File: LaplacianThickness.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (1151 lines) | stat: -rw-r--r-- 36,175 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include <algorithm>

#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkFastMarchingUpwindGradientImageFilter.h"
#include "itkGradientRecursiveGaussianImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkLaplacianRecursiveGaussianImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkVectorCurvatureAnisotropicDiffusionImageFilter.h"
#include "itkVectorIndexSelectionCastImageFilter.h"
#include "itkVectorLinearInterpolateImageFunction.h"
#include "itkWarpImageFilter.h"
#include "vnl/algo/vnl_determinant.h"

#include "ReadWriteData.h"

namespace ants
{
template <typename TField, typename TImage>
typename TImage::Pointer
GetVectorComponent(typename TField::Pointer field, unsigned int index)
{
  // Initialize the Moving to the displacement field
  using ImageType = TImage;

  typename ImageType::Pointer sfield = AllocImage<ImageType>(field);

  using Iterator = itk::ImageRegionIteratorWithIndex<TField>;
  Iterator vfIter(field, field->GetLargestPossibleRegion());
  for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
  {
    typename TField::PixelType v1 = vfIter.Get();
    sfield->SetPixel(vfIter.GetIndex(), v1[index]);
  }

  return sfield;
}

template <typename TImage>
typename TImage::Pointer
SmoothImage(typename TImage::Pointer image, float sig)
{
  // find min value
  using Iterator = itk::ImageRegionIteratorWithIndex<TImage>;
  Iterator vfIter(image, image->GetLargestPossibleRegion());
  for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
  {
    typename TImage::PixelType v1 = vfIter.Get();
    if (std::isnan(v1))
    {
      vfIter.Set(0);
    }
  }
  using dgf = itk::DiscreteGaussianImageFilter<TImage, TImage>;
  typename dgf::Pointer filter = dgf::New();
  filter->SetVariance(sig);
  filter->SetUseImageSpacing(true);
  filter->SetMaximumError(.01f);
  filter->SetInput(image);
  filter->Update();
  typename TImage::Pointer out = filter->GetOutput();

  return out;
}

template <typename TImage>
void
SmoothDeformation(typename TImage::Pointer vectorimage, float sig)
{
  using VectorType = itk::Vector<float, 3>;
  using ImageType = itk::Image<float, 3>;
  typename ImageType::Pointer subimgx = GetVectorComponent<TImage, ImageType>(vectorimage, 0);
  subimgx = SmoothImage<ImageType>(subimgx, sig);
  typename ImageType::Pointer subimgy = GetVectorComponent<TImage, ImageType>(vectorimage, 1);
  subimgy = SmoothImage<ImageType>(subimgy, sig);
  typename ImageType::Pointer subimgz = GetVectorComponent<TImage, ImageType>(vectorimage, 2);
  subimgz = SmoothImage<ImageType>(subimgz, sig);

  using IteratorType = itk::ImageRegionIteratorWithIndex<TImage>;
  IteratorType Iterator(vectorimage, vectorimage->GetLargestPossibleRegion().GetSize());
  Iterator.GoToBegin();
  while (!Iterator.IsAtEnd())
  {
    VectorType vec;
    vec[0] = subimgx->GetPixel(Iterator.GetIndex());
    vec[1] = subimgy->GetPixel(Iterator.GetIndex());
    vec[2] = subimgz->GetPixel(Iterator.GetIndex());
    Iterator.Set(vec);
    ++Iterator;
  }
}

template <typename TImage>
typename TImage::Pointer
LabelSurface(typename TImage::PixelType foreground,
             typename TImage::PixelType newval,
             typename TImage::Pointer   input,
             float                      distthresh)
{
  std::cout << " Label Surf " << std::endl;
  using ImageType = TImage;
  enum
  {
    ImageDimension = ImageType::ImageDimension
  };
  // ORIENTATION ALERT -- original code set spacing & origin without
  // also setting orientation.
  typename ImageType::Pointer Image = AllocImage<ImageType>(input);

  using iteratorType = itk::NeighborhoodIterator<ImageType>;

  typename iteratorType::RadiusType rad;
  for (int j = 0; j < ImageDimension; j++)
  {
    rad[j] = static_cast<unsigned int>(distthresh + 0.5f);
  }
  iteratorType GHood(rad, input, input->GetLargestPossibleRegion());

  GHood.GoToBegin();

