1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
|
/*=========================================================================
Program: Advanced Normalization Tools
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "antsUtilities.h"
#include <algorithm>
#include <vnl/vnl_inverse.h>
#include "itkTransformFileReader.h"
#include "itkTransformFileWriter.h"
#include "antsAllocImage.h"
#include "antsSCCANObject.h"
#include "itkAlternatingValueDifferenceImageFilter.h"
#include "itkAlternatingValueSimpleSubtractionImageFilter.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkArray.h"
#include "itkAverageOverDimensionImageFilter.h"
#include "itkGradientImageFilter.h"
#include "itkBlackTopHatImageFilter.h"
#include "itkBSplineControlPointImageFilter.h"
#include "itkBilateralImageFilter.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkCSVNumericObjectFileWriter.h"
#include "itkCannyEdgeDetectionImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkCompositeValleyFunction.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkConvolutionImageFilter.h"
#include "itkCorrelationImageToImageMetricv4.h"
#include "itkCyclicShiftImageFilter.h"
#include "itkDiffusionTensor3D.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkSignedMaurerDistanceMapImageFilter.h"
#include "itkDemonsImageToImageMetricv4.h"
#include "itkExpImageFilter.h"
#include "itkExtractImageFilter.h"
#include "itkFastMarchingExtensionImageFilterBase.h"
#include "itkFastMarchingExtensionImageFilter.h"
#include "itkGaussianImageSource.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkHessianRecursiveGaussianImageFilter.h"
#include "itkHistogram.h"
#include "itkHistogramMatchingImageFilter.h"
#include "itkImage.h"
#include "itkImageDuplicator.h"
#include "itkImageFileWriter.h"
#include "itkImageGaussianModelEstimator.h"
#include "itkImageKmeansModelEstimator.h"
#include "itkImageMaskSpatialObject.h"
#include "itkImageMomentsCalculator.h"
#include "itkImageRandomConstIteratorWithIndex.h"
#include "itkImageRegionIterator.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkLabelOverlapMeasuresImageFilter.h"
#include "itkKdTree.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkLabelContourImageFilter.h"
#include "itkLabelStatisticsImageFilter.h"
#include "itkLabeledPointSetFileReader.h"
#include "itkLabeledPointSetFileWriter.h"
#include "itkLaplacianRecursiveGaussianImageFilter.h"
#include "itkLaplacianSharpeningImageFilter.h"
#include "itkListSample.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkMaximumProjectionImageFilter.h"
#include "itkMinimumProjectionImageFilter.h"
#include "itkMRFImageFilter.h"
#include "itkMRIBiasFieldCorrectionFilter.h"
#include "itkMaskImageFilter.h"
#include "itkMaximumImageFilter.h"
#include "itkMedianImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkMultiplyImageFilter.h"
#include "itkMultivariateLegendrePolynomial.h"
#include "itkNeighborhood.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkNeighborhoodIterator.h"
#include "itkNeighborhoodFirstOrderStatisticsImageFilter.h"
#include "itkNormalVariateGenerator.h"
#include "itkOtsuThresholdImageFilter.h"
#include "itkPseudoContinuousArterialSpinLabeledCerebralBloodFlowImageFilter.h"
#include "itkPulsedArterialSpinLabeledCerebralBloodFlowImageFilter.h"
#include "itkRGBPixel.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkIntensityWindowingImageFilter.h"
#include "itkSampleToHistogramFilter.h"
#include "itkScalarImageKmeansImageFilter.h"
#include "itkShrinkImageFilter.h"
#include "itkSigmoidImageFilter.h"
#include "itkSize.h"
#include "itkSliceTimingCorrectionImageFilter.h"
#include "itkSphereSpatialFunction.h"
#include "itkSplitAlternatingTimeSeriesImageFilter.h"
#include "itkSTAPLEImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkSumProjectionImageFilter.h"
#include "itkTDistribution.h"
#include "itkTileImageFilter.h"
#include "itkTimeProbe.h"
#include "itkTranslationTransform.h"
#include "itkVariableSizeMatrix.h"
#include "itkVectorLinearInterpolateImageFunction.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkWhiteTopHatImageFilter.h"
#include "itkWindowedSincInterpolateImageFunction.h"
#include "vnl/vnl_matrix_fixed.h"
#include "itkTransformFactory.h"
#include "itkSurfaceImageCurvature.h"
#include "itkMultiScaleLaplacianBlobDetectorImageFilter.h"
#include <fstream>
#include <iostream>
#include <map> // Here I'm using a map but you could choose even other containers
#include <sstream>
#include <string>
#include "ReadWriteData.h"
#include "TensorFunctions.h"
#include "antsMatrixUtilities.h"
#include "antsFastMarchingImageFilter.h"
#include "itkFastMarchingImageFilterBase.h"
#include "itkFastMarchingThresholdStoppingCriterion.h"
