File: LesionFilling.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (311 lines) | stat: -rw-r--r-- 10,706 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
#include <iostream>
#include <ostream>
#include <sstream>
#include <vector>
#include <iomanip>

#include "antsUtilities.h"

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCastImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkBinaryDilateImageFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "itkMaskImageFilter.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkImageRegionIterator.h"
// LesionFilling dimension t1.nii.gz lesionmask output.nii.gz
namespace ants
{
template <unsigned int ImageDimension>
int
LesionFilling(int argc, char * argv[])
{
  const char * T1FileName = argv[2];
  const char * LesionMapFileName = argv[3];
  const char * OutputFileName = argv[4];
  if (argc < 3)
  {
    std::cout << "Missing arguments, see usage." << std::endl;
    throw;
  }
  if (argc < 4)
  {
    std::cout << "2 more arguments are necessary, see usage." << std::endl;
    throw;
  }
  if (argc < 5)
  {
    std::cout << "Missing output filename." << std::endl;
    throw;
  }
  using T1ImageType = itk::Image<double, ImageDimension>;
  using LesionImageType = itk::Image<unsigned short, ImageDimension>;
  using T1ImageReaderType = itk::ImageFileReader<T1ImageType>;
  using LesionImageReaderType = itk::ImageFileReader<LesionImageType>;
  typename LesionImageReaderType::Pointer LesionReader = LesionImageReaderType::New();
  LesionReader->SetFileName(LesionMapFileName);
  try
  {
    LesionReader->Update();
  }
  catch (const itk::ExceptionObject & itkNotUsed(excp))
  {
    std::cout << "no lesion mask that can be read" << std::endl;
    return 0;
  }
  typename T1ImageReaderType::Pointer T1Reader = T1ImageReaderType::New();
  T1Reader->SetFileName(T1FileName);
  try
  {
    T1Reader->Update();
  }
  catch (const itk::ExceptionObject & itkNotUsed(excp))
  {
    std::cout << "no T1 image that can be read" << std::endl;
    return 0;
  }
  typename T1ImageType::Pointer outImage = nullptr;
  outImage = T1Reader->GetOutput();
  using IteratorType = itk::ImageRegionIterator<T1ImageType>;
  using BinaryThresholdImageFilterType = itk::BinaryThresholdImageFilter<T1ImageType, T1ImageType>;
  using StructuringElementType = itk::BinaryBallStructuringElement<double, ImageDimension>;
  using DilateFilterType = itk::BinaryDilateImageFilter<T1ImageType, T1ImageType, StructuringElementType>;
  using RelabelComponentFilterType = itk::RelabelComponentImageFilter<LesionImageType, LesionImageType>;
  using ConnectedComponentFilterType = itk::ConnectedComponentImageFilter<LesionImageType, LesionImageType>;

  typename ConnectedComponentFilterType::Pointer connected = ConnectedComponentFilterType::New();
  typename RelabelComponentFilterType::Pointer   relabeled = RelabelComponentFilterType::New();
  connected->SetInput(LesionReader->GetOutput());
  connected->Update();
  relabeled->SetInput(connected->GetOutput());
  relabeled->Update();

  const int LesionNumber = relabeled->GetNumberOfObjects();
  std::cout << "Number of lesions: " << LesionNumber << std::endl;
  for (int i = 1; i < LesionNumber + 1; i++)
  {
    using FilterType = itk::CastImageFilter<LesionImageType, T1ImageType>;
    typename FilterType::Pointer filter = FilterType::New();
    filter->SetInput(relabeled->GetOutput());
    filter->Update();
    typename BinaryThresholdImageFilterType::Pointer thresholdFilter = BinaryThresholdImageFilterType::New();
    thresholdFilter->SetInput(filter->GetOutput());
    thresholdFilter->SetLowerThreshold((double)i - 0.1);
    thresholdFilter->SetUpperThreshold((double)i + 0.1);
    thresholdFilter->SetInsideValue(1);
    thresholdFilter->SetOutsideValue(0);
    thresholdFilter->Update();
    // Neighbouring voxel
    // filling lesions with the voxels surrounding them
    // first finding the edges of lesions
    // by subtracting dilated lesion map from lesion map itself
    typename DilateFilterType::Pointer binaryDilate = DilateFilterType::New();

    int elementRadius = 1;

    // dilate more around very small lesions to improve the chance of finding
    // suitable replacement voxels
    // index is offset because background is not counted
    if (relabeled->GetSizeOfObjectsInPixels()[i - 1] < 5)
    {
      elementRadius = 2;
    }