  //  std::cout << " foreg " << (int) foreground;
  while (!GHood.IsAtEnd())
  {
    typename TImage::PixelType p = GHood.GetCenterPixel();
    typename TImage::IndexType ind = GHood.GetIndex();
    typename TImage::IndexType ind2;
    if (itk::Math::FloatAlmostEqual(p, foreground))
    {
      bool atedge = false;
      for (unsigned int i = 0; i < GHood.Size(); i++)
      {
        ind2 = GHood.GetIndex(i);
        float dist = 0.0;
        for (int j = 0; j < ImageDimension; j++)
        {
          dist += (float)(ind[j] - ind2[j]) * (float)(ind[j] - ind2[j]);
        }
        dist = sqrt(dist);
        if (!itk::Math::FloatAlmostEqual(GHood.GetPixel(i), foreground) && dist < distthresh)
        {
          atedge = true;
        }
      }
      if (atedge && itk::Math::FloatAlmostEqual(p, foreground))
      {
        Image->SetPixel(ind, newval);
      }
      else
      {
        Image->SetPixel(ind, 0);
      }
    }
    ++GHood;
  }

  return Image;
}

template <typename TImage>
typename TImage::Pointer
Morphological(typename TImage::Pointer input, float rad, bool option)
{
  using ImageType = TImage;
  enum
  {
    ImageDimension = TImage::ImageDimension
  };
  using PixelType = typename TImage::PixelType;

  if (!option)
  {
    std::cout << " eroding the image " << std::endl;
  }
  else
  {
    std::cout << " dilating the image " << std::endl;
  }
  using StructuringElementType = itk::BinaryBallStructuringElement<PixelType, ImageDimension>;

  // Software Guide : BeginCodeSnippet
  using ErodeFilterType = itk::BinaryErodeImageFilter<TImage, TImage, StructuringElementType>;

  using DilateFilterType = itk::BinaryDilateImageFilter<TImage, TImage, StructuringElementType>;

  typename ErodeFilterType::Pointer  binaryErode = ErodeFilterType::New();
  typename DilateFilterType::Pointer binaryDilate = DilateFilterType::New();

  StructuringElementType structuringElement;

  structuringElement.SetRadius((unsigned long)rad); // 3x3x3 structuring element

  structuringElement.CreateStructuringElement();

  binaryErode->SetKernel(structuringElement);
  binaryDilate->SetKernel(structuringElement);

  //  It is necessary to define what could be considered objects on the binary
  //  images. This is specified with the methods \code{SetErodeValue()} and
  //  \code{SetDilateValue()}. The value passed to these methods will be
  //  considered the value over which the dilation and erosion rules will apply
  binaryErode->SetErodeValue(1);
  binaryDilate->SetDilateValue(1);

  typename TImage::Pointer temp;
  if (option)
  {
    binaryDilate->SetInput(input);
    binaryDilate->Update();
    temp = binaryDilate->GetOutput();
  }
  else
  {
    binaryErode->SetInput(input); // binaryDilate->GetOutput() );
    binaryErode->Update();
    temp = binaryErode->GetOutput();

    using ImageIteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;
    ImageIteratorType o_iter(temp, temp->GetLargestPossibleRegion());
    o_iter.GoToBegin();
    while (!o_iter.IsAtEnd())
    {
      if (o_iter.Get() > 0.5f && input->GetPixel(o_iter.GetIndex()) > 0.5f)
      {
        o_iter.Set(1);
      }
      else
      {
        o_iter.Set(0);
      }
      ++o_iter;
    }
  }

  return temp;
}

template <typename TImage, typename TField>
typename TField::Pointer
FMMGrad(typename TImage::Pointer wm, typename TImage::Pointer gm)
{
  using ImageType = TImage;
  enum
  {
    ImageDimension = TImage::ImageDimension
  };
  typename TField::Pointer sfield = AllocImage<TField>(wm);

  typename ImageType::Pointer surf = LabelSurface<ImageType>(1, 1, wm, 1.9);

  using FloatFMType = itk::FastMarchingUpwindGradientImageFilter<ImageType, ImageType>;
  typename FloatFMType::Pointer marcher = FloatFMType::New();
  using NodeType = typename FloatFMType::NodeType;
  using NodeContainer = typename FloatFMType::NodeContainer;
  // setup alive points
  typename NodeContainer::Pointer alivePoints = NodeContainer::New();
  typename NodeContainer::Pointer targetPoints = NodeContainer::New();
  typename NodeContainer::Pointer trialPoints = NodeContainer::New();
  using IteratorType = itk::ImageRegionIteratorWithIndex<TImage>;
  IteratorType thIt(wm, wm->GetLargestPossibleRegion().GetSize());
  thIt.GoToBegin();
  unsigned long bb = 0, cc = 0, dd = 0;
  while (!thIt.IsAtEnd())
  {
    if (thIt.Get() > 0.1 && surf->GetPixel(thIt.GetIndex()) == 0)
    {
      NodeType node;
      node.SetValue(0);
      node.SetIndex(thIt.GetIndex());
      alivePoints->InsertElement(bb, node);
      bb++;
    }
    if (gm->GetPixel(thIt.GetIndex()) == 0 && wm->GetPixel(thIt.GetIndex()) == 0)
    {
      NodeType node;
      node.SetValue(0);
      node.SetIndex(thIt.GetIndex());
      targetPoints->InsertElement(cc, node);
      cc++;
    }
    if (surf->GetPixel(thIt.GetIndex()) == 1)
    {
      NodeType node;
      node.SetValue(0);
      node.SetIndex(thIt.GetIndex());
      trialPoints->InsertElement(cc, node);
      dd++;
    }
    ++thIt;
  }

