1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372
|
/*=========================================================================
Program: Advanced Normalization Tools
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "antsUtilities.h"
#include <algorithm>
#include "itkDiscreteGaussianImageFilter.h"
// RecursiveAverageImages img1 img2 weightonimg2 outputname
// We divide the 2nd input image by its mean and add it to the first
// input image with weight 1/n.
// The output overwrites the 1st img with the sum.
#include <algorithm>
#include <list>
#include <vector>
#include <fstream>
#include "vnl/vnl_vector.h"
#include "itkMinimumMaximumImageFilter.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkLabelStatisticsImageFilter.h"
#include "ReadWriteData.h"
namespace ants
{
template <unsigned int ImageDimension>
int
ClusterStatistics(unsigned int argc, char * argv[])
{
using PixelType = float;
// const unsigned int ImageDimension = AvantsImageDimension;
using ImageType = itk::Image<PixelType, ImageDimension>;
// typedef itk::ImageRegionIteratorWithIndex<ImageType> Iterator;
using ULPixelType = unsigned long;
using labelimagetype = itk::Image<ULPixelType, ImageDimension>;
using FilterType = itk::ConnectedComponentImageFilter<ImageType, labelimagetype>;
using RelabelType = itk::RelabelComponentImageFilter<labelimagetype, labelimagetype>;
// want the average value in each cluster as defined by the mask and the value thresh and the clust thresh
std::string roimaskfn = std::string(argv[2]);
std::string labelimagefn = std::string(argv[3]);
std::string outname = std::string(argv[4]);
float clusterthresh = atof(argv[5]);
float minSize = clusterthresh;
float valuethresh = atof(argv[6]);
// std::cout << " Cth " << clusterthresh << " Vth " << valuethresh << std::endl;
typename ImageType::Pointer valimage = nullptr;
typename ImageType::Pointer roiimage = nullptr;
typename ImageType::Pointer labelimage = nullptr;
ReadImage<ImageType>(roiimage, roimaskfn.c_str());
ReadImage<ImageType>(labelimage, labelimagefn.c_str());
using MinMaxFilterType = itk::MinimumMaximumImageFilter<ImageType>;
typename MinMaxFilterType::Pointer minMaxFilter = MinMaxFilterType::New();
minMaxFilter->SetInput(labelimage);
minMaxFilter->Update();
double min = minMaxFilter->GetMinimum();
double max = minMaxFilter->GetMaximum();
double range = max - min;
for (unsigned int filecount = 7; filecount < argc; filecount++)
{
// std::cout <<" doing " << std::string(argv[filecount]) << std::endl;
ReadImage<ImageType>(valimage, argv[filecount]);
// first, threshold the value image then get the clusters of min size
using ThresholdFilterType = itk::BinaryThresholdImageFilter<ImageType, ImageType>;
typename ThresholdFilterType::Pointer threshold = ThresholdFilterType::New();
threshold->SetInput(valimage);
threshold->SetInsideValue(1);
threshold->SetOutsideValue(0);
threshold->SetLowerThreshold(valuethresh);
threshold->SetUpperThreshold(1.e9);
threshold->Update();
typename ImageType::Pointer thresh = threshold->GetOutput();
using fIterator = itk::ImageRegionIteratorWithIndex<ImageType>;
using Iterator = itk::ImageRegionIteratorWithIndex<labelimagetype>;
fIterator tIter(thresh, thresh->GetLargestPossibleRegion());
for (tIter.GoToBegin(); !tIter.IsAtEnd(); ++tIter)
{
if (roiimage->GetPixel(tIter.GetIndex()) < static_cast<PixelType>(0.5))
{
tIter.Set(0);
}
}
// typename
typename FilterType::Pointer filter = FilterType::New();
// typename
typename RelabelType::Pointer relabel = RelabelType::New();
filter->SetInput(thresh);
int fullyConnected = 0; // std::stoi( argv[5] );
filter->SetFullyConnected(fullyConnected);
relabel->SetInput(filter->GetOutput());
relabel->SetMinimumObjectSize((unsigned int)minSize);
try
{
relabel->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Relabel: exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
typename ImageType::Pointer Clusters = MakeNewImage<ImageType>(valimage, 0);
typename ImageType::Pointer Values = MakeNewImage<ImageType>(valimage, 0);
typename ImageType::Pointer Labels = MakeNewImage<ImageType>(valimage, 0);
Iterator vfIter(relabel->GetOutput(), relabel->GetOutput()->GetLargestPossibleRegion());
float maximum = relabel->GetNumberOfObjects();
// std::cout << " #object " << maximum << std::endl;
// float maxtstat=0;
std::vector<unsigned long> histogram((int)maximum + 1);
std::vector<long> maxlabel((int)maximum + 1);
std::vector<float> suminlabel((unsigned long)range + 1);
std::vector<unsigned long> countinlabel((unsigned long)range + 1);
std::vector<float> sumofvalues((int)maximum + 1);
std::vector<float> maxvalue((int)maximum + 1);
for (int i = 0; i <= maximum; i++)
{
histogram[i] = 0;
sumofvalues[i] = 0;
maxvalue[i] = 0;
maxlabel[i] = 0;
}
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (vfIter.Get() > 0)
{
float vox = valimage->GetPixel(vfIter.GetIndex());
if (vox >= valuethresh)
{
histogram[(unsigned long)vfIter.Get()] = histogram[(unsigned long)vfIter.Get()] + 1;
