1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138
|
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include <algorithm>
#include "itkVectorIndexSelectionCastImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "vnl/algo/vnl_determinant.h"
#include "itkWarpImageFilter.h"
#include "itkWarpImageMultiTransformFilter.h"
#include "itkDisplacementFieldFromMultiTransformFilter.h"
#include "itkFastMarchingUpwindGradientImageFilter.h"
#include "itkFastMarchingUpwindGradientImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkANTSImageRegistrationOptimizer.h"
#include "vnl/algo/vnl_determinant.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkVectorLinearInterpolateImageFunction.h"
#include "itkCovariantVector.h"
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"
#include "ReadWriteData.h"
#include "itkSignedMaurerDistanceMapImageFilter.h"
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkCentralDifferenceImageFunction.h"
#include "itkSurfaceCurvatureBase.h"
#include "itkSurfaceImageCurvature.h"
namespace ants
{
template <typename TField, typename TImage>
typename TImage::Pointer
GetVectorComponent(typename TField::Pointer field, unsigned int index)
{
// Initialize the Moving to the displacement field
using ImageType = TImage;
typename ImageType::Pointer sfield = AllocImage<ImageType>(field);
using Iterator = itk::ImageRegionIteratorWithIndex<TField>;
Iterator vfIter(field, field->GetLargestPossibleRegion());
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
typename TField::PixelType v1 = vfIter.Get();
sfield->SetPixel(vfIter.GetIndex(), v1[index]);
}
return sfield;
}
template <typename TImage>
typename TImage::Pointer
MaurerDistanceMap(typename TImage::PixelType pixlo, typename TImage::PixelType pixhi, typename TImage::Pointer input)
{
// std::cout << " DDMap " << std::endl;
using ImageType = TImage;
using FilterType = itk::SignedMaurerDistanceMapImageFilter<ImageType, ImageType>;
typename FilterType::Pointer filter = FilterType::New();
filter->SetSquaredDistance(false);
// filter->InputIsBinaryOn();
filter->SetUseImageSpacing(true);
filter->SetBackgroundValue(0);
filter->SetInput(BinaryThreshold<TImage>(pixlo, pixhi, pixhi, input));
filter->Update();
// ANTs::WriteImage<ImageType>(filter->GetOutput(),"temp1.nii");
return filter->GetOutput();
}
template <typename TImage>
typename TImage::Pointer
SmoothImage(typename TImage::Pointer image, double sig)
{
// find min value
using Iterator = itk::ImageRegionIteratorWithIndex<TImage>;
Iterator vfIter(image, image->GetLargestPossibleRegion());
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
typename TImage::PixelType v1 = vfIter.Get();
if (std::isnan(v1))
{
vfIter.Set(0);
}
}
using dgf = itk::DiscreteGaussianImageFilter<TImage, TImage>;
typename dgf::Pointer filter = dgf::New();
filter->SetVariance(sig);
filter->SetUseImageSpacing(true);
filter->SetMaximumError(.01f);
filter->SetInput(image);
filter->Update();
typename TImage::Pointer out = filter->GetOutput();
return out;
}
template <typename TImage>
void
SmoothDeformation(typename TImage::Pointer vectorimage, double sig)
{
enum
{
ImageDimension = TImage::ImageDimension
};
using RealType = typename TImage::PixelType;
using VectorType = itk::Vector<RealType, ImageDimension>;
using ImageType = itk::Image<RealType, ImageDimension>;
typename ImageType::Pointer subimgx = GetVectorComponent<TImage, ImageType>(vectorimage, 0);
subimgx = SmoothImage<ImageType>(subimgx, sig);
typename ImageType::Pointer subimgy = GetVectorComponent<TImage, ImageType>(vectorimage, 1);
subimgy = SmoothImage<ImageType>(subimgy, sig);
typename ImageType::Pointer subimgz = GetVectorComponent<TImage, ImageType>(vectorimage, 2);
subimgz = SmoothImage<ImageType>(subimgz, sig);
using IteratorType = itk::ImageRegionIteratorWithIndex<TImage>;
IteratorType Iterator(vectorimage, vectorimage->GetLargestPossibleRegion().GetSize());
Iterator.GoToBegin();
while (!Iterator.IsAtEnd())
{
VectorType vec;
vec[0] = subimgx->GetPixel(Iterator.GetIndex());
vec[1] = subimgy->GetPixel(Iterator.GetIndex());
vec[2] = subimgz->GetPixel(Iterator.GetIndex());
Iterator.Set(vec);
++Iterator;
}
}
// this has to have never been called because it doesn't actually
// copy anything
template <typename TImage, typename TDisplacementField>
typename TImage::Pointer
CopyImage(TDisplacementField * field)
{
enum
{
ImageDimension = TImage::ImageDimension
};
// unsigned int row=0;
// unsigned int col=0;
using PixelType = typename TImage::PixelType;
using RealImageType = itk::Image<PixelType, ImageDimension>;
typename RealImageType::Pointer m_RealImage = nullptr;
m_RealImage = AllocImage<RealImageType>(field, 0);
return m_RealImage;
}
template <typename TImage>
typename TImage::Pointer
LabelSurface(typename TImage::PixelType foreground,
typename TImage::PixelType newval,
typename TImage::Pointer input,
double distthresh)
{
std::cout << " Label Surf " << std::endl;
using ImageType = TImage;
enum
{
ImageDimension = ImageType::ImageDimension
};
// ORIENTATION ALERT: Original code set origin & spacing from
// examplar without also setting directions.
