilter->SetUpperPercentile(parser->Convert<float>(outlierOption->GetFunction(0)->GetParameter(1)));
}
if (outlierOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
boxplotFilter->SetWhiskerScalingFactor(parser->Convert<float>(outlierOption->GetFunction(0)->GetParameter(2)));
}
segmenter->SetOutlierHandlingFilter(boxplotFilter);
}
else if (!outlierStrategy.compare(std::string("grubbsrosner")))
{
using SampleType = typename SegmentationFilterType::SampleType;
using SampleFilterType = itk::ants::Statistics::GrubbsRosnerListSampleFilter<SampleType>;
typename SampleFilterType::Pointer grubbsFilter = SampleFilterType::New();
if (outlierOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
grubbsFilter->SetSignificanceLevel(parser->Convert<float>(outlierOption->GetFunction(0)->GetParameter(0)));
}
if (outlierOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
grubbsFilter->SetWinsorizingLevel(parser->Convert<float>(outlierOption->GetFunction(0)->GetParameter(1)));
}
segmenter->SetOutlierHandlingFilter(grubbsFilter);
}
else
{
if (verbose)
{
std::cerr << "Unrecognized outlier handling strategy request." << std::endl;
}
return EXIT_FAILURE;
}
}
itk::TimeProbe timer;
timer.Start();
try
{
if (verbose)
{
std::cout << std::endl << "Progress: " << std::endl;
}
// segmenter->DebugOn();
segmenter->Update();
}
catch (const itk::ExceptionObject & exp)
{
if (verbose)
{
std::cerr << exp << std::endl;
}
return EXIT_FAILURE;
}
timer.Stop();
/**
* output
*/
if (icmOption && icmOption->GetNumberOfFunctions() && icmOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
if (segmenter->GetUseAsynchronousUpdating() && segmenter->GetICMCodeImage())
{
using WriterType = itk::ImageFileWriter<LabelImageType>;
typename WriterType::Pointer writer = WriterType::New();
writer->SetInput(segmenter->GetICMCodeImage());
writer->SetFileName((icmOption->GetFunction(0)->GetParameter(2)).c_str());
writer->Update();
}
}
if (verbose)
{
std::cout << std::endl << "Writing output:" << std::endl;
}
typename itk::ants::CommandLineParser::OptionType::Pointer outputOption = parser->GetOption("output");
if (outputOption && outputOption->GetNumberOfFunctions())
{
if (outputOption->GetFunction(0)->GetNumberOfParameters() == 0)
{
ANTs::WriteImage<LabelImageType>(segmenter->GetOutput(), (outputOption->GetFunction(0)->GetName()).c_str());
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
ANTs::WriteImage<LabelImageType>(segmenter->GetOutput(), (outputOption->GetFunction(0)->GetParameter(0)).c_str());
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
std::string filename = outputOption->GetFunction(0)->GetParameter(1);
itk::NumericSeriesFileNames::Pointer fileNamesCreator = itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex(1);
fileNamesCreator->SetEndIndex(segmenter->GetNumberOfTissueClasses());
fileNamesCreator->SetSeriesFormat(filename.c_str());
const std::vector<std::string> & imageNames = fileNamesCreator->GetFileNames();
for (unsigned int i = 0; i < imageNames.size(); i++)
{
if (verbose)
{
std::cout << " Writing posterior image (class " << i + 1 << ")" << std::endl;
}
typename InputImageType::Pointer probabilityImage = segmenter->GetPosteriorProbabilityImage(i + 1);
if (segmenter->GetMaskImage())
{
using MaskerType = itk::MaskImageFilter<InputImageType, LabelImageType, InputImageType>;
typename MaskerType::Pointer masker = MaskerType::New();
masker->SetInput1(probabilityImage);
masker->SetInput2(segmenter->GetMaskImage());
masker->SetOutsideValue(0);
masker->Update();
probabilityImage = masker->GetOutput();
}
using WriterType = itk::ImageFileWriter<InputImageType>;
typename WriterType::Pointer writer = WriterType::New();
writer->SetInput(probabilityImage);
writer->SetFileName(imageNames[i].c_str());
writer->Update();
}
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
std::string filename = outputOption->GetFunction(0)->GetParameter(2);
itk::NumericSeriesFileNames::Pointer fileNamesCreator = itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex(1);
fileNamesCreator->SetEndIndex(segmenter->GetNumberOfTissueClasses());
fileNamesCreator->SetSeriesFormat(filename.c_str());
const std::vector<std::string> & imageNames = fileNamesCreator->GetFileNames();
for (unsigned int i = 0; i < segmenter->GetNumberOfTissueClasses(); i++)
{
if (verbose)
{
std::cout << " Writing likelihood image (class " << i + 1 << ")" << std::endl;
}
typename InputImageType::Pointer likelihoodImage = segmenter->GetLikelihoodImage(i + 1);
