File: LabelGeometryMeasures.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (424 lines) | stat: -rw-r--r-- 13,987 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include <algorithm>
#include "ReadWriteData.h"

#include "itkAffineTransform.h"
#include "itkCSVArray2DDataObject.h"
#include "itkCSVArray2DFileReader.h"
#include "itkCSVNumericObjectFileWriter.h"
#include "itkImage.h"
#include "itkLabelImageToShapeLabelMapFilter.h"
#include "itkLabelMap.h"
#include "itkLabelStatisticsImageFilter.h"
#include "itkResampleImageFilter.h"
#include "itkShapeLabelMapFilter.h"
#include "itkShapeLabelObject.h"
#include "itkStatisticsImageFilter.h"
#include "itkStatisticsLabelMapFilter.h"
#include "itkTransformFileWriter.h"

#include <iostream>
#include <vector>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <ostream>
#include <sstream>
#include <string>

namespace ants
{

template <unsigned int Dimension, typename CentroidType>
std::string formatCentroid(const CentroidType& centroid)
{
  std::ostringstream oss;
  oss << "[";
  for (unsigned int i = 0; i < Dimension; ++i) {
    oss << std::fixed << std::setprecision(4) << centroid[i];
    if (i < Dimension - 1) oss << ", ";
  }
  oss << "]";
  return oss.str();
}

template <unsigned int Dimension>
std::string formatAxesLengths(const std::vector<double>& axesLengths)
{
  std::ostringstream oss;
  oss << "[";
  for (unsigned int i = 0; i < Dimension; ++i)
  {
    oss << std::fixed << std::setprecision(4) << axesLengths[i];
    if (i < Dimension - 1) oss << ", ";
  }
  oss << "]";
  return oss.str();
}

template <unsigned int Dimension>
std::string formatBoundingBox(const itk::ImageRegion<Dimension>& region)
{
  std::ostringstream oss;
  auto index = region.GetIndex();
  auto size = region.GetSize();

  // Append the starting index and size of each dimension to the stream
  oss << "[";
  for (unsigned int i = 0; i < Dimension; ++i)
  {
      oss << index[i];
      if (i < Dimension - 1) oss << ", ";
  }
  oss << ", ";
  for (unsigned int i = 0; i < Dimension; ++i)
  {
    oss << index[i] + size[i] - 1;
    if (i < Dimension - 1) oss << ", ";
  }
  oss << "]";
  return oss.str();
}

template <unsigned int ImageDimension>
int
LabelGeometryMeasures(int argc, char * argv[])
{
  using LabelType = unsigned int;
  using LabelImageType = itk::Image<LabelType, ImageDimension>;
  using RealType = float;
  using RealImageType = itk::Image<RealType, ImageDimension>;

  typename LabelImageType::Pointer labelImage = LabelImageType::New();
  ReadImage<LabelImageType>(labelImage, argv[2]);

  typename RealImageType::Pointer intensityImage = RealImageType::New();
  bool intensityImageUsed = false;
  if (argc > 3 && std::string(argv[3]) != "none" && std::string(argv[3]) != "na")
  {
    ReadImage<RealImageType>(intensityImage, argv[3]);
    intensityImageUsed = true;
  }

  bool writeCSV = false;

  if (argc > 4 && std::string(argv[4]) != "none" && std::string(argv[4]) != "na")
  {
    writeCSV = true;
  }

  using FilterType = itk::LabelImageToShapeLabelMapFilter<LabelImageType>;
  typename FilterType::Pointer filter = FilterType::New();
  filter->SetComputeOrientedBoundingBox(false);
  filter->SetComputePerimeter(true);
  filter->SetComputeFeretDiameter(false); // slow for large labels eg brain mask
  filter->SetInput(labelImage);
  filter->Update();

  using LabelMapType = typename FilterType::OutputImageType;
  typename LabelMapType::Pointer labelMap = filter->GetOutput();

  using StatisticsFilterType = itk::LabelStatisticsImageFilter<RealImageType, LabelImageType>;
  typename StatisticsFilterType::Pointer statisticsFilter = StatisticsFilterType::New();
  if (intensityImageUsed)
  {
    using VoxelStatisticsFilterType = itk::StatisticsImageFilter<RealImageType>;
    auto voxelStatisticsFilter = VoxelStatisticsFilterType::New();
    voxelStatisticsFilter->SetInput(intensityImage);
    voxelStatisticsFilter->Update();

    auto lowerBound = voxelStatisticsFilter->GetMinimum();
    auto upperBound = voxelStatisticsFilter->GetMaximum();

    statisticsFilter->SetInput(intensityImage);
    statisticsFilter->SetLabelInput(labelImage);
    statisticsFilter->SetUseHistograms(true);
    statisticsFilter->SetHistogramParameters(255, lowerBound, upperBound);
    statisticsFilter->Update();
  }