  marcher->SetTargetReachedModeToAllTargets();
  marcher->SetAlivePoints(alivePoints);
  marcher->SetTrialPoints(trialPoints);
  marcher->SetTargetPoints(targetPoints);
  marcher->SetInput(gm);
  double stoppingValue = 1000.0;
  marcher->SetStoppingValue(stoppingValue);
  marcher->GenerateGradientImageOn();
  marcher->Update();
  ANTs::WriteImage<ImageType>(marcher->GetOutput(), "marcher.nii.gz");

  thIt.GoToBegin();
  while (!thIt.IsAtEnd())
  {
    typename TField::PixelType vec;
    for (dd = 0; dd < ImageDimension; dd++)
    {
      vec[dd] = marcher->GetGradientImage()->GetPixel(thIt.GetIndex())[dd];
    }
    ++thIt;
  }

  return sfield;
}

template <typename TImage, typename TField>
typename TField::Pointer
LaplacianGrad(typename TImage::Pointer wm, typename TImage::Pointer gm, float sig, unsigned int numits, float tolerance)
{
  using IndexType = typename TImage::IndexType;
  IndexType ind;
  using ImageType = TImage;
  using GradientImageType = TField;
  using GradientImageFilterType = itk::GradientRecursiveGaussianImageFilter<ImageType, GradientImageType>;
  using GradientImageFilterPointer = typename GradientImageFilterType::Pointer;

  typename TField::Pointer sfield = AllocImage<TField>(wm);

  typename TImage::Pointer laplacian = SmoothImage<TImage>(wm, 1);
  laplacian->FillBuffer(0);
  using IteratorType = itk::ImageRegionIteratorWithIndex<TImage>;
  IteratorType Iterator(wm, wm->GetLargestPossibleRegion().GetSize());
  Iterator.GoToBegin();

  // initialize L(wm)=1, L(gm)=0.5, else 0
  while (!Iterator.IsAtEnd())
  {
    ind = Iterator.GetIndex();
    if (wm->GetPixel(ind) >= 0.5f)
    {
      laplacian->SetPixel(ind, 1);
    }
    else
    {
      laplacian->SetPixel(ind, 2.);
    }
    ++Iterator;
  }

  // smooth and then reset the values
  float        meanvalue = 0, lastmean = 1;
  unsigned int iterations = 0;
  while (static_cast<float>(std::fabs(meanvalue - lastmean)) > tolerance && iterations < numits)
  {
    iterations++;
    std::cout << "  % " << (float)iterations / (float)(numits + 1) << " delta-mean " << fabs(meanvalue - lastmean)
              << std::endl;
    laplacian = SmoothImage<TImage>(laplacian, sqrt(sig));
    Iterator.GoToBegin();
    unsigned int ct = 0;
    lastmean = meanvalue;
    while (!Iterator.IsAtEnd())
    {
      ind = Iterator.GetIndex();
      if (wm->GetPixel(ind) >= 0.5f)
      {
        laplacian->SetPixel(ind, 1);
      }
      else if (gm->GetPixel(ind) < 0.5f && wm->GetPixel(ind) < 0.5f)
      {
        laplacian->SetPixel(ind, 2.);
      }
      else
      {
        meanvalue += laplacian->GetPixel(ind);
        ct++;
      }
      ++Iterator;
    }

    meanvalue /= (float)ct;
  }

  // /  ANTs::WriteImage<ImageType>(laplacian, "laplacian.hdr");

  GradientImageFilterPointer filter = GradientImageFilterType::New();
  filter->SetInput(laplacian);
  filter->SetSigma(sig * 0.5f);
  filter->Update();
  return filter->GetOutput();
}

template <typename TImage, typename TField, typename TInterp, typename TInterp2>
float
IntegrateLength(typename TImage::Pointer /* gmsurf */,
                typename TImage::Pointer /* thickimage */,
                typename TImage::IndexType velind,
                typename TField::Pointer   lapgrad,
                float                      itime,
                float                      starttime,
                float /* finishtime */,
                bool                       timedone,
                float                      deltaTime,
                typename TInterp::Pointer  vinterp,
                typename TInterp2::Pointer sinterp,
                unsigned int /* task */,
                bool /* propagate */,
                bool                         domeasure,
                unsigned int                 m_NumberOfTimePoints,
                typename TImage::SpacingType spacing,
                float                        vecsign,
                float                        timesign,
                float                        gradsign,
                unsigned int                 ct,
                typename TImage::Pointer     wm,
                typename TImage::Pointer     gm,
                float                        priorthickval,
                typename TImage::Pointer     smooththick,
                bool                         printprobability,
                typename TImage::Pointer /* sulci */)
{
  using VectorType = typename TField::PixelType;
  using DPointType = typename TField::PointType;
  using DefaultInterpolatorType = itk::VectorLinearInterpolateImageFunction<TField, float>;

