1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
#include "antsAllocImage.h"
#include "antsCommandLineParser.h"
#include "antsUtilities.h"
#include "ReadWriteData.h"
#include "itkAddImageFilter.h"
#include "itkAdaptiveNonLocalMeansDenoisingImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkResampleImageFilter.h"
#include "itkShrinkImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkTimeProbe.h"
#include "ANTsVersion.h"
namespace ants
{
template <typename TFilter>
class CommandProgressUpdate : public itk::Command
{
public:
using Self = CommandProgressUpdate<TFilter>;
using Superclass = itk::Command;
using Pointer = itk::SmartPointer<CommandProgressUpdate<TFilter>>;
itkNewMacro(CommandProgressUpdate);
protected:
CommandProgressUpdate() = default;
;
using FilterType = TFilter;
unsigned int m_CurrentProgress{ 0 };
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
auto * po = dynamic_cast<itk::ProcessObject *>(caller);
if (!po)
return;
// std::cout << po->GetProgress() << std::endl;
if (typeid(event) == typeid(itk::ProgressEvent))
{
if (this->m_CurrentProgress < 99)
{
this->m_CurrentProgress++;
if (this->m_CurrentProgress % 10 == 0)
{
std::cout << this->m_CurrentProgress << std::flush;
}
else
{
std::cout << "*" << std::flush;
}
}
}
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto * po = dynamic_cast<itk::ProcessObject *>(const_cast<itk::Object *>(object));
if (!po)
return;
if (typeid(event) == typeid(itk::ProgressEvent))
{
if (this->m_CurrentProgress < 99)
{
this->m_CurrentProgress++;
if (this->m_CurrentProgress % 10 == 0)
{
std::cout << this->m_CurrentProgress << std::flush;
}
else
{
std::cout << "*" << std::flush;
}
}
}
}
};
template <unsigned int ImageDimension>
int
Denoise(itk::ants::CommandLineParser * parser)
{
using RealType = float;
using OptionType = typename itk::ants::CommandLineParser::OptionType;
bool verbose = false;
typename itk::ants::CommandLineParser::OptionType::Pointer verboseOption = parser->GetOption("verbose");
if (verboseOption && verboseOption->GetNumberOfFunctions())
{
verbose = parser->Convert<bool>(verboseOption->GetFunction(0)->GetName());
}
if (verbose)
{
std::cout << std::endl << "Running for " << ImageDimension << "-dimensional images." << std::endl << std::endl;
}
using ImageType = itk::Image<RealType, ImageDimension>;
typename ImageType::Pointer inputImage = nullptr;
// typedef itk::Image<RealType, ImageDimension> MaskImageType;
// typename MaskImageType::Pointer maskImage = nullptr;
typename OptionType::Pointer inputImageOption = parser->GetOption("input-image");
if (inputImageOption && inputImageOption->GetNumberOfFunctions())
{
std::string inputFile = inputImageOption->GetFunction(0)->GetName();
ReadImage<ImageType>(inputImage, inputFile.c_str());
inputImage->Update();
inputImage->DisconnectPipeline();
}
else
{
if (verbose)
{
std::cerr << "Input image not specified." << std::endl;
}
return EXIT_FAILURE;
}
using DenoiserType = itk::AdaptiveNonLocalMeansDenoisingImageFilter<ImageType, ImageType>;
typename DenoiserType::Pointer denoiser = DenoiserType::New();
using ShrinkerType = itk::ShrinkImageFilter<ImageType, ImageType>;
typename ShrinkerType::Pointer shrinker = ShrinkerType::New();
shrinker->SetInput(inputImage);
shrinker->SetShrinkFactors(1);
typename OptionType::Pointer shrinkFactorOption = parser->GetOption("shrink-factor");
int shrinkFactor = 1;
if (shrinkFactorOption && shrinkFactorOption->GetNumberOfFunctions())
{
shrinkFactor = parser->Convert<int>(shrinkFactorOption->GetFunction(0)->GetName());