using WriterType = itk::ImageFileWriter<InputImageType>;
typename WriterType::Pointer writer = WriterType::New();
writer->SetInput(likelihoodImage);
writer->SetFileName(imageNames[i].c_str());
writer->Update();
}
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 3)
{
std::string filename = outputOption->GetFunction(0)->GetParameter(3);
itk::NumericSeriesFileNames::Pointer fileNamesCreator = itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex(1);
fileNamesCreator->SetEndIndex(segmenter->GetNumberOfTissueClasses());
fileNamesCreator->SetSeriesFormat(filename.c_str());
const std::vector<std::string> & imageNames = fileNamesCreator->GetFileNames();
for (unsigned int i = 0; i < segmenter->GetNumberOfTissueClasses(); i++)
{
if (segmenter->GetPriorProbabilityImage(i + 1) || segmenter->GetPriorLabelImage())
{
if (verbose)
{
std::cout << " Writing distance image (class " << i + 1 << ")" << std::endl;
}
typename InputImageType::Pointer distanceImage = segmenter->GetDistancePriorProbabilityImage(i + 1);
using WriterType = itk::ImageFileWriter<InputImageType>;
typename WriterType::Pointer writer = WriterType::New();
writer->SetInput(distanceImage);
writer->SetFileName(imageNames[i].c_str());
writer->Update();
}
}
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 4)
{
std::string filename = outputOption->GetFunction(0)->GetParameter(4);
itk::NumericSeriesFileNames::Pointer fileNamesCreator = itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex(1);
fileNamesCreator->SetEndIndex(segmenter->GetNumberOfTissueClasses());
fileNamesCreator->SetSeriesFormat(filename.c_str());
const std::vector<std::string> & imageNames = fileNamesCreator->GetFileNames();
if (segmenter->GetAdaptiveSmoothingWeight(0) > itk::NumericTraits<RealType>::ZeroValue())
{
for (unsigned int i = 0; i < segmenter->GetNumberOfTissueClasses(); i++)
{
if (segmenter->GetPriorProbabilityImage(i + 1) || segmenter->GetPriorLabelImage())
{
if (verbose)
{
std::cout << " Writing B-spline image (class " << i + 1 << ")" << std::endl;
}
typename InputImageType::Pointer bsplineImage = segmenter->GetSmoothIntensityImageFromPriorImage(0, i + 1);
using WriterType = itk::ImageFileWriter<InputImageType>;
typename WriterType::Pointer writer = WriterType::New();
writer->SetInput(bsplineImage);
writer->SetFileName(imageNames[i].c_str());
writer->Update();
}
}
}
}
}
if (verbose)
{
std::cout << std::endl;
segmenter->Print(std::cout, 2);
std::cout << "Elapsed time: " << timer.GetMean() << std::endl;
}
return EXIT_SUCCESS;
}
void
AtroposInitializeCommandLineOptions(itk::ants::CommandLineParser * parser)
{
using OptionType = itk::ants::CommandLineParser::OptionType;
{
std::string description = std::string("This option forces the image to be treated as a specified-") +
std::string("dimensional image. If not specified, Atropos tries to ") +
std::string("infer the dimensionality from the first input image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("image-dimensionality");
option->SetShortName('d');
option->SetUsageOption(0, "2/3/4");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("One or more scalar images is specified for segmentation ") +
std::string("using the -a/--intensity-image option. For segmentation ") +
std::string("scenarios with no prior information, the first scalar ") +
std::string("image encountered on the command line is used to order ") +
std::string("labelings such that the class with the smallest intensity ") +
std::string(R"(signature is class '1' through class 'N' which represents )") +
std::string("the voxels with the largest intensity values. The ") +
std::string("optional adaptive smoothing weight parameter is applicable ") +
std::string("only when using prior label or probability images. This ") +
std::string("scalar parameter is to be specified between [0,1] which ") +
std::string("smooths each labeled region separately and modulates the ") +
std::string("intensity measurement at each voxel in each intensity image ") +
std::string("between the original intensity and its smoothed ") +
std::string("counterpart. The smoothness parameters are governed by the ") +
std::string("-b/--bspline option.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("intensity-image");
option->SetShortName('a');
option->SetUsageOption(0, "[intensityImage,<adaptiveSmoothingWeight>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("If the adaptive smoothing weights are > 0, the intensity ") +