  std::vector<std::string> columnHeaders = {"Label", "VolumeInVoxels", "VolumeInMillimeters", "SurfaceAreaInMillimetersSquared",
                                            "Eccentricity", "Elongation", "Roundness", "Flatness"};

  if (writeCSV)
  {
    if (ImageDimension == 2)
    {
      columnHeaders.push_back("Centroid_x");
      columnHeaders.push_back("Centroid_y");
      columnHeaders.push_back("AxesLength_x");
      columnHeaders.push_back("AxesLength_y");
      columnHeaders.push_back("BoundingBoxLower_x");
      columnHeaders.push_back("BoundingBoxLower_y");
      columnHeaders.push_back("BoundingBoxUpper_x");
      columnHeaders.push_back("BoundingBoxUpper_y");
    }
    else if (ImageDimension == 3)
    {
      columnHeaders.push_back("Centroid_x");
      columnHeaders.push_back("Centroid_y");
      columnHeaders.push_back("Centroid_z");
      columnHeaders.push_back("AxesLength_x");
      columnHeaders.push_back("AxesLength_y");
      columnHeaders.push_back("AxesLength_z");
      columnHeaders.push_back("BoundingBoxLower_x");
      columnHeaders.push_back("BoundingBoxLower_y");
      columnHeaders.push_back("BoundingBoxLower_z");
      columnHeaders.push_back("BoundingBoxUpper_x");
      columnHeaders.push_back("BoundingBoxUpper_y");
      columnHeaders.push_back("BoundingBoxUpper_z");
    }
  }
  else
  {
    columnHeaders.push_back("Centroid");
    columnHeaders.push_back("AxesLengths");
    columnHeaders.push_back("BoundingBox");
  }

  if (intensityImageUsed)
  {
    columnHeaders.push_back("MeanIntensity");
    columnHeaders.push_back("SigmaIntensity");
    columnHeaders.push_back("MedianIntensity");
    columnHeaders.push_back("MinIntensity");
    columnHeaders.push_back("MaxIntensity");
    columnHeaders.push_back("IntegratedIntensity");
  }

  std::vector<std::vector<std::string>> data;
  for (unsigned int i = 0; i < labelMap->GetNumberOfLabelObjects(); ++i)
  {
    auto labelObject = labelMap->GetNthLabelObject(i);
    if (labelObject->GetLabel() == 0)
    {
      continue;  // Skip background
    }

    // Get principal moments and use them to calculate eccentricity and axes lengths
    auto principalMoments = labelObject->GetPrincipalMoments();

    // define in 3D such that it describes the ellipse with axes propotional to the
    // two largest principal moments. This is useful eg for cortex, where the thickness
    // is much smaller than the other two dimensions.
    //
    // Roundness gives a more general measure of deviation from a sphere, including all three dimensions.
    //
    double lambda1 = principalMoments[ImageDimension - 2];
    double lambdaN = principalMoments[ImageDimension - 1];
    double eccentricity = 0.0;

    if (!itk::Math::FloatAlmostEqual(lambda1, 0.0))
    {
      eccentricity = std::sqrt(1.0 - (lambda1 * lambda1) / (lambdaN * lambdaN));
    }

    // calculate axes lengths
    std::vector<double> axesLengths(ImageDimension, 0.0);

    for (unsigned int idx = 0; idx < ImageDimension; ++idx)
    {
      if (principalMoments[idx] > 0)
        axesLengths[idx] = 4.0 * std::sqrt(principalMoments[idx]);
      else
        axesLengths[idx] = 0.0;
    }
    // row is a vector of str
    std::vector<std::string> row = {
      std::to_string(labelObject->GetLabel()),
      std::to_string(labelObject->GetNumberOfPixels()),
      std::to_string(labelObject->GetPhysicalSize()),
      std::to_string(labelObject->GetPerimeter()),
      std::to_string(eccentricity),
      std::to_string(labelObject->GetElongation()),
      std::to_string(labelObject->GetRoundness()),
      std::to_string(labelObject->GetFlatness())
    };

    if (writeCSV)
    {
      if (ImageDimension == 2)
      {
       auto bbLowerX = labelObject->GetBoundingBox().GetIndex()[0];
       auto bbLowerY = labelObject->GetBoundingBox().GetIndex()[1];

       auto bbUpperX = bbLowerX + labelObject->GetBoundingBox().GetSize()[0] - 1;
       auto bbUpperY = bbLowerY + labelObject->GetBoundingBox().GetSize()[1] - 1;