typename ImageType::Pointer Image = AllocImage<ImageType>(input, 0.0);
using iteratorType = itk::NeighborhoodIterator<ImageType>;
typename iteratorType::RadiusType rad;
for (int j = 0; j < ImageDimension; j++)
{
rad[j] = (unsigned int)(distthresh + 0.5);
}
iteratorType GHood(rad, input, input->GetLargestPossibleRegion());
GHood.GoToBegin();
// std::cout << " foreg " << (int) foreground;
while (!GHood.IsAtEnd())
{
typename TImage::PixelType p = GHood.GetCenterPixel();
typename TImage::IndexType ind = GHood.GetIndex();
typename TImage::IndexType ind2;
if (itk::Math::FloatAlmostEqual(p, foreground))
{
bool atedge = false;
for (unsigned int i = 0; i < GHood.Size(); i++)
{
ind2 = GHood.GetIndex(i);
double dist = 0.0;
for (int j = 0; j < ImageDimension; j++)
{
dist += (double)(ind[j] - ind2[j]) * (double)(ind[j] - ind2[j]);
}
dist = sqrt(dist);
if (!itk::Math::FloatAlmostEqual(GHood.GetPixel(i), foreground) && dist < distthresh)
{
atedge = true;
}
}
if (atedge && itk::Math::FloatAlmostEqual(p, foreground))
{
Image->SetPixel(ind, newval);
}
else
{
Image->SetPixel(ind, 0);
}
}
++GHood;
}
return Image;
}
template <typename TImage, typename TField>
typename TField::Pointer
LaplacianGrad(typename TImage::Pointer wm, typename TImage::Pointer gm, double sig)
{
using IndexType = typename TImage::IndexType;
IndexType ind;
using ImageType = TImage;
using GradientImageType = TField;
using GradientImageFilterType = itk::GradientRecursiveGaussianImageFilter<ImageType, GradientImageType>;
using GradientImageFilterPointer = typename GradientImageFilterType::Pointer;
typename TField::Pointer sfield = AllocImage<TField>(wm);
typename TImage::Pointer laplacian = SmoothImage<TImage>(wm, 3);
laplacian->FillBuffer(0);
using IteratorType = itk::ImageRegionIteratorWithIndex<TImage>;
IteratorType Iterator(wm, wm->GetLargestPossibleRegion().GetSize());
Iterator.GoToBegin();
// initialize L(wm)=1, L(gm)=0.5, else 0
while (!Iterator.IsAtEnd())
{
ind = Iterator.GetIndex();
if (!itk::Math::FloatAlmostEqual(wm->GetPixel(ind), itk::NumericTraits<typename ImageType::PixelType>::ZeroValue()))
{
laplacian->SetPixel(ind, 1);
}
else
{
laplacian->SetPixel(ind, 0.);
}
++Iterator;
}
// smooth and then reset the values
for (unsigned int iterations = 0; iterations < 100; iterations++)
{
laplacian = SmoothImage<TImage>(laplacian, sqrt(sig));
Iterator.GoToBegin();
while (!Iterator.IsAtEnd())
{
ind = Iterator.GetIndex();
if (!itk::Math::FloatAlmostEqual(wm->GetPixel(ind),
itk::NumericTraits<typename ImageType::PixelType>::ZeroValue()))
{
laplacian->SetPixel(ind, itk::NumericTraits<typename ImageType::PixelType>::OneValue());
}
else if (itk::Math::FloatAlmostEqual(gm->GetPixel(ind),
itk::NumericTraits<typename ImageType::PixelType>::ZeroValue()) &&
itk::Math::FloatAlmostEqual(wm->GetPixel(ind),
itk::NumericTraits<typename ImageType::PixelType>::ZeroValue()))
{
laplacian->SetPixel(ind, itk::NumericTraits<typename ImageType::PixelType>::ZeroValue());
}
++Iterator;
}
}
GradientImageFilterPointer filter = GradientImageFilterType::New();
filter->SetInput(laplacian);
filter->SetSigma(sig);
filter->Update();
return filter->GetOutput();
}
template <typename TImage, typename TField>
typename TField::Pointer
ExpDiffMap(typename TField::Pointer velofield, typename TImage::Pointer wm, double sign, unsigned int numtimepoints)
{
using ImageType = TImage;
using DisplacementFieldType = TField;
using PixelType = typename TField::PixelType;
typename TField::PixelType zero, disp;
enum
{
ImageDimension = TImage::ImageDimension
};
disp.Fill(0);
zero.Fill(0);
typename DisplacementFieldType::Pointer incrfield = AllocImage<DisplacementFieldType>(velofield, zero);
using IteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;
IteratorType Iterator(wm, wm->GetLargestPossibleRegion().GetSize());