  VectorType zero;
  zero.Fill(0);
  VectorType disp;
  disp.Fill(0);
  ct = 0;
  DPointType                                            pointIn1;
  DPointType                                            pointIn2;
  typename DefaultInterpolatorType::ContinuousIndexType vcontind;
  DPointType                                            pointIn3;
  enum
  {
    ImageDimension = TImage::ImageDimension
  };
  using IndexType = typename TImage::IndexType;
  for (unsigned int jj = 0; jj < ImageDimension; jj++)
  {
    IndexType index;
    index[jj] = velind[jj];
    pointIn1[jj] = velind[jj] * lapgrad->GetSpacing()[jj];
  }
  // if( task == 0 )
  //   {
  //   propagate = false;
  //   }
  // else
  //   {
  //   propagate = true;
  //   }
  itime = starttime;
  timedone = false;
  float totalmag = 0;
  if (domeasure)
  {
    while (!timedone)
    {
      float scale = 1; // *m_DT[timeind]/m_DS[timeind];
      //     std::cout << " scale " << scale << std::endl;
      auto itimetn1 = static_cast<double>(itime - timesign * deltaTime * scale);
      auto itimetn1h = static_cast<double>(itime - timesign * deltaTime * 0.5f * scale);
      if (itimetn1h < 0)
      {
        itimetn1h = 0;
      }
      if (itimetn1h > m_NumberOfTimePoints - 1)
      {
        itimetn1h = m_NumberOfTimePoints - 1;
      }
      if (itimetn1 < 0)
      {
        itimetn1 = 0;
      }
      if (itimetn1 > m_NumberOfTimePoints - 1)
      {
        itimetn1 = m_NumberOfTimePoints - 1;
      }
      // first get current position of particle
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        IndexType index;
        index[jj] = velind[jj];
        pointIn1[jj] = velind[jj] * lapgrad->GetSpacing()[jj];
      }
      //      std::cout << " ind " << index  << std::endl;
      // now index the time varying field at that position.
      typename DefaultInterpolatorType::OutputType f1;
      f1.Fill(0);
      typename DefaultInterpolatorType::OutputType f2;
      f2.Fill(0);
      typename DefaultInterpolatorType::OutputType f3;
      f3.Fill(0);
      typename DefaultInterpolatorType::OutputType f4;
      f4.Fill(0);
      typename DefaultInterpolatorType::ContinuousIndexType Y1;
      typename DefaultInterpolatorType::ContinuousIndexType Y2;
      typename DefaultInterpolatorType::ContinuousIndexType Y3;
      typename DefaultInterpolatorType::ContinuousIndexType Y4;
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        pointIn2[jj] = static_cast<typename DPointType::CoordRepType>(disp[jj]) + pointIn1[jj];
        vcontind[jj] = pointIn2[jj] / lapgrad->GetSpacing()[jj];
        Y1[jj] = vcontind[jj];
        Y2[jj] = vcontind[jj];
        Y3[jj] = vcontind[jj];
        Y4[jj] = vcontind[jj];
      }
      // Y1[ImageDimension]=itimetn1;
      // Y2[ImageDimension]=itimetn1h;
      // Y3[ImageDimension]=itimetn1h;
      //      Y4[ImageDimension]=itime;

      using ContinuousIndexType = typename DefaultInterpolatorType::ContinuousIndexType;
      using CoordRepType = typename ContinuousIndexType::CoordRepType;