namespace ants
{
// External functions in separate files for more module compilation
// These functions are defined in independant compilation units in
// ImageMathHelper2D.cpp, ImageMathHelper3D.cpp, and ImageMathHelper4D.cpp
extern int
ImageMathHelper2D(int argc, char ** argv);
extern int
ImageMathHelper3D(int argc, char ** argv);
extern int
ImageMathHelper4D(int argc, char ** argv);
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
ImageMath(std::vector<std::string> args, std::ostream * itkNotUsed(out_stream))
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "ImageMath");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
if (argc < 5)
{
std::cout << "\nUsage: " << argv[0]
<< " ImageDimension <OutputImage.ext> [operations and inputs] <Image1.ext> <Image2.ext>" << std::endl;
std::cout << "\nUsage Information " << std::endl;
std::cout << " ImageDimension: 2 or 3 (for 2 or 3 dimensional operations)." << std::endl;
std::cout << " ImageDimension: 4 (for operations on 4D file, e.g. time-series data)." << std::endl;
std::cout << " Operator: See list of valid operators below." << std::endl;
std::cout << " The last two arguments can be an image or float value " << std::endl;
std::cout << " NB: Some options output text files" << std::endl;
std::cout << "\nMathematical Operations:" << std::endl;
std::cout << " m : Multiply --- use vm for vector multiply " << std::endl;
std::cout << " + : Add --- use v+ for vector add " << std::endl;
std::cout << " - : Subtract --- use v- for vector subtract " << std::endl;
std::cout << " / : Divide" << std::endl;
std::cout << " ^ : Power" << std::endl;
std::cout << " max : voxelwise max" << std::endl;
std::cout << " exp : Take exponent exp(imagevalue*value)" << std::endl;
std::cout << " addtozero : add image-b to image-a only over points where image-a has zero values"
<< std::endl;
std::cout << " overadd : replace image-a pixel with image-b pixel if image-b pixel is non-zero"
<< std::endl;
std::cout << " abs : absolute value " << std::endl;
std::cout << " total : Sums up values in an image or in image1*image2 (img2 is the probability mask)"
<< std::endl;
std::cout << " mean : Average of values in an image or in image1*image2 (img2 is the probability mask)"
<< std::endl;
std::cout << " vtotal : Sums up volumetrically weighted values in an image or in image1*image2 (img2 "
"is the probability mask)"
<< std::endl;
std::cout << " Decision : Computes result=1./(1.+exp(-1.0*( pix1-0.25)/pix2))" << std::endl;
std::cout << " Neg : Produce image negative" << std::endl;
std::cout << "\nSpatial Filtering:" << std::endl;
std::cout << " Project Image1.ext axis-a which-projection : Project an image along axis a, "
"which-projection=0(sum, 1=max, 2=min)"
<< std::endl;
std::cout << " G Image1.ext s : Smooth with Gaussian of sigma = s" << std::endl;
std::cout << " MD Image1.ext s : Morphological Dilation with radius s" << std::endl;
std::cout << " ME Image1.ext s : Morphological Erosion with radius s" << std::endl;
std::cout << " MO Image1.ext s : Morphological Opening with radius s" << std::endl;
std::cout << " MC Image1.ext s : Morphological Closing with radius s" << std::endl;
std::cout << " GD Image1.ext s : Grayscale Dilation with radius s" << std::endl;
std::cout << " GE Image1.ext s : Grayscale Erosion with radius s" << std::endl;
std::cout << " GO Image1.ext s : Grayscale Opening with radius s" << std::endl;
std::cout << " GC Image1.ext s : Grayscale Closing with radius s" << std::endl;
std::cout << " Extract contours: extract contours from a label image" << std::endl;
std::cout << " Usage: ExtractContours inputImage [doFullyConnected=1]" << std::endl;
std::cout
<< " BlobDetector Image1.ext NumberOfBlobsToExtract Optional-Input-Image2 Blob-2-out.nii.gz N-Blobs-To-Match "
": blob detection by searching for local extrema of the Laplacian of the Gassian (LoG) "
<< std::endl;
std::cout << " Example matching 6 best blobs from 2 images: " << std::endl;
std::cout << " ImageMath 2 blob.nii.gz BlobDetector image1.nii.gz 1000 image2.nii.gz blob2.nii.gz 6 "
<< std::endl;
std::cout << " MatchBlobs Image1.ext Image1LM.ext Image2.ext" << std::endl;
std::cout << std::endl;
std::cout << "\nTransform Image: " << std::endl;
std::cout << "Translate InImage.ext x [ y z ] " << std::endl;
std::cout << "\nTime Series Operations:" << std::endl;
std::cout << " CompCorrAuto : Outputs a csv file containing global signal vector and N comp-corr eigenvectors "
"determined from PCA of the high-variance voxels. Also outputs a comp-corr + global signal corrected "
"4D image as well as a 3D image measuring the time series variance. Requires a label image with "
"label 1 identifying voxels in the brain."