Iterator.GoToBegin();
while (!Iterator.IsAtEnd())
{
incrfield->SetPixel(Iterator.GetIndex(), velofield->GetPixel(Iterator.GetIndex()) * sign);
++Iterator;
}
// generate phi
using AffineTransformType = itk::MatrixOffsetTransformBase<PixelType, ImageDimension, ImageDimension>;
using WarperType = itk::DisplacementFieldFromMultiTransformFilter<TField, TField, AffineTransformType>;
typename WarperType::Pointer warper = WarperType::New();
warper->SetOutputParametersFromImage(velofield);
warper->DetermineFirstDeformNoInterp();
unsigned int ttiter = 0;
while (ttiter < numtimepoints) // 10 time integration points
{
ttiter++;
warper->PushBackDisplacementFieldTransform(incrfield);
}
warper->Update();
return warper->GetOutput();
}
template <typename TImage, typename TField>
typename TField::Pointer
DiReCTCompose(typename TField::Pointer velofield, typename TField::Pointer diffmap)
{
using PixelType = typename TField::PixelType;
typename TField::PixelType zero, disp;
enum
{
ImageDimension = TImage::ImageDimension
};
disp.Fill(0);
zero.Fill(0);
using AffineTransformType = itk::MatrixOffsetTransformBase<PixelType, ImageDimension, ImageDimension>;
using WarperType = itk::DisplacementFieldFromMultiTransformFilter<TField, TField, AffineTransformType>;
typename WarperType::Pointer warper = WarperType::New();
warper->SetOutputParametersFromImage(velofield);
warper->DetermineFirstDeformNoInterp();
warper->PushBackDisplacementFieldTransform(diffmap);
warper->PushBackDisplacementFieldTransform(velofield);
warper->Update();
return warper->GetOutput();
}
template <typename TImage, typename TField>
void
InvertField(typename TField::Pointer field,
typename TField::Pointer inverseFieldIN,
double weight = 1.0,
double toler = 0.1,
int maxiter = 20,
bool /* print */ = false)
{
enum
{
ImageDimension = TImage::ImageDimension
};
using DisplacementFieldType = TField;
using DisplacementFieldPointer = typename TField::Pointer;
using VectorType = typename TField::PixelType;
using ImageType = TImage;
using ImagePointer = typename TImage::Pointer;
double mytoler = toler;
unsigned int mymaxiter = maxiter;
VectorType zero;
zero.Fill(0);
// if (this->GetElapsedIterations() < 2 ) maxiter=10;
ImagePointer realImage = AllocImage<ImageType>(field);
using VectorType = typename DisplacementFieldType::PixelType;
using IndexType = typename DisplacementFieldType::IndexType;
using Iterator = itk::ImageRegionIteratorWithIndex<DisplacementFieldType>;
using ROType = itk::ANTSImageRegistrationOptimizer<ImageDimension, double>;
typename ROType::Pointer m_MFR = ROType::New();
DisplacementFieldPointer inverseField = AllocImage<DisplacementFieldType>(field, zero);
DisplacementFieldPointer lagrangianInitCond = AllocImage<DisplacementFieldType>(field);
DisplacementFieldPointer eulerianInitCond = AllocImage<DisplacementFieldType>(field);
using SizeType = typename DisplacementFieldType::SizeType;
SizeType size = field->GetLargestPossibleRegion().GetSize();
typename ImageType::SpacingType spacing = field->GetSpacing();
unsigned long npix = 1;
for (int j = 0; j < ImageDimension; j++) // only use in-plane spacing
{
npix *= field->GetLargestPossibleRegion().GetSize()[j];
}
double max = 0;
Iterator iter(field, field->GetLargestPossibleRegion());
for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
{
IndexType index = iter.GetIndex();
VectorType vec1 = iter.Get();
VectorType newvec = vec1 * weight;
lagrangianInitCond->SetPixel(index, newvec);
inverseField->SetPixel(index, inverseFieldIN->GetPixel(index));
double mag = 0;
for (unsigned int jj = 0; jj < ImageDimension; jj++)
{
mag += newvec[jj] * newvec[jj];
}
mag = sqrt(mag);
if (mag > max)
{
max = mag;
}
}
eulerianInitCond->FillBuffer(zero);
double scale = (1.) / max;
if (scale > 1.)