      f1 = vinterp->EvaluateAtContinuousIndex(Y1);
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        Y2[jj] +=
          static_cast<CoordRepType>(f1[jj]) * static_cast<CoordRepType>(deltaTime) * static_cast<CoordRepType>(0.5);
      }
      bool isinside = true;
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        if (Y2[jj] < 1 || Y2[jj] > lapgrad->GetLargestPossibleRegion().GetSize()[jj] - 2)
        {
          isinside = false;
        }
      }
      if (isinside)
      {
        f2 = vinterp->EvaluateAtContinuousIndex(Y2);
      }
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        Y3[jj] +=
          static_cast<CoordRepType>(f2[jj]) * static_cast<CoordRepType>(deltaTime) * static_cast<CoordRepType>(0.5);
      }
      isinside = true;
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        if (Y3[jj] < 1 || Y3[jj] > lapgrad->GetLargestPossibleRegion().GetSize()[jj] - 2)
        {
          isinside = false;
        }
      }
      if (isinside)
      {
        f3 = vinterp->EvaluateAtContinuousIndex(Y3);
      }
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        Y4[jj] += static_cast<CoordRepType>(f3[jj]) * static_cast<CoordRepType>(deltaTime);
      }
      isinside = true;
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        if (Y4[jj] < 1 || Y4[jj] > lapgrad->GetLargestPossibleRegion().GetSize()[jj] - 2)
        {
          isinside = false;
        }
      }
      if (isinside)
      {
        f4 = vinterp->EvaluateAtContinuousIndex(Y4);
      }
      using DPointCoordRepType = typename DPointType::CoordRepType;
      auto twoValue = static_cast<DPointCoordRepType>(2.0);
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        pointIn3[jj] = pointIn2[jj] +
                       static_cast<DPointCoordRepType>(gradsign * vecsign * deltaTime / 6.0f) *
                         (static_cast<DPointCoordRepType>(f1[jj]) + twoValue * static_cast<DPointCoordRepType>(f2[jj]) +
                          twoValue * static_cast<DPointCoordRepType>(f3[jj]) + static_cast<DPointCoordRepType>(f4[jj]));
      }

      VectorType out;
      float      mag = 0, dmag = 0;
      for (unsigned int jj = 0; jj < ImageDimension; jj++)
      {
        out[jj] = pointIn3[jj] - pointIn1[jj];
        mag += static_cast<float>(itk::Math::sqr(pointIn3[jj] - pointIn2[jj]));
        dmag += static_cast<float>(itk::Math::sqr(pointIn3[jj] - pointIn1[jj]));
        disp[jj] = out[jj];
      }
      dmag = sqrt(dmag);
      totalmag += static_cast<float>(sqrt(mag));

      ct++;
      //      if (!propagate) //thislength=dmag;//
      //         thislength += totalmag;
      itime = itime + deltaTime * timesign;
      IndexType myind;
      for (unsigned int qq = 0; qq < ImageDimension; qq++)
      {
        myind[qq] = (unsigned long)(pointIn3[qq] / spacing[qq] + 0.5);
      }

      if ((gm->GetPixel(myind) < 0.5f && wm->GetPixel(myind) < 0.5f) ||
          (wm->GetPixel(myind) >= 0.5f && gm->GetPixel(myind) < 0.5f) || mag < 1.e-1f * deltaTime)
      {
        timedone = true;
      }
      if (gm->GetPixel(myind) < 0.5f)
      {
        timedone = true;
      }
      if (static_cast<float>(ct) > 2.0f / deltaTime)
      {
        timedone = true;
      }
      if (totalmag > priorthickval)
      {
        timedone = true;
      }
      if (smooththick)
      {
        if ((totalmag - smooththick->GetPixel(velind)) > 1)
        {
          timedone = true;
        }
      }

      if (printprobability)
      {
        std::cout << " ind " << Y1 << " prob " << sinterp->EvaluateAtContinuousIndex(Y1) << " t " << itime << std::endl;
      }
    }
  }

  return totalmag;
}

template <unsigned int ImageDimension>
int
LaplacianThickness(int argc, char * argv[])
{
  float        gradstep = -50.0; // atof(argv[3])*(-1.0);
  unsigned int nsmooth = 2;
  float        smoothparam = 1;
  float        priorthickval = 500;
  double       dT = 0.01;
  std::string  wfn = std::string(argv[1]);
  std::string  gfn = std::string(argv[2]);
  int          argct = 3;
  std::string  outname = std::string(argv[argct]);
  argct++;

  if (argc > argct)
  {
    smoothparam = atof(argv[argct]);
  }
  argct++;
  if (argc > argct)
  {
    priorthickval = atof(argv[argct]);
  }
  argct++;
  if (argc > argct)
  {
    dT = atof(argv[argct]);
  }
  argct++;
  float dosulc = 0;
  if (argc > argct)
  {
    dosulc = atof(argv[argct]);
  }
  argct++;
  float tolerance = 0.001;
  if (argc > argct)
  {
    tolerance = atof(argv[argct]);
  }
  argct++;
  std::cout << " using tolerance " << tolerance << std::endl;
  using PixelType = float;
  using VectorType = itk::Vector<float, ImageDimension>;
  using DisplacementFieldType = itk::Image<VectorType, ImageDimension>;
  using ImageType = itk::Image<PixelType, ImageDimension>;
  using SpacingType = typename ImageType::SpacingType;