std::string("images are smoothed in calculating the likelihood values. ") +
std::string("This is to account for subtle intensity differences ") +
std::string("across the same tissue regions.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("bspline");
option->SetShortName('b');
option->SetUsageOption(0, "[<numberOfLevels=6>,<initialMeshResolution=1x1x...>,<splineOrder=3>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("To initialize the FMM parameters, one of the following ") +
std::string("options must be specified. If one does not have ") +
std::string("prior label or probability images we recommend ") +
std::string("using kmeans as it is typically faster than otsu and can ") +
std::string("be used with multivariate initialization. However, since a ") +
std::string("Euclidean distance on the inter cluster distances is used, one ") +
std::string("might have to appropriately scale the additional input images. ") +
std::string("Random initialization is meant purely for intellectual ") +
std::string("curiosity. The prior weighting (specified in the range ") +
std::string("[0,1]) is used to modulate the calculation of the ") +
std::string("posterior probabilities between the likelihood*mrfprior ") +
std::string("and the likelihood*mrfprior*prior. For specifying many ") +
std::string("prior probability images for a multi-label segmentation, ") +
std::string("we offer a minimize usage option (see -m). With that option ") +
std::string("one can specify a prior probability threshold in which only ") +
std::string("those pixels exceeding that threshold are stored in memory. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName("initialization");
option->SetShortName('i');
option->SetUsageOption(0, "Random[numberOfClasses]");
option->SetUsageOption(1, "Otsu[numberOfTissueClasses]");
option->SetUsageOption(
2, "KMeans[numberOfTissueClasses,<clusterCenters(in ascending order and for first intensity image only)>]");
option->SetUsageOption(3,
"PriorProbabilityImages[numberOfTissueClasses,fileSeriesFormat(index=1 to numberOfClasses) "
"or vectorImage,priorWeighting,<priorProbabilityThreshold>]");
option->SetUsageOption(4, "PriorLabelImage[numberOfTissueClasses,labelImage,priorWeighting]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The partial volume estimation option allows one to model") +
std::string("mixtures of classes within single voxels. Atropos ") +
std::string("currently allows the user to model two class mixtures ") +
std::string("per partial volume class. The user specifies a set of ") +
std::string("class labels per partial volume class requested. For ") +
std::string("example, suppose the user was performing a classic 3-") +
std::string("tissue segmentation (csf, gm, wm) using kmeans ") +
std::string("initialization. Suppose the user also wanted to model the ") +
std::string("partial voluming effects between csf/gm and gm/wm. ") +
std::string("The user would specify it using -i kmeans[3] ") +
std::string("and -s 1x2 -s 2x3. So, for this example, there would be 3 ") +
std::string("tissue classes and 2 partial volume classes. Optionally,") +
std::string("the user can limit partial volume handling to mrf considerations ") +
std::string("only whereby the output would only be the three tissues.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("partial-volume-label-set");
option->SetShortName('s');
option->SetUsageOption(0, "label1xlabel2");
option->SetUsageOption(0, "label1xlabel2xlabel3");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The user can specify whether or not to use the partial ") +
std::string("volume likelihoods, in which case the partial volume class ") +
std::string("is considered separate from the tissue classes. ") +
std::string("Alternatively, one can use the MRF only to handle partial ") +
std::string("volume in which case, partial volume voxels are not ") +
std::string("considered as separate classes.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("use-partial-volume-likelihoods");
option->SetUsageOption(0, "1/(0)");
option->SetUsageOption(1, "true/(false)");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Different posterior probability formulations are possible as ") +
std::string("are different update options. To guarantee theoretical ") +
std::string("convergence properties, a proper formulation of the well-known ") +
std::string("iterated conditional modes (ICM) uses an asynchronous update step ") +