{
scale = 1.0;
}
// double initscale=scale;
Iterator vfIter(inverseField, inverseField->GetLargestPossibleRegion());
// int num=10;
// for (int its=0; its<num; its++)
double difmag = 10.0;
unsigned int ct = 0;
double meandif = 1.e8;
// int badct=0;
// while (difmag > subpix && meandif > subpix*0.1 && badct < 2 )//&& ct < 20 && denergy > 0)
// double length=0.0;
double stepl = 2.;
double epsilon = (double)size[0] / 256;
if (epsilon > 1)
{
epsilon = 1;
}
while (difmag > mytoler && ct < mymaxiter && meandif > 0.001)
{
meandif = 0.0;
// this field says what position the eulerian field should contain in the E domain
m_MFR->ComposeDiffs(inverseField, lagrangianInitCond, eulerianInitCond, 1);
difmag = 0.0;
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
IndexType index = vfIter.GetIndex();
VectorType update = eulerianInitCond->GetPixel(index);
double mag = 0;
for (int j = 0; j < ImageDimension; j++)
{
update[j] *= (-1.0);
mag += (update[j] / spacing[j]) * (update[j] / spacing[j]);
}
mag = sqrt(mag);
meandif += mag;
if (mag > difmag)
{
difmag = mag;
}
// if (mag < 1.e-2) update.Fill(0);
eulerianInitCond->SetPixel(index, update);
realImage->SetPixel(index, mag);
}
meandif /= (double)npix;
if (ct == 0)
{
epsilon = 0.75;
}
else
{
epsilon = 0.5;
}
stepl = difmag * epsilon;
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
double val = realImage->GetPixel(vfIter.GetIndex());
VectorType update = eulerianInitCond->GetPixel(vfIter.GetIndex());
if (val > stepl)
{
update = update * (stepl / val);
}
VectorType upd = vfIter.Get() + update * (epsilon);
vfIter.Set(upd);
}
ct++;
}
for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
{
IndexType index = iter.GetIndex();
inverseFieldIN->SetPixel(index, inverseField->GetPixel(index));
}
// std::cout <<" difmag " << difmag << ": its " << ct << " len " << m_MFR->MeasureDeformation(inverseField ) <<
// std::endl;
}
template <unsigned int ImageDimension>
int
LaplacianThicknessExpDiff2(int argc, char * argv[])
{
int argct = 2;
std::string segfn = std::string(argv[argct]);
argct++;
std::string wfn = std::string(argv[argct]);
argct++;
std::string gfn = std::string(argv[argct]);
argct++;
std::string outname = std::string(argv[argct]);
argct++;
unsigned int numtimepoints = 10;
using RealType = double;
RealType gradstep = (RealType)(-1.0) * 0.5; // (ImageDimension-1);
if (argc > argct)
{
gradstep = atof(argv[argct]) * (-1.0);
}
gradstep *= 1.0 / (RealType)numtimepoints * 10;
argct++;
unsigned int alltheits = 50;
if (argc > argct)
{
alltheits = std::stoi(argv[argct]);
}
argct++;
RealType thickprior = 6.0;
if (argc > argct)
{
thickprior = atof(argv[argct]);
}
argct++;
// bool useCurvaturePrior = false;
// if( argc > argct )
// {
// useCurvaturePrior = std::stoi(argv[argct]);
// }
argct++;
RealType smoothingsigma = 1.5;
if (argc > argct)
{
smoothingsigma = atof(argv[argct]);
}
argct++;
// bool useEuclidean = true;
// if( argc > argct )
// {
// useEuclidean = std::stoi(argv[argct]);
// }
argct++;
std::cout << " smooth " << smoothingsigma << " thp " << thickprior << " gs " << gradstep << std::endl;
using PixelType = RealType;
using VectorType = itk::Vector<RealType, ImageDimension>;
using DisplacementFieldType = itk::Image<VectorType, ImageDimension>;
using ImageType = itk::Image<PixelType, ImageDimension>;
using IndexType = typename ImageType::IndexType;
using ROType = itk::ANTSImageRegistrationOptimizer<ImageDimension, RealType>;
typename ROType::Pointer m_MFR = ROType::New();
typename ImageType::Pointer segmentationimage;
ReadImage<ImageType>(segmentationimage, segfn.c_str());
typename ImageType::Pointer wm;
ReadImage<ImageType>(wm, wfn.c_str());
typename ImageType::DirectionType omat = wm->GetDirection();
typename ImageType::DirectionType fmat = wm->GetDirection();
fmat.SetIdentity();
std::cout << " Setting Identity Direction " << fmat << std::endl;
wm->SetDirection(fmat);