  //  typename tvt::Pointer gWarp;
  // ReadImage<tvt>( gWarp, ifn.c_str() );

  typename ImageType::Pointer thickimage;
  ReadImage<ImageType>(thickimage, wfn.c_str());
  thickimage->FillBuffer(0);
  typename ImageType::Pointer thickimage2;
  ReadImage<ImageType>(thickimage2, wfn.c_str());
  thickimage2->FillBuffer(0);
  typename ImageType::Pointer wm;
  ReadImage<ImageType>(wm, wfn.c_str());
  typename ImageType::Pointer gm;
  ReadImage<ImageType>(gm, gfn.c_str());
  SpacingType spacing = wm->GetSpacing();
  using IteratorType = itk::ImageRegionIteratorWithIndex<ImageType>;
  IteratorType                            Iterator(wm, wm->GetLargestPossibleRegion().GetSize());
  typename ImageType::Pointer             wmb = BinaryThreshold<ImageType>(0.5, 1.e9, 1, wm);
  typename DisplacementFieldType::Pointer lapgrad = nullptr;
  typename DisplacementFieldType::Pointer lapgrad2 = nullptr;
  typename ImageType::Pointer             gmb = BinaryThreshold<ImageType>(0.5, 1.e9, 1, gm);

  /** get sulcal priors */
  typename ImageType::Pointer sulci = nullptr;
  if (dosulc > 0)
  {
    std::cout << "  using sulcal prior " << std::endl;
    using FilterType = itk::DanielssonDistanceMapImageFilter<ImageType, ImageType>;
    typename FilterType::Pointer distmap = FilterType::New();
    distmap->InputIsBinaryOn();
    distmap->SetUseImageSpacing(true);
    distmap->SetInput(wmb);
    distmap->Update();
    typename ImageType::Pointer distwm = distmap->GetOutput();

    using dgf = itk::LaplacianRecursiveGaussianImageFilter<ImageType, ImageType>;
    typename dgf::Pointer lfilter = dgf::New();
    lfilter->SetSigma(smoothparam);
    lfilter->SetInput(distwm);
    lfilter->Update();
    typename ImageType::Pointer image2 = lfilter->GetOutput();
    using RescaleFilterType = itk::RescaleIntensityImageFilter<ImageType, ImageType>;
    typename RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
    rescaler->SetOutputMinimum(0);
    rescaler->SetOutputMaximum(1);
    rescaler->SetInput(image2);
    rescaler->Update();
    sulci = rescaler->GetOutput();
    ANTs::WriteImage<ImageType>(sulci, "sulci.nii");

    Iterator.GoToBegin();
    while (!Iterator.IsAtEnd())
    {
      //    std::cout << " a good value for use sulcus prior is 0.002  -- in a function :
      //  1/(1.+exp(-0.1*(sulcprob-0.275)/use-sulcus-prior)) " << std::endl;
      //
      float gmprob = gm->GetPixel(Iterator.GetIndex());
      if (itk::Math::FloatAlmostEqual(gmprob, 0.0f))
      {
        gmprob = 0.05f;
      }
      float sprob = sulci->GetPixel(Iterator.GetIndex());
      sprob = 1.0f / (1.0f + std::exp(-0.1f * (sprob - 0.5f) / dosulc));
      sulci->SetPixel(Iterator.GetIndex(), sprob);
      //    if (gmprob > 0) std::cout << " gmp " << gmprob << std::endl;
      ++Iterator;
    }

    std::cout << " modified gm prior by sulcus prior " << std::endl;
    ANTs::WriteImage<ImageType>(sulci, "sulcigm.nii");

    using GradientImageFilterType = itk::GradientRecursiveGaussianImageFilter<ImageType, DisplacementFieldType>;
    using GradientImageFilterPointer = typename GradientImageFilterType::Pointer;
    GradientImageFilterPointer filter = GradientImageFilterType::New();
    filter->SetInput(distwm);
    filter->SetSigma(smoothparam);
    filter->Update();
    lapgrad2 = filter->GetOutput();

    //      return 0;
    /** sulc priors done */
  }

  lapgrad = LaplacianGrad<ImageType, DisplacementFieldType>(wmb, gmb, smoothparam, 500, tolerance);
  //  lapgrad=FMMGrad<ImageType,DisplacementFieldType>(wmb,gmb);

  //  LabelSurface(typename TImage::PixelType foreground,
  //       typename TImage::PixelType newval, typename TImage::Pointer input, float distthresh )
  float distthresh = 1.9;

  typename ImageType::Pointer wmgrow = Morphological<ImageType>(wmb, 1, true);
  typename ImageType::Pointer surf = LabelSurface<ImageType>(1, 1, wmgrow, distthresh);
  typename ImageType::Pointer gmsurf = LabelSurface<ImageType>(1, 1, gmb, distthresh);
  // now integrate
  //

  double timezero = 0; // 1
  double timeone = 1;  // (s[ImageDimension]-1-timezero);