<< std::endl;
std::cout << " ImageMath 4 ${out}compcorr.nii.gz ThreeTissueConfounds ${out}.nii.gz ${out}seg.nii.gz 1 3 "
<< " : Outputs average global, CSF and WM signals. Requires a label image with 3 labels , csf, gm , wm ."
<< std::endl;
std::cout << " Usage : ThreeTissueConfounds 4D_TimeSeries.nii.gz LabeLimage.nii.gz csf-label wm-label "
<< std::endl;
std::cout
<< " TimeSeriesSubset : Outputs n 3D image sub-volumes extracted uniformly from the input time-series 4D image."
<< std::endl;
std::cout << " Usage : TimeSeriesSubset 4D_TimeSeries.nii.gz n " << std::endl;
std::cout << " TimeSeriesDisassemble : Outputs n 3D image volumes for each time-point in time-series 4D image."
<< std::endl;
std::cout << " Usage : TimeSeriesDisassemble 4D_TimeSeries.nii.gz " << std::endl << std::endl;
std::cout << " TimeSeriesAssemble : Outputs a 4D time-series image from a list of 3D volumes." << std::endl;
std::cout << " Usage : TimeSeriesAssemble time_spacing time_origin *images.nii.gz " << std::endl;
std::cout << " TimeSeriesToMatrix : Converts a 4D image + mask to matrix (stored as csv file) where rows are time "
"and columns are space ."
<< std::endl;
std::cout << " Usage : TimeSeriesToMatrix 4D_TimeSeries.nii.gz mask " << std::endl;
std::cout << " TimeSeriesSimpleSubtraction : Outputs a 3D mean pair-wise difference list of 3D volumes."
<< std::endl;
std::cout << " Usage : TimeSeriesSimpleSubtraction image.nii.gz " << std::endl;
std::cout << " TimeSeriesSurroundSubtraction : Outputs a 3D mean pair-wise difference list of 3D volumes."
<< std::endl;
std::cout << " Usage : TimeSeriesSurroundSubtraction image.nii.gz " << std::endl;
std::cout << " TimeSeriesSincSubtraction : Outputs a 3D mean pair-wise difference list of 3D volumes." << std::endl;
std::cout << " Usage : TimeSeriesSincSubtraction image.nii.gz " << std::endl;
std::cout << " SplitAlternatingTimeSeries : Outputs 2 3D time series" << std::endl;
std::cout << " Usage : SplitAlternatingTimeSeries image.nii.gz " << std::endl;
std::cout
<< " ComputeTimeSeriesLeverage : Outputs a csv file that identifies the raw leverage and normalized leverage for "
"each time point in the 4D image. leverage, here, is the difference of the time-point image from the average "
"of the n images. the normalized leverage is = average( sum_k abs(Leverage(t)-Leverage(k)) )/Leverage(t). "
<< std::endl;
std::cout << " Usage : ComputeTimeSeriesLeverage 4D_TimeSeries.nii.gz k_neighbors " << std::endl;
std::cout << " SliceTimingCorrection : Outputs a slice-timing corrected 4D time series" << std::endl;
std::cout << " Usage : SliceTimingCorrection image.nii.gz sliceTiming [sinc / bspline] [sincRadius=4 / "
"bsplineOrder=3]"
<< std::endl;
std::cout << " PASL : computes the PASL model of CBF " << std::endl
<< "f = \frac{ lambda DeltaM } " << std::endl
<< " { 2 alpha M_0 TI_1 exp( - TI_2 / T_{1a} ) } " << std::endl;
std::cout << " Usage : PASL 3D/4D_TimeSeries.nii.gz BoolFirstImageIsControl M0Image parameter_list.txt "
<< std::endl;
std::cout << " pCASL : computes the pCASL model of CBF " << std::endl
<< " f = \frac{ lambda DeltaM R_{1a} } " << std::endl
<< " { 2 alpha M_0 [ exp( - w R_{1a} ) - exp( -w ( \tau + w ) R_{1a}) ] } " << std::endl;
std::cout << " Usage : pCASL 3D/4D_TimeSeries.nii.gz parameter_list.txt " << std::endl;
std::cout << " PASLQuantifyCBF : Outputs a 3D CBF image in ml/100g/min from a magnetization ratio image"
<< std::endl;
std::cout << " Usage : PASLQuantifyCBF mag_ratio.nii.gz [TI1=700] [TI2=1900] [T1blood=1664] [Lambda=0.9] "
"[Alpha=0.95] [SliceDelay-45] "
<< std::endl;
std::cout << "\nTensor Operations:" << std::endl;
std::cout << " 4DTensorTo3DTensor : Outputs a 3D_DT_Image with the same information. " << std::endl;
std::cout << " Usage : 4DTensorTo3DTensor 4D_DTImage.ext" << std::endl;
std::cout << " ComponentTo3DTensor : Outputs a 3D_DT_Image with the same information as component images. "