typename ImageType::Pointer totalimage;
ReadImage<ImageType>(totalimage, wfn.c_str());
totalimage->SetDirection(fmat);
typename ImageType::Pointer hitimage;
ReadImage<ImageType>(hitimage, wfn.c_str());
hitimage->SetDirection(fmat);
typename ImageType::Pointer gm;
ReadImage<ImageType>(gm, gfn.c_str());
gm->SetDirection(fmat);
wm->SetDirection(fmat);
segmentationimage->SetDirection(fmat);
typename DisplacementFieldType::Pointer lapgrad;
typename ImageType::Pointer gmb = BinaryThreshold<ImageType>(2, 2, 1, segmentationimage); // fixme
typename ImageType::Pointer wmb = BinaryThreshold<ImageType>(3, 3, 1, segmentationimage); // fixme
typename ImageType::Pointer laplacian = SmoothImage<ImageType>(wm, smoothingsigma);
lapgrad = LaplacianGrad<ImageType, DisplacementFieldType>(wmb, gmb, 1);
VectorType zero;
zero.Fill(0);
typename DisplacementFieldType::Pointer corrfield = AllocImage<DisplacementFieldType>(wm, zero);
typename DisplacementFieldType::Pointer incrfield = AllocImage<DisplacementFieldType>(wm, zero);
typename DisplacementFieldType::Pointer invfield = AllocImage<DisplacementFieldType>(wm, zero);
typename DisplacementFieldType::Pointer incrinvfield = AllocImage<DisplacementFieldType>(wm, zero);
typename DisplacementFieldType::Pointer velofield = AllocImage<DisplacementFieldType>(wm, zero);
// LabelSurface(typename TImage::PixelType foreground,
// typename TImage::PixelType newval, typename TImage::Pointer input, RealType distthresh )
RealType distthresh = 1.5;
typename ImageType::Pointer wmgrow = Morphological<ImageType>(wmb, 0, 1, 1);
typename ImageType::Pointer bsurf = LabelSurface<ImageType>(1, 1, wmgrow, distthresh); // or wmb ?
typename ImageType::Pointer speedprior = nullptr;
ANTs::WriteImage<ImageType>(bsurf, "surf.nii.gz");
// typename RealTypeImageType::Pointer distfromboundary =
// typename ImageType::Pointer surf=MaurerDistanceMap<ImageType>(0.5,1.e9,bsurf);
// surf= SmoothImage<ImageType>(surf,3);
typename ImageType::Pointer finalthickimage = BinaryThreshold<ImageType>(3, 3, 1, segmentationimage); // fixme
gmb = BinaryThreshold<ImageType>(2, 3, 1, segmentationimage); // fixme
typename ImageType::Pointer gmgrow = Morphological<ImageType>(gmb, 1, 1, 1);
typename ImageType::Pointer gmsurf = LabelSurface<ImageType>(1, 1, gmgrow, distthresh); // or wmb ?
// ANTs::WriteImage<ImageType>(gmsurf,"surfdefgm.nii.gz");
// ANTs::WriteImage<ImageType>(bsurf,"surfdefwm.nii.gz");
using TimeVaryingVelocityFieldType = DisplacementFieldType;
using DefaultInterpolatorType = itk::VectorLinearInterpolateImageFunction<TimeVaryingVelocityFieldType, RealType>;
typename DefaultInterpolatorType::Pointer vinterp = DefaultInterpolatorType::New();
vinterp->SetInputImage(lapgrad);
using ScalarInterpolatorType = itk::LinearInterpolateImageFunction<ImageType, RealType>;
typename ScalarInterpolatorType::Pointer ginterp = ScalarInterpolatorType::New();
typename ScalarInterpolatorType::Pointer winterp = ScalarInterpolatorType::New();
winterp->SetInputImage(wm);
ginterp->SetInputImage(gm);
using IteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;
using VIteratorType = itk::ImageRegionIteratorWithIndex<DisplacementFieldType>;
VIteratorType VIterator(lapgrad, lapgrad->GetLargestPossibleRegion().GetSize());
VIterator.GoToBegin();
while (!VIterator.IsAtEnd())
{
// the velocity field solution value
VectorType vec = VIterator.Get();
RealType mag = 0;
for (unsigned dd = 0; dd < ImageDimension; dd++)
{
mag += vec[dd] * vec[dd];
}
mag = sqrt(mag);
// if (mag > 0) vec=vec/mag;
VIterator.Set((vec)*gradstep);
++VIterator;
}
// m_MFR->SmoothDisplacementFieldGauss(lapgrad,1.7);
std::cout << " Scaling done " << std::endl;
typename ImageType::Pointer thickimage = laplacian;
VectorType disp;
VectorType incdisp;
disp.Fill(0.0);
incdisp.Fill(0.0);
IteratorType Iterator(wm, wm->GetLargestPossibleRegion().GetSize());