}
// if( shrinkFactor != 1 && verbose )
// {
// std::cout << "A shrink factor of > 1 doesn't seem to be working. I'm turning off this option for now." <<
// std::endl;
// }
shrinker->SetShrinkFactors(shrinkFactor);
shrinker->Update();
denoiser->SetInput(shrinker->GetOutput());
typename OptionType::Pointer noiseModelOption = parser->GetOption("noise-model");
std::string noiseModel("gaussian");
if (noiseModelOption && noiseModelOption->GetNumberOfFunctions())
{
noiseModel = noiseModelOption->GetFunction(0)->GetName();
}
ConvertToLowerCase(noiseModel);
if (std::strcmp(noiseModel.c_str(), "rician") == 0)
{
denoiser->SetUseRicianNoiseModel(true);
}
else if (std::strcmp(noiseModel.c_str(), "gaussian") == 0)
{
denoiser->SetUseRicianNoiseModel(false);
}
else
{
if (verbose)
{
std::cerr << "Unrecognized noise model: " << noiseModel << ". See help menu." << std::endl;
}
return EXIT_FAILURE;
}
/**
* handle the mask image
*/
using MaskImageType = typename DenoiserType::MaskImageType;
typename MaskImageType::Pointer maskImage = nullptr;
typename OptionType::Pointer maskImageOption = parser->GetOption("mask-image");
if (maskImageOption && maskImageOption->GetNumberOfFunctions())
{
std::string inputFile = maskImageOption->GetFunction(0)->GetName();
ReadImage<MaskImageType>(maskImage, inputFile.c_str());
}
denoiser->SetMaskImage(maskImage);
typename DenoiserType::NeighborhoodRadiusType neighborhoodPatchRadius;
typename DenoiserType::NeighborhoodRadiusType neighborhoodSearchRadius;
neighborhoodPatchRadius.Fill(1);
neighborhoodSearchRadius.Fill(2);
// Get the search and patch radii
typename OptionType::Pointer searchRadiusOption = parser->GetOption("search-radius");
if (searchRadiusOption && searchRadiusOption->GetNumberOfFunctions())
{
std::string searchRadiusString = searchRadiusOption->GetFunction(0)->GetName();
std::vector<unsigned int> searchRadius;
searchRadius.push_back(2);
if (searchRadiusOption && searchRadiusOption->GetNumberOfFunctions())
{
searchRadius = parser->ConvertVector<unsigned int>(searchRadiusString);
}
if (searchRadius.size() == 1)
{
for (unsigned int d = 1; d < ImageDimension; d++)
{
searchRadius.push_back(searchRadius[0]);
}
}
if (searchRadius.size() != ImageDimension)
{
if (verbose)
{
std::cerr << "Search radius specified incorrectly. Please see usage options." << std::endl;
}
return EXIT_FAILURE;
}
for (unsigned int d = 0; d < ImageDimension; d++)
{
neighborhoodSearchRadius[d] = searchRadius[d];
}
}
denoiser->SetNeighborhoodSearchRadius(neighborhoodSearchRadius);
typename OptionType::Pointer patchRadiusOption = parser->GetOption("patch-radius");
if (patchRadiusOption && patchRadiusOption->GetNumberOfFunctions())
{
std::vector<unsigned int> patchRadius;
patchRadius.push_back(1);
patchRadius = parser->ConvertVector<unsigned int>(patchRadiusOption->GetFunction(0)->GetName());
if (patchRadius.size() == 1)
{
for (unsigned int d = 1; d < ImageDimension; d++)
{
patchRadius.push_back(patchRadius[0]);
}
}
if (patchRadius.size() != ImageDimension)
{
if (verbose)
{
std::cerr << "Patch radius specified incorrectly. Please see usage options." << std::endl;
}
return EXIT_FAILURE;
}
for (unsigned int d = 0; d < ImageDimension; d++)
{
neighborhoodPatchRadius[d] = patchRadius[d];
}
}
denoiser->SetNeighborhoodPatchRadius(neighborhoodPatchRadius);
/**
* The parameters below are the default parameters taken from Jose's original
* code. I don't have a good handle on them so I'm hiding them from the
* user for now.