<< std::endl;
std::cout << " Usage : ComponentTo3DTensor component_image_prefix[xx,xy,xz,yy,yz,zz] extension"
<< std::endl;
std::cout << " ExtractComponentFrom3DTensor : Outputs a component images. " << std::endl;
std::cout << " Usage : ExtractComponentFrom3DTensor dtImage.ext which={xx,xy,xz,yy,yz,zz}" << std::endl;
std::cout << " ExtractVectorComponent: Produces the WhichVec component of the vector " << std::endl;
std::cout << " Usage : ExtractVectorComponent VecImage WhichVec" << std::endl;
std::cout << " TensorColor : Produces RGB values identifying principal directions " << std::endl;
std::cout << " Usage : TensorColor DTImage.ext" << std::endl;
std::cout << " TensorFA : " << std::endl;
std::cout << " Usage : TensorFA DTImage.ext" << std::endl;
std::cout << " TensorFADenominator : " << std::endl;
std::cout << " Usage : TensorFADenominator DTImage.ext" << std::endl;
std::cout << " TensorFANumerator : " << std::endl;
std::cout << " Usage : TensorFANumerator DTImage.ext" << std::endl;
std::cout << " TensorIOTest : Will write the DT image back out ... tests I/O processes for consistency. "
<< std::endl;
std::cout << " Usage : TensorIOTest DTImage.ext" << std::endl;
std::cout << " TensorMeanDiffusion : Mean of the eigenvalues" << std::endl;
std::cout << " Usage : TensorMeanDiffusion DTImage.ext" << std::endl;
std::cout << " TensorRadialDiffusion : Mean of the two smallest eigenvalues" << std::endl;
std::cout << " Usage : TensorRadialDiffusion DTImage.ext" << std::endl;
std::cout << " TensorAxialDiffusion : Largest eigenvalue, equivalent to TensorEigenvalue DTImage.ext 2"
<< std::endl;
std::cout << " Usage : TensorAxialDiffusion DTImage.ext" << std::endl;
std::cout << " TensorEigenvalue : Gets a single eigenvalue 0-2, where 0 = smallest, 2 = largest"
<< std::endl;
std::cout << " Usage : TensorEigenvalue DTImage.ext WhichInd" << std::endl;
std::cout << " TensorToVector : Produces vector field identifying one of the principal directions, 2 = largest "
"eigenvalue"
<< std::endl;
std::cout << " Usage : TensorToVector DTImage.ext WhichVec" << std::endl;
std::cout << " TensorToVectorComponent: 0 => 2 produces component of the principal vector field (largest "
"eigenvalue). 3 = 8 => gets values from the tensor "
<< std::endl;
std::cout << " Usage : TensorToVectorComponent DTImage.ext WhichVec" << std::endl;
std::cout << " TensorMask : Mask a tensor image, sets background tensors to zero or to isotropic tensors with "
"specified mean diffusivity "
<< std::endl;
std::cout << " Usage : TensorMask DTImage.ext mask.ext [ backgroundMD = 0 ] " << std::endl;
std::cout << " FuseNImagesIntoNDVectorField : Create ND field from N input scalar images" << std::endl;
std::cout << " Usage : FuseNImagesIntoNDVectorField imagex imagey imagez" << std::endl;
std::cout << "\nLabel Fusion:" << std::endl;
std::cout << " MajorityVoting : Select label with most votes from candidates" << std::endl;
std::cout << " Usage: MajorityVoting LabelImage1.nii.gz .. LabelImageN.nii.gz" << std::endl;
std::cout << " CorrelationVoting : Select label with local correlation weights" << std::endl;
std::cout << " Usage: CorrelationVoting Template.ext IntenistyImages* LabelImages* {Optional-Radius=5}"
<< std::endl;
std::cout << " STAPLE : Select label using STAPLE method" << std::endl;
std::cout << " Usage: STAPLE confidence-weighting LabelImages*" << std::endl;
std::cout << " Note: Gives probabilistic output (float)" << std::endl;
std::cout << " MostLikely : Select label from from maximum probabilistic segmentations" << std::endl;
std::cout << " Usage: MostLikely probabilityThreshold ProbabilityImages*" << std::endl;
std::cout << " AverageLabels : Select label using STAPLE method" << std::endl;
std::cout << " Usage: AverageLabels LabelImages*" << std::endl;
std::cout << " Note: Gives probabilistic output (float)" << std::endl;
std::cout << "\nImage Metrics & Info:" << std::endl;