RealType totalerr = 1.e8, lasterr = 1.e10;
unsigned its = 0;
wmgrow->FillBuffer(0);
RealType dmag = 0;
RealType thicknesserror = 0;
unsigned long thickerrct = 0;
unsigned int badct = 0;
RealType thickoffset = 0;
bool checknans = true;
while (its < alltheits && badct < 4)
{
its++;
if (totalerr > lasterr)
{
badct++;
std::cout << " badct " << badct << std::endl;
}
else
{
badct = 0;
}
lasterr = totalerr;
// Optimization Error initialized for this iteration
totalerr = 0;
incrfield->FillBuffer(zero);
incrfield->FillBuffer(zero);
incrinvfield->FillBuffer(zero);
// generate phi
// corrfield->FillBuffer(zero);
invfield->FillBuffer(zero);
unsigned int ttiter = 0;
thickimage->FillBuffer(0);
hitimage->FillBuffer(0);
totalimage->FillBuffer(0);
thicknesserror = 0;
thickerrct = 1;
bool debug = false;
bool spatprior = false;
typename ImageType::Pointer priorim = nullptr;
if (speedprior)
{
spatprior = true;
priorim = speedprior;
}
typename ImageType::Pointer wpriorim = nullptr;
RealType origthickprior = thickprior;
while (ttiter < numtimepoints) // N time integration points
{
// m_MFR->Compose(incrinvfield,invfield,nullptr);
m_MFR->ComposeDiffs(invfield, incrinvfield, invfield, 1);
if (debug)
{
std::cout << " exp " << std::endl;
}
// Integrate the negative velocity field to generate diffeomorphism corrfield step 3(a)
// corrfield=ExpDiffMap<ImageType,DisplacementFieldType>( velofield, wm, -1, numtimepoints-ttiter);
// std::cout << " corrf len " << m_MFR->MeasureDeformation( corrfield ) << std::endl;
if (debug)
{
std::cout << " gmdef " << std::endl;
}
typename ImageType::Pointer gmdef = gm; // m_MFR->WarpImageBackward(gm,corrfield);
totalerr = 0;
typename ImageType::Pointer surfdef = m_MFR->WarpImageBackward(wm, invfield);
if (debug)
{
std::cout << " thkdef " << std::endl;
}
typename ImageType::Pointer thkdef = m_MFR->WarpImageBackward(thickimage, invfield);
if (debug)
{
std::cout << " thindef " << std::endl;
}
typename ImageType::Pointer thindef = m_MFR->WarpImageBackward(bsurf, invfield);
if (spatprior)
{
wpriorim = m_MFR->WarpImageBackward(priorim, invfield);
}
using GradientImageType = DisplacementFieldType;
using GradientImageFilterType = itk::GradientRecursiveGaussianImageFilter<ImageType, GradientImageType>;
using GradientImageFilterPointer = typename GradientImageFilterType::Pointer;
GradientImageFilterPointer gfilter = GradientImageFilterType::New();
gfilter->SetInput(surfdef);
gfilter->SetSigma(smoothingsigma);
gfilter->Update();
typename DisplacementFieldType::Pointer lapgrad2 = gfilter->GetOutput();
// this is the "speed" image
typename ImageType::Pointer speed_image = CopyImage<ImageType, DisplacementFieldType>(invfield);
IteratorType xxIterator(speed_image, speed_image->GetLargestPossibleRegion().GetSize());
xxIterator.GoToBegin();
RealType maxlapgrad2mag = 0;
while (!xxIterator.IsAtEnd())
{
typename ImageType::IndexType speedindex = xxIterator.GetIndex();
if (itk::Math::FloatAlmostEqual(segmentationimage->GetPixel(speedindex),
static_cast<typename ImageType::PixelType>(2.0))) // fixme
{
thickprior = origthickprior;
VectorType wgradval = lapgrad2->GetPixel(speedindex);
RealType wmag = 0;
for (unsigned kq = 0; kq < ImageDimension; kq++)
{
wmag += wgradval[kq] * wgradval[kq];
}
if (fabs(wmag) < 1.e-6)
{
wmag = 0;
}
wmag = sqrt(wmag);
if (checknans)
{
if (std::isnan(wmag) || std::isinf(wmag) ||
itk::Math::FloatAlmostEqual(wmag, itk::NumericTraits<RealType>::ZeroValue()))
{
wgradval.Fill(0);
lapgrad2->SetPixel(speedindex, wgradval);
wmag = 0;
}
else
{
lapgrad2->SetPixel(speedindex, wgradval / wmag);
}
}
totalerr += fabs(surfdef->GetPixel(speedindex) - gmdef->GetPixel(speedindex));
// RealType thkval=thkdef->GetPixel(speedindex);
// RealType thkval=finalthickimage->GetPixel(speedindex);
// RealType fval=1; //(thickprior-thkval);
// if ( fval > 0 ) fval=1; else fval=-1;
// speed function here IMPORTANT!!