  //  unsigned int m_NumberOfTimePoints = s[ImageDimension];

  float starttime = timezero; // timezero;
  float finishtime = timeone; // s[ImageDimension]-1;//timeone;
  // std::cout << " MUCKING WITH START FINISH TIME " <<  finishtime <<  std::endl;

  typename DisplacementFieldType::IndexType velind;
  typename ImageType::Pointer               smooththick = nullptr;
  float                                     timesign = 1.0;
  if (starttime > finishtime)
  {
    timesign = -1.0;
  }
  unsigned int m_NumberOfTimePoints = 2;
  using TimeVaryingVelocityFieldType = DisplacementFieldType;
  using DefaultInterpolatorType = itk::VectorLinearInterpolateImageFunction<TimeVaryingVelocityFieldType, float>;
  typename DefaultInterpolatorType::Pointer vinterp = DefaultInterpolatorType::New();
  using ScalarInterpolatorType = itk::LinearInterpolateImageFunction<ImageType, float>;
  typename ScalarInterpolatorType::Pointer sinterp = ScalarInterpolatorType::New();
  sinterp->SetInputImage(gm);
  if (sulci)
  {
    sinterp->SetInputImage(sulci);
  }
  VectorType zero;
  zero.Fill(0);

  using VIteratorType = itk::ImageRegionIteratorWithIndex<DisplacementFieldType>;
  VIteratorType VIterator(lapgrad, lapgrad->GetLargestPossibleRegion().GetSize());
  VIterator.GoToBegin();
  while (!VIterator.IsAtEnd())
  {
    VectorType vec = VIterator.Get();
    float      mag = 0;
    for (unsigned int qq = 0; qq < ImageDimension; qq++)
    {
      mag += vec[qq] * vec[qq];
    }
    mag = sqrt(mag);
    if (mag > 0)
    {
      vec = vec / mag;
    }
    VIterator.Set(vec * gradstep);
    if (lapgrad2)
    {
      vec = lapgrad2->GetPixel(VIterator.GetIndex());
      mag = 0;
      for (unsigned int qq = 0; qq < ImageDimension; qq++)
      {
        mag += vec[qq] * vec[qq];
      }
      mag = sqrt(mag);
      if (mag > 0)
      {
        vec = vec / mag;
      }
      lapgrad2->SetPixel(VIterator.GetIndex(), vec * gradstep);
    }
    ++VIterator;
  }

  bool propagate = false;
  for (unsigned int smoothit = 0; smoothit < nsmooth; smoothit++)
  {
    std::cout << " smoothit " << smoothit << std::endl;
    Iterator.GoToBegin();
    unsigned int cter = 0;
    while (!Iterator.IsAtEnd())
    {
      velind = Iterator.GetIndex();
      //      float thislength=0;
      for (unsigned int task = 0; task < 1; task++)
      {
        float itime = starttime;

        unsigned long ct = 0;
        bool          timedone = false;

        VectorType disp;
        disp.Fill(0.0);
        double deltaTime = dT, vecsign = 1.0;
        bool   domeasure = false;
        float  gradsign = 1.0;
        bool   printprobability = false;
        //    std::cout << " wmb " << wmb->GetPixel(velind) << " gm " << gm->GetPixel(velind) << std::endl;
        //    if (surf->GetPixel(velind) != 0) printprobability=true;
        if (gm->GetPixel(velind) > 0.25f) // && wmb->GetPixel(velind) < 1 )
        {
          cter++;
          domeasure = true;
        }
        vinterp->SetInputImage(lapgrad);
        gradsign = -1.0;
        vecsign = -1.0;
        float len1 = IntegrateLength<ImageType, DisplacementFieldType, DefaultInterpolatorType, ScalarInterpolatorType>(
          gmsurf,
          thickimage,
          velind,
          lapgrad,
          itime,
          starttime,
          finishtime,
          timedone,
          deltaTime,
          vinterp,
          sinterp,
          task,
          propagate,
          domeasure,
          m_NumberOfTimePoints,
          spacing,
          vecsign,
          gradsign,
          timesign,
          ct,
          wm,
          gm,
          priorthickval,
          smooththick,
          printprobability,
          sulci);

        gradsign = 1.0;
        vecsign = 1;
        float len2 = IntegrateLength<ImageType, DisplacementFieldType, DefaultInterpolatorType, ScalarInterpolatorType>(
          gmsurf,
          thickimage,
          velind,
          lapgrad,
          itime,
          starttime,
          finishtime,
          timedone,
          deltaTime,
          vinterp,
          sinterp,
          task,
          propagate,
          domeasure,
          m_NumberOfTimePoints,
          spacing,
          vecsign,
          gradsign,
          timesign,
          ct,
          wm,
          gm,
          priorthickval - len1,
          smooththick,
          printprobability,
          sulci);