std::cout << " PearsonCorrelation: r-value from intesities of two images" << std::endl;
std::cout << " Usage: PearsonCorrelation image1.ext image2.ext {Optional-mask.ext}" << std::endl;
std::cout << " NeighborhoodCorrelation: local correlations" << std::endl;
std::cout << " Usage: NeighborhoodCorrelation image1.ext image2.ext {Optional-radius=5} {Optional-image-mask}"
<< std::endl;
std::cout << " NormalizedCorrelation: r-value from intesities of two images" << std::endl;
std::cout << " Usage: NormalizedCorrelation image1.ext image2.ext {Optional-image-mask}" << std::endl;
std::cout << " Demons: " << std::endl;
std::cout << " Usage: Demons image1.ext image2.ext" << std::endl;
std::cout << " Mattes: mutual information" << std::endl;
std::cout << " Usage: Mattes image1.ext image2.ext {Optional-number-bins=32} {Optional-image-mask}" << std::endl;
std::cout << "\nUnclassified Operators:" << std::endl;
std::cout << " ReflectionMatrix : Create a reflection matrix about an axis" << std::endl;
std::cout << " out.mat ReflectionMatrix image_in axis " << std::endl << std::endl;
std::cout << " MakeAffineTransform : Create an itk affine transform matrix " << std::endl;
std::cout << " ClosestSimplifiedHeaderMatrix : does what it says ... image-in, image-out" << std::endl;
std::cout << " Byte : Convert to Byte image in [0,255]" << std::endl;
std::cout
<< "\n CompareHeadersAndImages: Tries to find and fix header errors. Outputs a repaired image with new header. "
<< std::endl;
std::cout << " Never use this if you trust your header information. " << std::endl;
std::cout << " Usage : CompareHeadersAndImages Image1 Image2" << std::endl;
std::cout << "\n ConvertImageSetToMatrix: Each row/column contains image content extracted from mask applied to "
"images in *img.nii "
<< std::endl;
std::cout << " Usage : ConvertImageSetToMatrix rowcoloption Mask.nii *images.nii" << std::endl;
std::cout << " ConvertImageSetToMatrix output can be an image type or csv file type." << std::endl;
std::cout << "\n RandomlySampleImageSetToCSV: N random samples are selected from each image in a list "
<< std::endl;
std::cout << " Usage : RandomlySampleImageSetToCSV N_samples *images.nii" << std::endl;
std::cout << " RandomlySampleImageSetToCSV outputs a csv file type." << std::endl;
std::cout << "\n FrobeniusNormOfMatrixDifference: take the difference between two itk-transform matrices and then "
"compute the frobenius norm"
<< std::endl;
std::cout << " Usage : FrobeniusNormOfMatrixDifference mat1 mat2 " << std::endl;
std::cout << "\n ConvertImageSetToEigenvectors: Each row/column contains image content extracted from mask "
"applied to images in *img.nii "
<< std::endl;
std::cout << " Usage : ConvertImageSetToEigenvectors N_Evecs Mask.nii *images.nii" << std::endl;
std::cout << " ConvertImageSetToEigenvectors output will be a csv file for each label value > 0 in the mask."
<< std::endl;
std::cout << "\n ConvertImageToFile : Writes voxel values to a file " << std::endl;
std::cout << " Usage : ConvertImageToFile imagevalues.nii {Optional-ImageMask.nii}" << std::endl;
std::cout
<< "\n ConvertLandmarkFile : Converts landmark file between formats. See ANTS.pdf for description of formats."
<< std::endl;
std::cout << " Usage : ConvertLandmarkFile InFile.txt" << std::endl;
std::cout << " Example 1 : ImageMath 3 outfile.vtk ConvertLandmarkFile infile.txt" << std::endl;
std::cout << "\n ConvertToGaussian : " << std::endl;
std::cout << " Usage : ConvertToGaussian TValueImage sigma-float" << std::endl;
std::cout << "\n ConvertVectorToImage : The vector contains image content extracted from a mask. Here the "
"vector is returned to its spatial origins as image content "
<< std::endl;
std::cout << " Usage : ConvertVectorToImage Mask.nii vector.nii" << std::endl;
std::cout << "\n CorrelationUpdate : In voxels, compute update that makes Image2 more like Image1."