sumofvalues[(unsigned long)vfIter.Get()] = sumofvalues[(unsigned long)vfIter.Get()] + vox;
if (maxvalue[(unsigned long)vfIter.Get()] < vox)
{
maxvalue[(unsigned long)vfIter.Get()] = vox;
maxlabel[(unsigned long)vfIter.Get()] = (long int)labelimage->GetPixel(vfIter.GetIndex());
}
suminlabel[(unsigned long)(labelimage->GetPixel(vfIter.GetIndex()) - static_cast<float>(min))] += vox;
countinlabel[(unsigned long)(labelimage->GetPixel(vfIter.GetIndex()) - static_cast<float>(min))] += 1;
}
}
}
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (vfIter.Get() > 0)
{
Clusters->SetPixel(vfIter.GetIndex(), histogram[(unsigned long)vfIter.Get()]);
Values->SetPixel(vfIter.GetIndex(),
sumofvalues[(unsigned long)vfIter.Get()] / (float)histogram[(unsigned int)vfIter.Get()]);
Labels->SetPixel(vfIter.GetIndex(), labelimage->GetPixel(vfIter.GetIndex()));
}
else
{
Clusters->SetPixel(vfIter.GetIndex(), 0);
Labels->SetPixel(vfIter.GetIndex(), 0);
Values->SetPixel(vfIter.GetIndex(), 0);
}
}
// ANTs::WriteImage<ImageType>(Values,std::string("temp.nii.gz").c_str());
// ANTs::WriteImage<ImageType>(Clusters,std::string("temp2.nii.gz").c_str());
float maximgval = 0;
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (Clusters->GetPixel(vfIter.GetIndex()) > maximgval)
{
maximgval = Clusters->GetPixel(vfIter.GetIndex());
}
}
// std::cout << " max size " << maximgval << std::endl;
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (Clusters->GetPixel(vfIter.GetIndex()) < minSize)
{
Clusters->SetPixel(vfIter.GetIndex(), 0);
Values->SetPixel(vfIter.GetIndex(), 0);
Labels->SetPixel(vfIter.GetIndex(), 0);
}
}
// ANTs::WriteImage<ImageType>(Values,(outname+"values.nii.gz").c_str());
// ANTs::WriteImage<ImageType>(Labels,(outname+"labels.nii.gz").c_str());
ANTs::WriteImage<ImageType>(Clusters, (outname + "sizes.nii.gz").c_str());
// now begin output
// std::cout << " Writing Text File " << outname << std::endl;
std::string outname2 = outname + std::string("average.csv");
std::string outname3 = outname + std::string("volume.csv");
std::ofstream outf((outname2).c_str(), std::ofstream::out);
std::ofstream outf2((outname3).c_str(), std::ofstream::out);
if (outf.good())
{
// outf << std::string(argv[filecount]) << std::endl;
for (int i = 0; i < maximum + 1; i++)
{
if (histogram[i] >= minSize)
{
// outf << " Cluster " << i << " size " << histogram[i] << " average " <<
// sumofvalues[i]/(float)histogram[i] << " max " << maxvalue[i] << " label " << maxlabel[i] << std::endl;
std::cout << " Cluster " << i << " size " << histogram[i] << " average "
<< sumofvalues[i] / (float)histogram[i] << " max " << maxvalue[i] << " label " << maxlabel[i]
<< std::endl;
}
}
for (unsigned int i = 0; i <= range; i++)
{
// if ( countinlabel[i] > 0)
{
if (countinlabel[i] == 0)
{
countinlabel[i] = 1;
}
// outf << " Label " << i+min << " average " << suminlabel[i]/(float)countinlabel[i] << std::endl;
std::cout << " Label " << i + min << " average " << suminlabel[i] / (float)countinlabel[i] << std::endl;
if (i < range)
{
outf << suminlabel[i] / (float)countinlabel[i] << ",";
}
else
{
outf << suminlabel[i] / (float)countinlabel[i] << std::endl;
}
}
}
}
else
{
std::cout << " File No Good! " << outname << std::endl;
}
outf.close();
if (outf2.good())
{
for (unsigned int i = 0; i <= range; i++)
{
if (countinlabel[i] == 0)
{
countinlabel[i] = 1;
}
if (i < range)
{
outf2 << (float)countinlabel[i] << ",";
}
else
{
outf2 << (float)countinlabel[i] << std::endl;
}
}
}
else
{
std::cout << " File No Good! " << outname << std::endl;
}
outf2.close();
}
return EXIT_SUCCESS;
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
ClusterImageStatistics(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "ClusterImageStatistics");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
if (argc < 4)
{
std::cout << " Given an ROI and Label Image, find the max and average value \n in a value image where the value "
"> some user-defined threshold \n and the cluster size is larger than some min size. \n "
<< std::endl;
std::cout << "Usage: \n " << std::endl;
std::cout << argv[0]
<< " ImageDimension ROIMask.ext LabelImage.ext OutPrefix MinimumClusterSize ValueImageThreshold "
"Image1WithValuesOfInterest.ext ... ImageNWithValuesOfInterest.ext \n \n "
<< std::endl;
std::cout << " ROIMask.ext -- overall region of interest \n \n LabelImage.ext -- labels for the sub-regions, e.g. "
"Brodmann or just unique labels (see LabelClustersUniquely ) \n \n OutputPrefix -- all output has "
"this prefix \n \n MinimumClusterSize -- the minimum size of clusters of interest \n \n "
"ValueImageThreshold -- minimum value of interest \n \n Image*WithValuesOfInterest.ext --- "
"image(s) that define the values you want to measure \n ";
if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
switch (std::stoi(argv[1]))
{
case 2:
{
ClusterStatistics<2>(argc, argv);
}
break;
case 3:
{
ClusterStatistics<3>(argc, argv);
}
break;
default:
std::cout << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
} // namespace ants
|