RealType dd = (surfdef->GetPixel(speedindex) - gmdef->GetPixel(speedindex)) * gradstep;
dd *= gm->GetPixel(speedindex);
if (checknans)
{
if (std::isnan(dd) || std::isinf(dd))
{
dd = 0;
}
}
speed_image->SetPixel(speedindex, dd);
if (wmag * dd > maxlapgrad2mag)
{
maxlapgrad2mag = wmag * dd;
}
}
else
{
speed_image->SetPixel(speedindex, 0);
}
++xxIterator;
}
if (maxlapgrad2mag < 1.e-4)
{
maxlapgrad2mag = 1.e9;
}
if (ttiter == numtimepoints - 1)
{
if (ImageDimension == 2)
{
ANTs::WriteImage<ImageType>(surfdef, "surfdef.nii.gz");
}
if (ImageDimension == 2)
{
ANTs::WriteImage<ImageType>(thindef, "thindef.nii.gz");
}
if (ImageDimension == 2)
{
ANTs::WriteImage<ImageType>(gmdef, "gmdef.nii.gz");
}
if (ImageDimension == 2)
{
ANTs::WriteImage<ImageType>(thkdef, "thick2.nii.gz");
}
}
/* Now that we have the gradient image, we need to visit each voxel and compute objective function */
// std::cout << " maxlapgrad2mag " << maxlapgrad2mag << std::endl;
Iterator.GoToBegin();
while (!Iterator.IsAtEnd())
{
typename DisplacementFieldType::IndexType velind = Iterator.GetIndex();
VectorType wgradval = lapgrad2->GetPixel(velind); // *5.0/(maxlapgrad2mag*(RealType)numtimepoints);
disp = wgradval * speed_image->GetPixel(velind);
incrfield->SetPixel(velind, incrfield->GetPixel(velind) + disp);
if (ttiter == 0) // make euclidean distance image
{
dmag = 0;
disp = corrfield->GetPixel(velind);
for (unsigned int jj = 0; jj < ImageDimension; jj++)
{
dmag += disp[jj] * disp[jj];
}
RealType bval = bsurf->GetPixel(velind);
if (checknans)
{
if (std::isnan(dmag) || std::isinf(dmag))
{
dmag = 0;
}
if (std::isnan(bval) || std::isinf(bval))
{
bval = 0;
}
}
/** Change 2-26-2010 = incoporate gm prob in length ... */
dmag = sqrt(dmag) * bval; // *gm->GetPixel(velind);
thickimage->SetPixel(velind, dmag);
totalimage->SetPixel(velind, dmag);
hitimage->SetPixel(velind, bval);
}
else if (itk::Math::FloatAlmostEqual(segmentationimage->GetPixel(velind),
static_cast<typename ImageType::PixelType>(2.0))) // fixme
{
RealType thkval = thkdef->GetPixel(velind);
RealType putval = thindef->GetPixel(velind);
hitimage->SetPixel(velind, hitimage->GetPixel(velind) + putval);
totalimage->SetPixel(velind, totalimage->GetPixel(velind) + thkval);
}
++Iterator;
}
Iterator.GoToBegin();
while (!Iterator.IsAtEnd())
{
IndexType velind = Iterator.GetIndex();
bool shouldbezero = false;
if (itk::Math::FloatAlmostEqual(segmentationimage->GetPixel(velind),
itk::NumericTraits<typename ImageType::PixelType>::ZeroValue())) // fixme
{
shouldbezero = true;
}
if (!shouldbezero)
{
if (itk::Math::FloatAlmostEqual(bsurf->GetPixel(velind),
itk::NumericTraits<typename ImageType::PixelType>::ZeroValue()) &&
itk::Math::FloatAlmostEqual(gmsurf->GetPixel(velind),
itk::NumericTraits<typename ImageType::PixelType>::ZeroValue()) &&
!itk::Math::FloatAlmostEqual(segmentationimage->GetPixel(velind),
static_cast<typename ImageType::PixelType>(2.0)))
{
shouldbezero = true;
}
}
if (shouldbezero)
{
velofield->SetPixel(velind, zero);
corrfield->SetPixel(velind, zero);
invfield->SetPixel(velind, zero);
}
incrinvfield->SetPixel(velind, velofield->GetPixel(velind));
++Iterator;
}
if (ttiter == 0)
{
corrfield->FillBuffer(zero);
}
InvertField<ImageType, DisplacementFieldType>(invfield, corrfield, 1.0, 0.1, 20, true);
InvertField<ImageType, DisplacementFieldType>(corrfield, invfield, 1.0, 0.1, 20, true);
// InvertField<ImageType,DisplacementFieldType>( invfield, corrfield, 1.0,0.1,20,true);
// InvertField<ImageType,DisplacementFieldType>( corrfield, invfield, 1.0,0.1,20,true);
ttiter++;
}
Iterator.GoToBegin();
RealType maxth = 0;
while (!Iterator.IsAtEnd())
{
typename DisplacementFieldType::IndexType velind = Iterator.GetIndex();
// increment velocity field at every voxel v = v + u, step 4
velofield->SetPixel(Iterator.GetIndex(),