        float len3 = 1.e9, len4 = 1.e9;
        if (lapgrad2)
        {
          vinterp->SetInputImage(lapgrad2);
          gradsign = -1.0;
          vecsign = -1.0;
          len3 = IntegrateLength<ImageType, DisplacementFieldType, DefaultInterpolatorType, ScalarInterpolatorType>(
            gmsurf,
            thickimage,
            velind,
            lapgrad2,
            itime,
            starttime,
            finishtime,
            timedone,
            deltaTime,
            vinterp,
            sinterp,
            task,
            propagate,
            domeasure,
            m_NumberOfTimePoints,
            spacing,
            vecsign,
            gradsign,
            timesign,
            ct,
            wm,
            gm,
            priorthickval,
            smooththick,
            printprobability,
            sulci);

          gradsign = 1.0;
          vecsign = 1;
          len4 = IntegrateLength<ImageType, DisplacementFieldType, DefaultInterpolatorType, ScalarInterpolatorType>(
            gmsurf,
            thickimage,
            velind,
            lapgrad2,
            itime,
            starttime,
            finishtime,
            timedone,
            deltaTime,
            vinterp,
            sinterp,
            task,
            propagate,
            domeasure,
            m_NumberOfTimePoints,
            spacing,
            vecsign,
            gradsign,
            timesign,
            ct,
            wm,
            gm,
            priorthickval - len3,
            smooththick,
            printprobability,
            sulci);
        }
        float totalength = len1 + len2;
        //    if (totalength > 5 && totalength <  8) std::cout<< " t1 " << len3+len4 << " t2 " << len1+len2 <<
        //    std::endl;
        if (len3 + len4 < totalength)
        {
          totalength = len3 + len4;
        }

        if (smoothit == 0)
        {
          if (itk::Math::FloatAlmostEqual(thickimage2->GetPixel(velind), 0.0f))
          {
            thickimage2->SetPixel(velind, totalength);
          }
          else if ((totalength) > 0 && thickimage2->GetPixel(velind) < (totalength))
          {
            thickimage2->SetPixel(velind, totalength);
          }
        }
        if (smoothit > 0 && smooththick)
        {
          thickimage2->SetPixel(velind, totalength * 0.5f + smooththick->GetPixel(velind) * 0.5f);
        }

        if (domeasure && (totalength) > 0 && cter % 10000 == 0)
        {
          std::cout << " len1 " << len1 << " len2 " << len2 << " ind " << velind << std::endl;
        }
      }
      ++Iterator;
    }

    smooththick = SmoothImage<ImageType>(thickimage2, 1.0);

    // set non-gm voxels to zero
    IteratorType gIterator(gm, gm->GetLargestPossibleRegion().GetSize());
    gIterator.GoToBegin();
    while (!gIterator.IsAtEnd())
    {
      if (gm->GetPixel(gIterator.GetIndex()) < 0.25f)
      {
        thickimage2->SetPixel(gIterator.GetIndex(), 0);
      }
      ++gIterator;
    }

    std::cout << " writing " << outname << std::endl;
    ANTs::WriteImage<ImageType>(thickimage2, outname.c_str());
  }
  //  ANTs::WriteImage<ImageType>(thickimage,"turd.hdr");

  return EXIT_SUCCESS;
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
LaplacianThickness(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "LaplacianThickness");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc < 4)
  {
    std::cout << "Usage:   " << argv[0]
              << " WM.nii GM.nii   Out.nii  {smoothparam=1} {priorthickval=500} {dT=0.01} {sulcus-prior=0} "
                 "{laplacian-tolerance=0.001}"
              << std::endl;
    std::cout << " a good value for sulcus prior (if not 0, which disables its use) is 0.15 -- in a function :  "
                 "1/(1.+exp(-0.1*(laplacian-img-value-sulcprob)/0.01)) "
              << std::endl;
    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  std::string ifn = std::string(argv[1]);
  //  std::cout << " image " << ifn << std::endl;
  // Get the image dimension
  itk::ImageIOBase::Pointer imageIO = itk::ImageIOFactory::CreateImageIO(ifn.c_str(), itk::IOFileModeEnum::ReadMode);
  imageIO->SetFileName(ifn.c_str());
  imageIO->ReadImageInformation();
  unsigned int dim = imageIO->GetNumberOfDimensions();

  //   std::cout << " dim " << dim << std::endl;
  switch (dim)
  {
    case 2:
    {
      return LaplacianThickness<2>(argc, argv);
    }
    break;
    case 3:
    {
      return LaplacianThickness<3>(argc, argv);
    }
    break;
    default:
      std::cout << "Unsupported dimension" << std::endl;
      return EXIT_FAILURE;
  }

  return EXIT_SUCCESS;
}
} // namespace ants