1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
#include "antsUtilities.h"
#include <algorithm>
#include <algorithm>
#include "stdio.h"
#include "itkImage.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "ReadWriteData.h"
#include "TensorFunctions.h"
namespace ants
{
template <unsigned int ImageDimension>
int
AverageTensorImages(unsigned int argc, char * argv[])
{
// typedef itk::Vector<float,6> TensorType;
using TensorType = itk::SymmetricSecondRankTensor<float, 3>;
using ImageType = itk::Image<TensorType, ImageDimension>;
using IteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;
char * outputName = argv[2];
int mathtype = std::stoi(argv[3]);
float numberofimages = static_cast<float>(argc) - 4.0f;
std::cout << "Averaging " << numberofimages << " images " << std::endl;
typename ImageType::Pointer averageimage = nullptr;
typename ImageType::Pointer image2 = nullptr;
typename ImageType::SizeType size;
size.Fill(0);
unsigned int bigimage = 0;
for (unsigned int j = 4; j < argc; j++)
{
// Get the image dimension
std::string fn = std::string(argv[j]);
std::cout << " fn " << fn << std::endl;
typename itk::ImageIOBase::Pointer imageIO =
itk::ImageIOFactory::CreateImageIO(fn.c_str(), itk::IOFileModeEnum::ReadMode);
imageIO->SetFileName(fn.c_str());
imageIO->ReadImageInformation();
for (unsigned int i = 0; i < imageIO->GetNumberOfDimensions(); i++)
{
if (imageIO->GetDimensions(i) > size[i])
{
size[i] = imageIO->GetDimensions(i);
bigimage = j;
std::cout << " bigimage " << j << " size " << size << std::endl;
}
}
}
std::cout << " largest image " << size << std::endl;
bool logeuc = true;
if (mathtype == 1)
{
logeuc = false;
}
TensorType nullTensor;
nullTensor[0] = nullTensor[1] = nullTensor[2] = nullTensor[3] = nullTensor[4] = nullTensor[5] = 0;
ReadTensorImage<ImageType>(averageimage, argv[bigimage], logeuc);
averageimage->FillBuffer(nullTensor);
for (unsigned int j = 4; j < argc; j++)
{
std::string fn = std::string(argv[j]);
ReadTensorImage<ImageType>(image2, fn.c_str(), logeuc);
IteratorType vfIter(image2, image2->GetLargestPossibleRegion());
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
TensorType val = vfIter.Get() / numberofimages;
averageimage->SetPixel(vfIter.GetIndex(), val + averageimage->GetPixel(vfIter.GetIndex()));
}
}
WriteTensorImage<ImageType>(averageimage, outputName, logeuc);
return EXIT_SUCCESS;
}
// Main Program
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
AverageTensorImages(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "AverageTensorImages");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
try
{
if (argc - 4 < 1)
{
std::cerr << "Basic useage ex: " << std::endl;
std::cerr << argv[0] << " ImageDimension average.nii mathtype list-of-files-via-wildcard " << std::endl;
std::cerr << " e.g. \n AverageTensorImages 3 average.nii 1 *registered.nii " << std::endl;
std::cerr << " mathtype=[0=log-euclidean, 1=euclidean] " << std::endl;
if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
int dim = std::stoi(argv[1]);
// char * outputName = argv[2];
// int mathtype = std::stoi(argv[3]);
// int numberofimages = argc - 4;
// Get the image dimension
switch (dim)
{
case 2:
{
return AverageTensorImages<2>(argc, argv);
}
break;
case 3:
{
return AverageTensorImages<3>(argc, argv);
}
break;
default:
std::cerr << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
}
} // namespace ants
|