std::string("modulated by a specified annealing temperature. If one sets ") +
std::string("the AnnealingTemperature > 1 in the posterior formulation ") +
std::string("a traditional code set for a proper ICM update will be created. ") +
std::string("Otherwise, a synchronous update step will take place at each iteration. ") +
std::string("The annealing temperature, T, converts the posteriorProbability ") +
std::string("to posteriorProbability^(1/T) over the course of optimization. ") +
std::string("Options include the following: ") +
std::string(" Socrates: posteriorProbability = (spatialPrior)^priorWeight") +
std::string("*(likelihood*mrfPrior)^(1-priorWeight), ") + std::string(" Plato: posteriorProbability = 1.0, ") +
std::string(" Aristotle: posteriorProbability = 1.0, ") + std::string(" Sigmoid: posteriorProbability = 1.0, ")
// std::string( " Zeno: posteriorProbability = 1.0\n" ) +
// std::string( " Diogenes: posteriorProbability = 1.0\n" ) +
// std::string( " Thales: posteriorProbability = 1.0\n" ) +
// std::string( " Democritus: posteriorProbability = 1.0.\n" )
;
OptionType::Pointer option = OptionType::New();
option->SetLongName("posterior-formulation");
option->SetShortName('p');
option->SetUsageOption(0,
"Socrates[<useMixtureModelProportions=1>,<initialAnnealingTemperature=1>,<annealingRate=1>,<"
"minimumTemperature=0.1>]");
option->SetUsageOption(1,
"Plato[<useMixtureModelProportions=1>,<initialAnnealingTemperature=1>,<annealingRate=1>,<"
"minimumTemperature=0.1>]");
option->SetUsageOption(2,
"Aristotle[<useMixtureModelProportions=1>,<initialAnnealingTemperature=1>,<annealingRate=1>,"
"<minimumTemperature=0.1>]");
option->SetUsageOption(3,
"Sigmoid[<useMixtureModelProportions=1>,<initialAnnealingTemperature=1>,<annealingRate=1>,<"
"minimumTemperature=0.1>]]");
// option->SetUsageOption( 5, "Thales[<useMixtureModelProportions=1>]" );
// option->SetUsageOption( 6, "Democritus" );
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The image mask (which is required) defines the region which ") +
std::string("is to be labeled by the Atropos algorithm.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("mask-image");
option->SetShortName('x');
option->SetUsageOption(0, "maskImageFilename");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Convergence is determined by calculating the mean maximum ") +
std::string("posterior probability over the region of interest at ") +
std::string("each iteration. When this value decreases or increases ") +
std::string("less than the specified threshold from the previous ") +
std::string("iteration or the maximum number of iterations is exceeded ") +
std::string("the program terminates.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("convergence");
option->SetShortName('c');
option->SetUsageOption(0, "numberOfIterations");
option->SetUsageOption(1, "[<numberOfIterations=5>,<convergenceThreshold=0.001>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Both parametric and non-parametric options exist in Atropos. ") +
std::string("The Gaussian parametric option is commonly used ") +
std::string("(e.g. SPM & FAST) where the mean and standard deviation ") +
std::string("for the Gaussian of each class is calculated at each ") +
std::string("iteration. Other groups use non-parametric approaches ") +
std::string("exemplified by option 2. We recommend using options 1 ") +
std::string("or 2 as they are fairly standard and the ") +
std::string("default parameters work adequately.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("likelihood-model");
option->SetShortName('k');
option->SetUsageOption(0, "Gaussian");
option->SetUsageOption(1, "HistogramParzenWindows[<sigma=1.0>,<numberOfBins=32>]");
option->SetUsageOption(2,
"ManifoldParzenWindows[<pointSetSigma=1.0>,<evaluationKNeighborhood=50>,<"
"CovarianceKNeighborhood=0>,<kernelSigma=0>]");
option->SetUsageOption(3,
"JointShapeAndOrientationProbability[<shapeSigma=1.0>,<numberOfShapeBins=64>, "
"<orientationSigma=1.0>, <numberOfOrientationBins=32>]");
option->SetUsageOption(4, "LogEuclideanGaussian");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Markov random field (MRF) theory provides a general ") +
std::string("framework for enforcing spatially contextual constraints ") +
std::string("on the segmentation solution. The default smoothing ") +
std::string("factor of 0.3 provides a moderate amount of smoothing. ") +