<< std::endl;
std::cout << " Usage : CorrelationUpdate Image1.ext Image2.ext RegionRadius" << std::endl;
std::cout << "\n CountVoxelDifference : The where function from IDL " << std::endl;
std::cout << " Usage : CountVoxelDifference Image1 Image2 Mask" << std::endl;
std::cout << "\n CorruptImage : " << std::endl;
std::cout << " Usage : CorruptImage Image NoiseLevel Smoothing" << std::endl;
std::cout << "\n D : Danielson Distance Transform" << std::endl;
std::cout << "\n MaurerDistance : Maurer distance transform (much faster than Danielson)" << std::endl;
std::cout << " Usage : MaurerDistance inputImage {foreground=1}" << std::endl;
std::cout << "\n DiceAndMinDistSum : Outputs DiceAndMinDistSum and Dice Overlap to text log file + optional "
"distance image"
<< std::endl;
std::cout << " Usage : DiceAndMinDistSum LabelImage1.ext LabelImage2.ext OptionalDistImage"
<< std::endl;
std::cout << "\n EnumerateLabelInterfaces: " << std::endl;
std::cout << " Usage : EnumerateLabelInterfaces ImageIn ColoredImageOutname NeighborFractionToIgnore"
<< std::endl;
std::cout << "\n ClusterThresholdVariate : for sparse estimation " << std::endl;
std::cout << " Usage : ClusterThresholdVariate image mask MinClusterSize" << std::endl;
std::cout << "\n ExtractSlice : Extracts slice number from last dimension of volume (2,3,4) dimensions "
<< std::endl;
std::cout << " Usage : ExtractSlice volume.nii.gz slicetoextract" << std::endl;
std::cout << "\n FastMarchingSegmentation: final output is the propagated label image. Optional stopping value: "
"higher values allow more distant propagation "
<< std::endl;
std::cout << " Usage : FastMarchingSegmentation speed/binaryimagemask.ext initiallabelimage.ext "
"Optional-Stopping-Value"
<< std::endl;
std::cout << "\n FillHoles : Parameter = ratio of edge at object to edge at background; -- " << std::endl;
std::cout << " Parameter = 1 is a definite hole bounded by object only, 0.99 is close" << std::endl;
std::cout << " Default of parameter > 1 will fill all holes" << std::endl;
std::cout << " Usage : FillHoles Image.ext parameter" << std::endl;
std::cout << "\n InPaint : very simple inpainting --- assumes zero values should be inpainted "
<< std::endl;
std::cout << " Usage : InPaint #iterations" << std::endl;
std::cout << "\n PeronaMalik : anisotropic diffusion w/varying conductance param (0.25 in example below)"
<< std::endl;
std::cout << " Usage : PeronaMalik image #iterations conductance " << std::endl;
std::cout << "\n Convolve : convolve input image with kernel image" << std::endl;
std::cout << " Usage : Convolve inputImage kernelImage {normalize=1} " << std::endl;
std::cout << " Finite : replace non-finite values with finite-value (default = 0)" << std::endl;
std::cout << " Usage : Finite Image.exdt {replace-value=0}" << std::endl;
std::cout << "\n LabelSurfaceArea : " << std::endl;
std::cout << " Usage : LabelSurfaceArea ImageIn {MaxRad-Default=1}" << std::endl;
std::cout << "\n FlattenImage : Replaces values greater than %ofMax*Max to the value %ofMax*Max "
<< std::endl;
std::cout << " Usage : FlattenImage Image %ofMax" << std::endl;
std::cout << "\n GetLargestComponent : Get the largest object in an image" << std::endl;
std::cout << " Usage : GetLargestComponent InputImage {MinObjectSize}" << std::endl;
std::cout << "\n Grad : Gradient magnitude with sigma s (if normalize, then output in range [0, 1])"
<< std::endl;
std::cout << " Usage : Grad Image.ext s normalize?" << std::endl;
std::cout << "\n HistogramMatch : " << std::endl;
std::cout << " Usage : HistogramMatch SourceImage ReferenceImage {NumberBins-Default=255} "
"{NumberPoints-Default=64} {useThresholdAtMeanIntensity=false}"
<< std::endl;
std::cout << "\n RescaleImage : " << std::endl;
std::cout << " Usage : RescaleImage InputImage min max" << std::endl;
std::cout << "\n WindowImage : " << std::endl;
std::cout << " Usage : WindowImage InputImage windowMinimum windowMaximum outputMinimum outputMaximum"
<< std::endl;
std::cout << "\n NeighborhoodStats : " << std::endl;
std::cout
<< " Usage : NeighborhoodStats inputImage whichStat radius"
" whichStat: 1 = min, 2 = max, 3 = variance, 4 = sigma, 5 = skewness, 6 = kurtosis, 7 = entropy"
<< std::endl;
std::cout << "\n InvId : computes the inverse-consistency of two deformations and write the inverse "