    StructuringElementType structuringElement;
    structuringElement.SetRadius(elementRadius); // 3x3 structuring element
    structuringElement.CreateStructuringElement();
    binaryDilate->SetKernel(structuringElement);
    binaryDilate->SetInput(thresholdFilter->GetOutput());
    binaryDilate->SetDilateValue(1);
    binaryDilate->Update();
    // subtract dilated image form non-dilated one
    using SubtractImageFilterType = itk::SubtractImageFilter<T1ImageType, T1ImageType>;
    typename SubtractImageFilterType::Pointer subtractFilter = SubtractImageFilterType::New();
    // output = image1 - image2
    subtractFilter->SetInput1(binaryDilate->GetOutput());
    subtractFilter->SetInput2(thresholdFilter->GetOutput());
    subtractFilter->Update();
    // multiply the outer lesion mask with T1 to get only the neighbouring voxels
    using MaskFilterType = itk::MaskImageFilter<T1ImageType, T1ImageType>;
    typename MaskFilterType::Pointer maskFilter = MaskFilterType::New();
    maskFilter->SetInput(outImage);
    maskFilter->SetMaskImage(subtractFilter->GetOutput());
    maskFilter->Update();
    typename T1ImageType::Pointer LesionEdge = nullptr;
    LesionEdge = maskFilter->GetOutput();

    // calculating mean lesion intesity
    // Note: lesions should not be filled with values
    // less than their originial values, this is a
    // trick to exclude any CSF voxels in surronding voxels (if any)
    typename MaskFilterType::Pointer maskFilterLesion = MaskFilterType::New();
    maskFilterLesion->SetInput(T1Reader->GetOutput());
    // do we need to pass a double lesion
    maskFilterLesion->SetMaskImage(thresholdFilter->GetOutput());
    maskFilterLesion->Update();
    IteratorType it(maskFilterLesion->GetOutput(), maskFilterLesion->GetOutput()->GetLargestPossibleRegion());
    it.GoToBegin();
    /** Walk over the image. */
    int    counter = 0;
    double meanInsideLesion = 0;
    while (!it.IsAtEnd())
    {
      if (!itk::Math::FloatAlmostEqual(it.Value(), 0.0))
      {
        // counting number of voxels inside lesion
        counter++;
        meanInsideLesion += it.Get();
      }
      ++it;
    }
    if (counter > 0)
    {
      meanInsideLesion /= (double)counter;
    }
    else
    {
      std::cerr << "Intensity in lesion " << i << " of " << LesionNumber << " is zero, will not fill" << std::endl;
      continue;
    }

    // check that all outer voxels are more than the mean
    // intensity of the lesion, i.e. not including CSF voxels
    IteratorType itNoCSF(maskFilter->GetOutput(), maskFilter->GetOutput()->GetLargestPossibleRegion());
    itNoCSF.GoToBegin();
    std::vector<double> outerWMVoxels;
    while (!itNoCSF.IsAtEnd())
    {
      if (itNoCSF.Get() >= meanInsideLesion)
      {
        outerWMVoxels.push_back(itNoCSF.Get());
      } // end if
      ++itNoCSF;
    } // end while
    // walk through original T1
    // and change inside the lesion with a random pick from
    // collected normal appearing WM voxels (outerWMVoxels)
    IteratorType it4(outImage, outImage->GetLargestPossibleRegion());
    IteratorType itL(thresholdFilter->GetOutput(), thresholdFilter->GetOutput()->GetLargestPossibleRegion());
    int          max = outerWMVoxels.size();

    if (max == 0)
    {
      std::cerr << "Intensity surrounding lesion " << i << " of " << LesionNumber
                << " is less than mean lesion intensity, will not fill" << std::endl;
      continue;
    }

    int min = 0;
    it4.GoToBegin();
    itL.GoToBegin();
    while (!it4.IsAtEnd())
    {
      if (itk::Math::FloatAlmostEqual(itL.Get(), 1.0))
      {
        int index = min + (rand() % (int)(max - min));
        it4.Set(outerWMVoxels[index]);
      } // end if
      ++it4;
      ++itL;
    } // end while
  }   // end of loop for lesions
  using WriterType = itk::ImageFileWriter<T1ImageType>;
  typename WriterType::Pointer writer = WriterType::New();
  writer->SetInput(outImage);
  writer->SetFileName(OutputFileName);
  try
  {
    writer->Update();
  }
  catch (const itk::ExceptionObject & err)
  {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
} // main int

int
LesionFilling(std::vector<std::string> args, std::ostream * itkNotUsed(out_stream))
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "LesionFilling");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  // LesionFilling dimension t1.nii.gz lesionmask output.nii.gz
  if (argc < 3)
  {
    std::cout << "Example usage: " << argv[0]
              << " imageDimension T1_image.nii.gz lesion_mask.nii.gz output_lesion_filled.nii.gz" << std::endl;

    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  switch (std::stoi(argv[1]))
  {
    case 2:
    {
      return LesionFilling<2>(argc, argv);
    }
    break;
    case 3:
    {
      return LesionFilling<3>(argc, argv);
    }
    break;
    default:
      std::cout << "Unsupported dimension" << std::endl;
      return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
} // int LesionFilling std::vector
} // namespace ants