*/
typename DenoiserType::NeighborhoodRadiusType neighborhoodRadiusForLocalMeanAndVariance;
neighborhoodRadiusForLocalMeanAndVariance.Fill(1);
denoiser->SetNeighborhoodRadiusForLocalMeanAndVariance(neighborhoodRadiusForLocalMeanAndVariance);
denoiser->SetEpsilon(0.00001);
denoiser->SetMeanThreshold(0.95);
denoiser->SetVarianceThreshold(0.5);
denoiser->SetSmoothingFactor(1.0);
denoiser->SetSmoothingVariance(2.0);
itk::TimeProbe timer;
timer.Start();
if (verbose)
{
using CommandType = CommandProgressUpdate<DenoiserType>;
typename CommandType::Pointer observer = CommandType::New();
denoiser->AddObserver(itk::ProgressEvent(), observer);
}
try
{
// denoiser->DebugOn();
denoiser->Update();
}
catch (const itk::ExceptionObject & e)
{
if (verbose)
{
std::cerr << "Exception caught: " << e << std::endl;
}
return EXIT_FAILURE;
}
if (verbose)
{
std::cout << std::endl << std::endl;
denoiser->Print(std::cout, 3);
}
timer.Stop();
if (verbose)
{
std::cout << "Elapsed time: " << timer.GetMean() << std::endl;
}
/**
* output
*/
typename itk::ants::CommandLineParser::OptionType::Pointer outputOption = parser->GetOption("output");
if (outputOption && outputOption->GetNumberOfFunctions())
{
/**
* Get the noise image and resample to full resolution
*/
using SubtracterType = itk::SubtractImageFilter<ImageType, ImageType, ImageType>;
typename SubtracterType::Pointer subtracter = SubtracterType::New();
subtracter->SetInput1(denoiser->GetInput());
subtracter->SetInput2(denoiser->GetOutput());
using ResamplerType = itk::ResampleImageFilter<ImageType, ImageType, RealType>;
typename ResamplerType::Pointer resampler = ResamplerType::New();
{
using TransformType = itk::IdentityTransform<RealType, ImageDimension>;
typename TransformType::Pointer transform = TransformType::New();
transform->SetIdentity();
resampler->SetTransform(transform);
}
{
using LinearInterpolatorType = itk::LinearInterpolateImageFunction<ImageType, RealType>;
typename LinearInterpolatorType::Pointer interpolator = LinearInterpolatorType::New();
interpolator->SetInputImage(subtracter->GetOutput());
resampler->SetInterpolator(interpolator);
}
resampler->SetOutputParametersFromImage(inputImage);
resampler->UseReferenceImageOn();
resampler->SetInput(subtracter->GetOutput());
typename ImageType::Pointer noiseImage = resampler->GetOutput();
noiseImage->Update();
noiseImage->DisconnectPipeline();
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
ANTs::WriteImage<ImageType>(noiseImage, (outputOption->GetFunction(0)->GetParameter(1)).c_str());
}
typename SubtracterType::Pointer subtracter2 = SubtracterType::New();
subtracter2->SetInput1(inputImage);
subtracter2->SetInput2(noiseImage);
subtracter2->Update();
if (outputOption->GetFunction(0)->GetNumberOfParameters() == 0)
{
ANTs::WriteImage<ImageType>(subtracter2->GetOutput(), (outputOption->GetFunction(0)->GetName()).c_str());
}
else if (outputOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
ANTs::WriteImage<ImageType>(subtracter2->GetOutput(), (outputOption->GetFunction(0)->GetParameter(0)).c_str());
}
}
return EXIT_SUCCESS;
}
void
InitializeCommandLineOptions(itk::ants::CommandLineParser * parser)
{
using OptionType = itk::ants::CommandLineParser::OptionType;
{
std::string description = std::string("This option forces the image to be treated as a specified-") +
std::string("dimensional image. If not specified, the program tries to ") +
std::string("infer the dimensionality from the input image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("image-dimensionality");
option->SetShortName('d');
option->SetUsageOption(0, "2/3/4");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("A scalar image is expected as input for noise correction. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName("input-image");
option->SetShortName('i');
option->SetUsageOption(0, "inputImageFilename");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Employ a Rician or Gaussian noise model. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName("noise-model");
option->SetShortName('n');
option->SetUsageOption(0, "Rician/(Gaussian)");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("If a mask image is specified, denoising is ") + std::string("only performed in the mask region. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName("mask-image");
option->SetShortName('x');
option->SetUsageOption(0, "maskImageFilename");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Running noise correction on large images can be time consuming. ") +
std::string("To lessen computation time, the input image can be resampled. ") +
std::string("The shrink factor, specified as a single integer, describes ") +
std::string("this resampling. Shrink factor = 1 is the default.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("shrink-factor");