"consistency error image "
<< std::endl;
std::cout << " Usage : InvId VectorFieldName VectorFieldName" << std::endl;
std::cout << "\n ReplicateDisplacement : replicate a ND displacement to a ND+1 image" << std::endl;
std::cout << " Usage : ReplicateDisplacement VectorFieldName TimeDims TimeSpacing TimeOrigin"
<< std::endl;
std::cout << "\n ReplicateImage : replicate a ND image to a ND+1 image" << std::endl;
std::cout << " Usage : ReplicateImage ImageName TimeDims TimeSpacing TimeOrigin" << std::endl;
std::cout << "\n ShiftImageSlicesInTime : shift image slices by one " << std::endl;
std::cout
<< " Usage : ShiftImageSlicesInTime ImageName shift-amount-default-1 shift-dim-default-last-dim"
<< std::endl;
std::cout << "\n LabelStats : Compute volumes / masses of objects in a label image. Writes to text file"
<< std::endl;
std::cout << " Usage : LabelStats labelimage.ext valueimage.nii" << std::endl;
std::cout << "\n Laplacian : Laplacian computed with sigma s (if normalize, then output in range [0, 1])"
<< std::endl;
std::cout << " Usage : Laplacian Image.ext s normalize?" << std::endl;
std::cout << "\n Canny : Canny edge detector" << std::endl;
std::cout << " Usage : Canny Image.ext sigma lowerThresh upperThresh" << std::endl;
std::cout << "\n Lipschitz : Computes the Lipschitz norm of a vector field " << std::endl;
std::cout << " Usage : Lipschitz VectorFieldName" << std::endl;
std::cout << "\n MakeImage : " << std::endl;
std::cout << " Usage : MakeImage SizeX SizeY {SizeZ};" << std::endl;
std::cout
<< "\n MTR : Computes the magnetization transfer ratio ( (M0-M1)/M0 ) and truncates values to [0,1]"
<< std::endl;
std::cout << " Usage : MTR M0Image M1Image [MaskImage];" << std::endl;
std::cout << "\n Normalize : Normalize to [0,1]. Option instead divides by average value. If opt is a "
"mask image, then we normalize by mean intensity in the mask ROI."
<< std::endl;
std::cout << " Usage : Normalize Image.ext opt" << std::endl;
std::cout << "\n PadImage : If Pad-Number is negative, de-Padding occurs" << std::endl;
std::cout << " Usage : PadImage ImageIn PaddingSize [PaddingVoxelValue=0]" << std::endl;
std::cout << "\n SigmoidImage : " << std::endl;
std::cout << " Usage : SigmoidImage ImageIn [alpha=1.0] [beta=0.0]" << std::endl;
std::cout << "\n Sharpen : Apply a Laplacian sharpening filter" << std::endl;
std::cout << " Usage : Sharpen ImageIn [useImageSpacing=(1)/0]" << std::endl;
std::cout << "\n UnsharpMask Apply an Unsharp Mask filter" << std::endl;
std::cout
<< " Usage : UnsharpMask ImageIn [amount=0.5] [radius=1] [threshold=0] [radius in spacing unit (0)/1]"
<< std::endl;
std::cout << "\n CoordinateComponentImages : " << std::endl;
std::cout << " Usage : CoordinateComponentImages domainImage" << std::endl;
std::cout << "\n CenterImage2inImage1 : " << std::endl;
std::cout << " Usage : ReferenceImageSpace ImageToCenter " << std::endl;
std::cout << "\n PH : Print Header" << std::endl;
std::cout << "\n PoissonDiffusion : Solves Poisson's equation in a designated region using non-zero sources"
<< std::endl;
std::cout << " Usage : PoissonDiffusion inputImage labelImage [sigma=1.0] [regionLabel=1] "
"[numberOfIterations=500] [convergenceThreshold=1e-10]"
<< std::endl;
std::cout << "\n PropagateLabelsThroughMask: Final output is the propagated label image. Optional stopping value: "
"higher values allow more distant propagation"
<< std::endl;
std::cout << " Usage : PropagateLabelsThroughMask speed/binaryimagemask.nii.gz "
"initiallabelimage.nii.gz Optional-Stopping-Value 0/1/2"
<< std::endl;
std::cout << " 0/1/2 => 0, no topology constraint, 1 - strict topology constraint, 2 - no handles "
<< std::endl;
std::cout << "\n PValueImage : " << std::endl;
std::cout << " Usage : PValueImage TValueImage dof" << std::endl;
std::cout << "\n RemoveLabelInterfaces: " << std::endl;
std::cout << " Usage : RemoveLabelInterfaces ImageIn" << std::endl;
std::cout << "\n ReplaceVoxelValue: replace voxels in the range [a,b] in the input image with c" << std::endl;
std::cout << " Usage : ReplaceVoxelValue inputImage a b c" << std::endl;
std::cout << "\n ROIStatistics : computes anatomical locations, cluster size and mass of a stat image "
"which should be in the same physical space (but not nec same resolution) as the label image."
