1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
#include "antsUtilities.h"
#include "ReadWriteData.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkLabelImageToShapeLabelMapFilter.h"
#include "itkLabelStatisticsImageFilter.h"
#include "itkMultiplyImageFilter.h"
#include "itkSignedMaurerDistanceMapImageFilter.h"
#include <string>
#include <vector>
namespace ants
{
template <unsigned int ImageDimension>
int
GetConnectedComponentsFeatureImages(int itkNotUsed(argc), char * argv[])
{
using PixelType = int;
using ImageType = itk::Image<PixelType, ImageDimension>;
using RealImageType = itk::Image<float, ImageDimension>;
typename ImageType::Pointer inputImage = nullptr;
ReadImage<ImageType>(inputImage, argv[2]);
// Output images:
// [0] = volume (in physical coordinates)
// [1] = volume / surface area
// [2] = eccentricity
// [3] = elongation
std::vector<typename RealImageType::Pointer> outputImages;
for (unsigned int n = 0; n < 4; n++)
{
typename RealImageType::Pointer output = RealImageType::New();
output->CopyInformation(inputImage);
output->SetRegions(inputImage->GetRequestedRegion());
output->AllocateInitialized();
outputImages.push_back(output);
}
typename ImageType::SpacingType spacing = inputImage->GetSpacing();
using RelabelerType = itk::RelabelComponentImageFilter<ImageType, ImageType>;
typename RelabelerType::Pointer relabeler = RelabelerType::New();
relabeler->SetInput(inputImage);
relabeler->Update();
for (unsigned int i = 1; i <= relabeler->GetNumberOfObjects(); i++)
{
using ThresholderType = itk::BinaryThresholdImageFilter<ImageType, ImageType>;
typename ThresholderType::Pointer thresholder = ThresholderType::New();
thresholder->SetInput(relabeler->GetOutput());
thresholder->SetLowerThreshold(i);
thresholder->SetUpperThreshold(i);
thresholder->SetInsideValue(1);
thresholder->SetOutsideValue(0);
thresholder->Update();
using ConnectedComponentType = itk::ConnectedComponentImageFilter<ImageType, ImageType>;
typename ConnectedComponentType::Pointer filter = ConnectedComponentType::New();
filter->SetInput(thresholder->GetOutput());
filter->Update();
typename RelabelerType::Pointer relabeler2 = RelabelerType::New();
relabeler2->SetInput(filter->GetOutput());
relabeler2->Update();
using GeometryFilterType = itk::LabelImageToShapeLabelMapFilter<ImageType>;
typename GeometryFilterType::Pointer geometry = GeometryFilterType::New();
geometry->SetInput(relabeler2->GetOutput());
geometry->ComputeOrientedBoundingBoxOff();
geometry->ComputePerimeterOn();
geometry->Update();
itk::ImageRegionIteratorWithIndex<ImageType> It(relabeler->GetOutput(),
relabeler->GetOutput()->GetRequestedRegion());
itk::ImageRegionIterator<ImageType> It2(relabeler2->GetOutput(), relabeler2->GetOutput()->GetRequestedRegion());
for (It.GoToBegin(), It2.GoToBegin(); !It.IsAtEnd(); ++It, ++It2)
{
int label = It2.Get();
if (label != 0)
{
typename ImageType::IndexType index = It.GetIndex();
// Output images:
// [0] = volume (in physical coordinates)
// [1] = volume / surface area
// [2] = eccentricity
// [3] = elongation
try
{
auto labelObject = geometry->GetOutput()->GetLabelObject(label);
float volume = labelObject->GetPhysicalSize();
outputImages[0]->SetPixel(index, volume);
outputImages[1]->SetPixel(index, volume / static_cast<float>(labelObject->GetPerimeter()));
auto principalMoments = labelObject->GetPrincipalMoments();
float lambda1 = principalMoments[0];
float lambdaN = principalMoments[ImageDimension - 1];
float eccentricity = 0.0;
if (!itk::Math::FloatAlmostEqual(lambda1, 0.0f))
{
eccentricity = std::sqrt(1.0 - (lambda1 * lambda1) / (lambdaN * lambdaN));
}
outputImages[2]->SetPixel(index, eccentricity);
outputImages[3]->SetPixel(index, labelObject->GetElongation());
}
catch (itk::ExceptionObject & e)
{
std::cerr << "Could not find label " << label << std::endl;
}
}
}
}
{
std::string filename = std::string(argv[3]) + std::string("PHYSICAL_VOLUME.nii.gz");
ANTs::WriteImage<RealImageType>(outputImages[0], filename.c_str());
}
{
std::string filename = std::string(argv[3]) + std::string("VOLUME_TO_SURFACE_AREA_RATIO.nii.gz");
ANTs::WriteImage<RealImageType>(outputImages[1], filename.c_str());
}
{
std::string filename = std::string(argv[3]) + std::string("ECCENTRICITY.nii.gz");
ANTs::WriteImage<RealImageType>(outputImages[2], filename.c_str());
}
{
std::string filename = std::string(argv[3]) + std::string("ELONGATION.nii.gz");
ANTs::WriteImage<RealImageType>(outputImages[3], filename.c_str());
}
return EXIT_SUCCESS;
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
GetConnectedComponentsFeatureImages(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "GetConnectedComponentsFeatureImages");
const int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
if (argc < 4)
{
std::cout << "Usage: " << argv[0] << " imageDimension "
<< "inputSegmentationImage outputImagePrefix" << std::endl;
return EXIT_FAILURE;
}
int returnStatus = EXIT_FAILURE;
switch (std::stoi(argv[1]))
{
case 2:
returnStatus = GetConnectedComponentsFeatureImages<2>(argc, argv);
break;
case 3:
returnStatus = GetConnectedComponentsFeatureImages<3>(argc, argv);
break;
default:
std::cout << "Unsupported dimension" << std::endl;
}
return returnStatus;
}
} // namespace ants
|