std::string("Increasing this number causes more smoothing whereas ") +
std::string("decreasing the number lessens the smoothing. The radius ") +
std::string("parameter specifies the mrf neighborhood. Different ") +
std::string("update schemes are possible but only the asynchronous ") +
std::string("updating has theoretical convergence properties. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName("mrf");
option->SetShortName('m');
option->SetUsageOption(0, "[<smoothingFactor=0.3>,<radius=1x1x...>]");
option->SetUsageOption(1, "[<mrfCoefficientImage>,<radius=1x1x...>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Asynchronous updating requires the construction of an ") +
std::string("ICM code image which is a label image (with labels in the ") +
std::string("range {1,..,MaximumICMCode}) constructed such that no MRF ") +
std::string("neighborhood has duplicate ICM code labels. Thus, to update ") +
std::string("the voxel class labels we iterate through the code labels ") +
std::string("and, for each code label, we iterate through the image ") +
std::string("and update the voxel class label that has the corresponding ") +
std::string("ICM code label. One can print out the ICM code image by ") +
std::string("specifying an ITK-compatible image filename.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("icm");
option->SetShortName('g');
option->SetUsageOption(0, "[<useAsynchronousUpdate=1>,<maximumNumberOfICMIterations=1>,<icmCodeImage=''>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Initialize internal random number generator with a random seed. ") +
std::string("Otherwise, initialize with a constant seed number.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("use-random-seed");
option->SetShortName('r');
option->SetUsageOption(0, "0/(1)");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The output consists of a labeled image where each voxel ") +
std::string("in the masked region is assigned a label from 1, 2, ") +
std::string("..., N. Optionally, one can also output the posterior ") +
std::string("probability images specified in the same format as the ") +
std::string("prior probability images, e.g. posterior%02d.nii.gz ") +
std::string("(C-style file name formatting).");
OptionType::Pointer option = OptionType::New();
option->SetLongName("output");
option->SetShortName('o');
option->SetUsageOption(0, "[classifiedImage,<posteriorProbabilityImageFileNameFormat>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("By default, memory usage is not minimized, however, if ") +
std::string("this is needed, the various probability and distance ") +
std::string("images are calculated on the fly instead of being ") +
std::string("stored in memory at each iteration. Also, if prior ") +
std::string("probability images are used, only the non-negligible ") +
std::string("pixel values are stored in memory. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName("minimize-memory-usage");
option->SetShortName('u');
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
option->AddFunction(std::string("0"));
parser->AddOption(option);
}
{
std::string description = std::string("To remove the effects of outliers in calculating the ") +
std::string("weighted mean and weighted covariance, the user can ") +
std::string("opt to remove the outliers through the options ") +
std::string("specified below.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("winsorize-outliers");
option->SetShortName('w');
option->SetUsageOption(0, "BoxPlot[<lowerPercentile=0.25>,<upperPercentile=0.75>,<whiskerLength=1.5>]");
option->SetUsageOption(1, "GrubbsRosner[<significanceLevel=0.05>,<winsorizingLevel=0.10>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Given prior label or probability images, the labels are ") +
std::string("propagated throughout the masked region so that every ") +
std::string("voxel in the mask is labeled. Propagation is done ") +
std::string("by using a signed distance transform of the label. ") +
std::string("Alternatively, propagation of the labels with the ") +
std::string("fast marching filter respects the distance along the ") +
std::string("shape of the mask (e.g. the sinuous sulci and gyri ") +
std::string("of the cortex).");
OptionType::Pointer option = OptionType::New();
option->SetLongName("use-euclidean-distance");
option->SetShortName('e');
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
option->AddFunction(std::string("0"));
parser->AddOption(option);