option->SetShortName('s');
option->SetUsageOption(0, "(1)/2/3/...");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Patch radius. Default = 1x1x1");
OptionType::Pointer option = OptionType::New();
option->SetLongName("patch-radius");
option->SetShortName('p');
option->SetUsageOption(0, "1");
option->SetUsageOption(1, "1x1x1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Search radius. Default = 2x2x2.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("search-radius");
option->SetShortName('r');
option->SetUsageOption(0, "2");
option->SetUsageOption(1, "2x2x2");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The output consists of the noise corrected version of the ") +
std::string("input image. Optionally, one can also output the estimated ") +
std::string("noise image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("output");
option->SetShortName('o');
option->SetUsageOption(0, "correctedImage");
option->SetUsageOption(1, "[correctedImage,<noiseImage>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Get Version Information.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("version");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Verbose output.");
OptionType::Pointer option = OptionType::New();
option->SetShortName('v');
option->SetLongName("verbose");
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu (short version).");
OptionType::Pointer option = OptionType::New();
option->SetShortName('h');
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("help");
option->SetDescription(description);
parser->AddOption(option);
}
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
DenoiseImage(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "DenoiseImage");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
itk::ants::CommandLineParser::Pointer parser = itk::ants::CommandLineParser::New();
parser->SetCommand(argv[0]);
std::string commandDescription =
std::string("Denoise an image using a spatially adaptive filter originally described in ") +
std::string("J. V. Manjon, P. Coupe, Luis Marti-Bonmati, D. L. Collins, ") +
std::string("and M. Robles. Adaptive Non-Local Means Denoising of MR Images With ") +
std::string("Spatially Varying Noise Levels, Journal of Magnetic Resonance Imaging, ") +
std::string("31:192-203, June 2010.");
parser->SetCommandDescription(commandDescription);
InitializeCommandLineOptions(parser);
if (parser->Parse(argc, argv) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
if (argc == 1)
{
parser->PrintMenu(std::cerr, 5, false);
return EXIT_FAILURE;
}
else if (parser->GetOption("help")->GetFunction() &&
parser->Convert<bool>(parser->GetOption("help")->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, false);
return EXIT_SUCCESS;
}
else if (parser->GetOption('h')->GetFunction() &&
parser->Convert<bool>(parser->GetOption('h')->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, true);
return EXIT_SUCCESS;
}
// Show automatic version
itk::ants::CommandLineParser::OptionType::Pointer versionOption = parser->GetOption("version");
if (versionOption && versionOption->GetNumberOfFunctions())
{
std::string versionFunction = versionOption->GetFunction(0)->GetName();
ConvertToLowerCase(versionFunction);
if (versionFunction.compare("1") == 0 || versionFunction.compare("true") == 0)
{
// Print Version Information
std::cout << ANTs::Version::ExtendedVersionString() << std::endl;
return EXIT_SUCCESS;
}
}
// Get dimensionality
unsigned int dimension = 3;
itk::ants::CommandLineParser::OptionType::Pointer dimOption = parser->GetOption("image-dimensionality");
if (dimOption && dimOption->GetNumberOfFunctions())
{
dimension = parser->Convert<unsigned int>(dimOption->GetFunction(0)->GetName());
}
else
{
// Read in the first intensity image to get the image dimension.
std::string filename;
itk::ants::CommandLineParser::OptionType::Pointer imageOption = parser->GetOption("input-image");
if (imageOption && imageOption->GetNumberOfFunctions() > 0)
{
if (imageOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
filename = imageOption->GetFunction(0)->GetParameter(0);
}
else
{
filename = imageOption->GetFunction(0)->GetName();
}
}
else
{
std::cerr << "No input images were specified. Specify an input image"
<< " with the -i option" << std::endl;
return EXIT_FAILURE;
}
itk::ImageIOBase::Pointer imageIO =
itk::ImageIOFactory::CreateImageIO(filename.c_str(), itk::IOFileModeEnum::ReadMode);
dimension = imageIO->GetNumberOfDimensions();
}
switch (dimension)
{
case 2:
{
return Denoise<2>(parser);
}
break;
case 3:
{
return Denoise<3>(parser);
}
break;
case 4:
{
return Denoise<4>(parser);
}
break;
default:
std::cout << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
} // namespace ants
|