<< std::endl;
std::cout << " Usage : ROIStatistics LabelNames.txt labelimage.ext valueimage.nii" << std::endl;
std::cout << "\n SetOrGetPixel : " << std::endl;
std::cout << " Usage : SetOrGetPixel ImageIn Get/Set-Value IndexX IndexY {IndexZ}" << std::endl;
std::cout
<< " Example 1 : ImageMath 2 outimage.nii SetOrGetPixel Image Get 24 34; Gets the value at 24, 34"
<< std::endl;
std::cout << " Example 2 : ImageMath 2 outimage.nii SetOrGetPixel Image 1.e9 24 34; This sets 1.e9 as "
"the value at 23 34"
<< std::endl;
std::cout << " You can also pass a boolean at the end to force the physical space to be used"
<< std::endl;
std::cout << "\n SetTimeSpacing : sets spacing for last dimension" << std::endl;
std::cout << " Usage : SetTimeSpacing Image.ext tspacing" << std::endl;
std::cout << "\n SetTimeSpacingWarp : sets spacing for last dimension" << std::endl;
std::cout << " Usage : SetTimeSpacingWarp Warp.ext tspacing" << std::endl;
std::cout << "\n stack : Will put 2 images in the same volume" << std::endl;
std::cout << " Usage : Stack Image1.ext Image2.ext" << std::endl;
std::cout << "\n ThresholdAtMean : See the code" << std::endl;
std::cout << " Usage : ThresholdAtMean Image %ofMean" << std::endl;
std::cout << "\n TileImages : " << std::endl;
std::cout << " Usage : TileImages NumColumns ImageList*" << std::endl;
std::cout << "\n TriPlanarView : " << std::endl;
std::cout << " Usage : TriPlanarView ImageIn.nii.gz PercentageToClampLowIntensity "
"PercentageToClampHiIntensity x-slice y-slice z-slice"
<< std::endl;
std::cout << "\n TruncateImageIntensity: " << std::endl;
std::cout << " Usage : TruncateImageIntensity InputImage.ext {lowerQuantile=0.05} {upperQuantile=0.95} "
"{numberOfBins=65} {binary-maskImage}"
<< std::endl;
std::cout << "\n Where : The where function from IDL" << std::endl;
std::cout << " Usage : Where Image ValueToLookFor maskImage-option tolerance" << std::endl;
std::cout << "\n KinematicTensor : Evaluation kinematic tensor from a displacement field" << std::endl;
std::cout << " Usage : KinematicTensor displacementField whichTensor ["
<< "'d'=DeformationFieldGradient, "
<< "'l'=Lagrangian, "
<< "'e'=Eulerian, "
<< "'rc'=RightCauchyGreen, "
<< "'lc'=LeftCauchyGreen, "
<< "'rs'=RightStretch, "
<< "'ls'=LeftStretch]" << std::endl;
if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
int returnvalue = EXIT_SUCCESS;
std::string operation = std::string(argv[3]);
unsigned int imageDimension = std::stoi(argv[1]);
switch (imageDimension)
{
case 2:
returnvalue = ImageMathHelper2D(argc, argv);
break;
case 3:
returnvalue = ImageMathHelper3D(argc, argv);
break;
case 4:
returnvalue = ImageMathHelper4D(argc, argv);
break;
default:
std::cout << " Dimension " << imageDimension << " is not supported " << std::endl;
return EXIT_FAILURE;
}
if (returnvalue == EXIT_FAILURE)
{
std::cout << " Operation " << operation << " not found or not supported for dimension " << imageDimension
<< std::endl;
}
return returnvalue;
}
} // namespace ants
|