}
{
std::string description = std::string("The propagation of each prior label can be controlled ") +
std::string("by the lambda and boundary probability parameters. The ") +
std::string("latter parameter is the probability (in the range ") +
std::string("[0,1]) of the label on the boundary which increases linearly ") +
std::string("to a maximum value of 1.0 in the interior of the labeled ") +
std::string("region. The former parameter dictates the exponential ") +
std::string("decay of probability propagation outside the labeled ") +
std::string("region from the boundary probability, i.e. ") +
std::string("boundaryProbability*exp( -lambda * distance ).");
OptionType::Pointer option = OptionType::New();
option->SetLongName("label-propagation");
option->SetShortName('l');
option->SetUsageOption(0, "whichLabel[lambda=0.0,<boundaryProbability=1.0>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Verbose output.");
OptionType::Pointer option = OptionType::New();
option->SetShortName('v');
option->SetLongName("verbose");
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu (short version).");
OptionType::Pointer option = OptionType::New();
option->SetShortName('h');
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("help");
option->SetDescription(description);
parser->AddOption(option);
}
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
Atropos(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "Atropos");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
itk::ants::CommandLineParser::Pointer parser = itk::ants::CommandLineParser::New();
parser->SetCommand(argv[0]);
std::string commandDescription =
std::string("A finite mixture modeling (FMM) segmentation approach ") +
std::string("with possibilities for specifying prior constraints. ") +
std::string("These prior constraints include the specification ") +
std::string("of a prior label image, prior probability images ") +
std::string("(one for each class), and/or an MRF prior to ") +
std::string("enforce spatial smoothing of the labels. All segmentation ") +
std::string("images including priors and masks must be in the same ") +
std::string("voxel and physical space. Similar algorithms include FAST ") + std::string("and SPM. Reference: ") +
std::string("Avants BB, Tustison NJ, Wu J, Cook PA, Gee JC. An open ") +
std::string("source multivariate framework for n-tissue segmentation ") +
std::string("with evaluation on public data. Neuroinformatics. ") + std::string("2011 Dec;9(4):381-400.");
parser->SetCommandDescription(commandDescription);
AtroposInitializeCommandLineOptions(parser);
if (parser->Parse(argc, argv) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
if (argc == 1)
{
parser->PrintMenu(std::cout, 5, false);
return EXIT_FAILURE;
}
else if (parser->GetOption("help")->GetFunction() &&
parser->Convert<bool>(parser->GetOption("help")->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, false);
return EXIT_SUCCESS;
}
else if (parser->GetOption('h')->GetFunction() &&
parser->Convert<bool>(parser->GetOption('h')->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, true);
return EXIT_SUCCESS;
}
// Get dimensionality
unsigned int dimension = 3;
itk::ants::CommandLineParser::OptionType::Pointer dimOption = parser->GetOption("image-dimensionality");
if (dimOption && dimOption->GetNumberOfFunctions())
{
dimension = parser->Convert<unsigned int>(dimOption->GetFunction(0)->GetName());
}
else
{
// Read in the first intensity image to get the image dimension.
std::string filename;
itk::ants::CommandLineParser::OptionType::Pointer imageOption = parser->GetOption("intensity-image");
if (imageOption && imageOption->GetNumberOfFunctions())
{
if (imageOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
filename = imageOption->GetFunction(0)->GetParameter(0);
}
else
{
filename = imageOption->GetFunction(0)->GetName();
}
}
else
{
std::cerr << "No input images were specified. Specify an input image"
<< " with the -a option" << std::endl;
return EXIT_FAILURE;
}
itk::ImageIOBase::Pointer imageIO =
itk::ImageIOFactory::CreateImageIO(filename.c_str(), itk::IOFileModeEnum::ReadMode);
dimension = imageIO->GetNumberOfDimensions();
}
switch (dimension)
{
case 2:
return AtroposSegmentation<2>(parser);
break;
case 3:
return AtroposSegmentation<3>(parser);
break;
case 4:
return AtroposSegmentation<4>(parser);
break;
default:
std::cerr << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
} // namespace ants
|