       row.push_back(std::to_string(labelObject->GetCentroid()[0]));
       row.push_back(std::to_string(labelObject->GetCentroid()[1]));
       row.push_back(std::to_string(axesLengths[0]));
       row.push_back(std::to_string(axesLengths[1]));
       row.push_back(std::to_string(bbLowerX));
       row.push_back(std::to_string(bbLowerY));
       row.push_back(std::to_string(bbUpperX));
       row.push_back(std::to_string(bbUpperY));
      }
      else if (ImageDimension == 3)
      {
       auto bbLowerX = labelObject->GetBoundingBox().GetIndex()[0];
       auto bbLowerY = labelObject->GetBoundingBox().GetIndex()[1];
       auto bbLowerZ = labelObject->GetBoundingBox().GetIndex()[2];

       auto bbUpperX = bbLowerX + labelObject->GetBoundingBox().GetSize()[0] - 1;
       auto bbUpperY = bbLowerY + labelObject->GetBoundingBox().GetSize()[1] - 1;
       auto bbUpperZ = bbLowerZ + labelObject->GetBoundingBox().GetSize()[2] - 1;

       row.push_back(std::to_string(labelObject->GetCentroid()[0]));
       row.push_back(std::to_string(labelObject->GetCentroid()[1]));
       row.push_back(std::to_string(labelObject->GetCentroid()[2]));
       row.push_back(std::to_string(axesLengths[0]));
       row.push_back(std::to_string(axesLengths[1]));
       row.push_back(std::to_string(axesLengths[2]));
       row.push_back(std::to_string(bbLowerX));
       row.push_back(std::to_string(bbLowerY));
       row.push_back(std::to_string(bbLowerZ));
       row.push_back(std::to_string(bbUpperX));
       row.push_back(std::to_string(bbUpperY));
       row.push_back(std::to_string(bbUpperZ));
      }
    }
    else
    {
      row.push_back(formatCentroid<ImageDimension>(labelObject->GetCentroid()));
      row.push_back(formatAxesLengths<ImageDimension>(axesLengths));
      row.push_back(formatBoundingBox<ImageDimension>(labelObject->GetBoundingBox()));
    }

    if (intensityImageUsed)
    {
      row.push_back(std::to_string(statisticsFilter->GetMean(labelObject->GetLabel())));
      row.push_back(std::to_string(statisticsFilter->GetSigma(labelObject->GetLabel())));
      row.push_back(std::to_string(statisticsFilter->GetMedian(labelObject->GetLabel())));
      row.push_back(std::to_string(statisticsFilter->GetMinimum(labelObject->GetLabel())));
      row.push_back(std::to_string(statisticsFilter->GetMaximum(labelObject->GetLabel())));
      row.push_back(std::to_string(statisticsFilter->GetSum(labelObject->GetLabel())));
    }

    data.push_back(row);
  }

  std::ostream* outStream = &std::cout; // Default to std::cout
  std::string delimiter = "\t"; // Default to tab delimiter

  if (argc > 4 && std::string(argv[4]) != "none" && std::string(argv[4]) != "na")
  {
    static std::ofstream outFile(argv[4]);
    if (!outFile)
    {
      std::cerr << "Error opening output file" << std::endl;
      return EXIT_FAILURE;
    }
    outStream = &outFile; // Point to the file stream
    delimiter = ","; // Use comma for files
  }

  // Write column headers
  for (size_t i = 0; i < columnHeaders.size(); ++i)
  {
    *outStream << columnHeaders[i];
    if (i < columnHeaders.size() - 1)
      *outStream << delimiter;
  }
  *outStream << "\n";

  // Write data
  for (const auto& row : data)
  {
    for (size_t j = 0; j < row.size(); ++j)
    {
      *outStream << row[j];
      if (j < row.size() - 1)
        *outStream << delimiter;
    }
    *outStream << "\n";
  }

  if (outStream != &std::cout)
  {
    static_cast<std::ofstream*>(outStream)->close(); // Close file if not cout
  }
  return EXIT_SUCCESS;
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
LabelGeometryMeasures(std::vector<std::string> args, std::ostream * itkNotUsed(out_stream))
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "LabelGeometryMeasures");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc < 3)
  {
    std::cout << "Usage 1: " << argv[0] << " imageDimension labelImage [intensityImage] [csvFile]" << std::endl;
    std::cout << "To output to csvFile without an intensity image, use \"none\" or \"na\" as the third arg" << std::endl;
    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  switch (std::stoi(argv[1]))
  {
    case 2:
    {
      LabelGeometryMeasures<2>(argc, argv);
    }
    break;
    case 3:
    {
      LabelGeometryMeasures<3>(argc, argv);
    }
    break;
    default:
      std::cout << "Unsupported dimension" << std::endl;
      return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}


} // namespace ants