velofield->GetPixel(Iterator.GetIndex()) + incrfield->GetPixel(Iterator.GetIndex()));
RealType hitval = hitimage->GetPixel(velind);
RealType thkval = 0;
if (hitval > 0.001) /** potential source of problem 2 -- this value could be smaller ... */
{
thkval = totalimage->GetPixel(velind) / hitval - thickoffset;
}
if (thkval > 10)
{
std::cout << "thkval " << thkval << " hitval " << hitval << " total " << totalimage->GetPixel(velind)
<< std::endl;
}
if (thkval < 0)
{
thkval = 0;
}
if (itk::Math::FloatAlmostEqual(segmentationimage->GetPixel(velind),
static_cast<typename ImageType::PixelType>(2.0)))
{
finalthickimage->SetPixel(velind, thkval);
}
else
{
finalthickimage->SetPixel(velind, 0);
}
if (thkval > maxth)
{
maxth = thkval;
}
if (finalthickimage->GetPixel(velind) > thickprior)
{
finalthickimage->SetPixel(velind, thickprior);
}
++Iterator;
}
if (debug)
{
std::cout << " now smooth " << std::endl;
}
m_MFR->SmoothDisplacementFieldGauss(velofield, smoothingsigma);
ANTs::WriteImage<DisplacementFieldType>(corrfield, "corrfield.nii.gz");
ANTs::WriteImage<DisplacementFieldType>(invfield, "invfield.nii.gz");
// std::string velofieldname = outname + "velofield";
// WriteDisplacementField<DisplacementFieldType>(velofield,velofieldname.c_str());
// std::string incrfieldname = outname + "incrfield";
// WriteDisplacementField<DisplacementFieldType>(incrfield,incrfieldname.c_str());
// std::string tname = outname + "dork1.nii.gz";
// ANTs::WriteImage<ImageType>(hitimage,tname.c_str());
// tname = outname + "dork2.nii.gz";
// ANTs::WriteImage<ImageType>(totalimage,tname.c_str());
if (thickerrct == 0)
{
thickerrct = 1;
}
std::cout << " error " << totalerr << " at it " << its << " th-err " << thicknesserror / (RealType)thickerrct
<< " max thick " << maxth << std::endl;
// std::string sulcthickname =outname + "sulcthick.nii";
// if (ImageDimension==2) WriteJpg<ImageType>(finalthickimage,"thick.jpg");
// std::string velofieldname = outname + "velofield";
// WriteDisplacementField<DisplacementFieldType>(velofield,velofieldname.c_str());
if (debug)
{
std::cout << "outside it " << its << std::endl;
}
// std::cin.get();
}
finalthickimage->SetDirection(omat);
ANTs::WriteImage<ImageType>(finalthickimage, outname.c_str());
finalthickimage->SetDirection(fmat);
return 0;
thickimage->FillBuffer(0);
typename ImageType::Pointer thkdef = m_MFR->WarpImageBackward(finalthickimage, invfield);
Iterator.GoToBegin();
while (!Iterator.IsAtEnd())
{
RealType tt1 = finalthickimage->GetPixel(Iterator.GetIndex());
RealType tt = thkdef->GetPixel(Iterator.GetIndex());
if (tt1 > tt)
{
tt = tt1;
}
thickimage->SetPixel(Iterator.GetIndex(), tt);
++Iterator;
}
std::string thickname = outname;
thickimage->SetDirection(omat);
ANTs::WriteImage<ImageType>(thickimage, thickname.c_str());
return 0;
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
KellySlater(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "KellySlater");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
if (argc < 6)
{
std::cout << "Usage: " << argv[0]
<< " ImageDimension Segmentation.nii.gz WMProb.nii.gz GMProb.nii.gz Out.nii {GradStep-1-2D,2-3D} "
"{#Its-~50} {ThickPriorValue-6} {Bool-use-curvature-prior} {smoothing} {BoolUseEuclidean?}"
<< std::endl;
std::cout << " this is a kind of binary image registration thing with diffeomorphisms " << std::endl;
std::cout << " Segmentation.nii.gz -- should contain the value 3 where WM exists and the value 2 where GM exists "
<< std::endl;
if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
unsigned int dim = std::stoi(argv[1]);
std::cout << " dim " << dim << std::endl;
switch (dim)
{
case 2:
{
LaplacianThicknessExpDiff2<2>(argc, argv);
}
break;
case 3:
{
LaplacianThicknessExpDiff2<3>(argc, argv);
}
break;
default:
std::cout << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
} // namespace ants
|