1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
|
#include <iostream>
#include <ostream>
#include <sstream>
#include <vector>
#include <iomanip>
#include "antsUtilities.h"
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkCastImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkBinaryDilateImageFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "itkMaskImageFilter.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkImageRegionIterator.h"
// LesionFilling dimension t1.nii.gz lesionmask output.nii.gz
namespace ants
{
template <unsigned int ImageDimension>
int
LesionFilling(int argc, char * argv[])
{
const char * T1FileName = argv[2];
const char * LesionMapFileName = argv[3];
const char * OutputFileName = argv[4];
if (argc < 3)
{
std::cout << "Missing arguments, see usage." << std::endl;
throw;
}
if (argc < 4)
{
std::cout << "2 more arguments are necessary, see usage." << std::endl;
throw;
}
if (argc < 5)
{
std::cout << "Missing output filename." << std::endl;
throw;
}
using T1ImageType = itk::Image<double, ImageDimension>;
using LesionImageType = itk::Image<unsigned short, ImageDimension>;
using T1ImageReaderType = itk::ImageFileReader<T1ImageType>;
using LesionImageReaderType = itk::ImageFileReader<LesionImageType>;
typename LesionImageReaderType::Pointer LesionReader = LesionImageReaderType::New();
LesionReader->SetFileName(LesionMapFileName);
try
{
LesionReader->Update();
}
catch (const itk::ExceptionObject & itkNotUsed(excp))
{
std::cout << "no lesion mask that can be read" << std::endl;
return 0;
}
typename T1ImageReaderType::Pointer T1Reader = T1ImageReaderType::New();
T1Reader->SetFileName(T1FileName);
try
{
T1Reader->Update();
}
catch (const itk::ExceptionObject & itkNotUsed(excp))
{
std::cout << "no T1 image that can be read" << std::endl;
return 0;
}
typename T1ImageType::Pointer outImage = nullptr;
outImage = T1Reader->GetOutput();
using IteratorType = itk::ImageRegionIterator<T1ImageType>;
using BinaryThresholdImageFilterType = itk::BinaryThresholdImageFilter<T1ImageType, T1ImageType>;
using StructuringElementType = itk::BinaryBallStructuringElement<double, ImageDimension>;
using DilateFilterType = itk::BinaryDilateImageFilter<T1ImageType, T1ImageType, StructuringElementType>;
using RelabelComponentFilterType = itk::RelabelComponentImageFilter<LesionImageType, LesionImageType>;
using ConnectedComponentFilterType = itk::ConnectedComponentImageFilter<LesionImageType, LesionImageType>;
typename ConnectedComponentFilterType::Pointer connected = ConnectedComponentFilterType::New();
typename RelabelComponentFilterType::Pointer relabeled = RelabelComponentFilterType::New();
connected->SetInput(LesionReader->GetOutput());
connected->Update();
relabeled->SetInput(connected->GetOutput());
relabeled->Update();
const int LesionNumber = relabeled->GetNumberOfObjects();
std::cout << "Number of lesions: " << LesionNumber << std::endl;
for (int i = 1; i < LesionNumber + 1; i++)
{
using FilterType = itk::CastImageFilter<LesionImageType, T1ImageType>;
typename FilterType::Pointer filter = FilterType::New();
filter->SetInput(relabeled->GetOutput());
filter->Update();
typename BinaryThresholdImageFilterType::Pointer thresholdFilter = BinaryThresholdImageFilterType::New();
thresholdFilter->SetInput(filter->GetOutput());
thresholdFilter->SetLowerThreshold((double)i - 0.1);
thresholdFilter->SetUpperThreshold((double)i + 0.1);
thresholdFilter->SetInsideValue(1);
thresholdFilter->SetOutsideValue(0);
thresholdFilter->Update();
// Neighbouring voxel
// filling lesions with the voxels surrounding them
// first finding the edges of lesions
// by subtracting dilated lesion map from lesion map itself
typename DilateFilterType::Pointer binaryDilate = DilateFilterType::New();
int elementRadius = 1;
// dilate more around very small lesions to improve the chance of finding
// suitable replacement voxels
// index is offset because background is not counted
if (relabeled->GetSizeOfObjectsInPixels()[i - 1] < 5)
{
elementRadius = 2;
}
StructuringElementType structuringElement;
structuringElement.SetRadius(elementRadius); // 3x3 structuring element
structuringElement.CreateStructuringElement();
binaryDilate->SetKernel(structuringElement);
binaryDilate->SetInput(thresholdFilter->GetOutput());
binaryDilate->SetDilateValue(1);
binaryDilate->Update();
// subtract dilated image form non-dilated one
using SubtractImageFilterType = itk::SubtractImageFilter<T1ImageType, T1ImageType>;
typename SubtractImageFilterType::Pointer subtractFilter = SubtractImageFilterType::New();
// output = image1 - image2
subtractFilter->SetInput1(binaryDilate->GetOutput());
subtractFilter->SetInput2(thresholdFilter->GetOutput());
subtractFilter->Update();
// multiply the outer lesion mask with T1 to get only the neighbouring voxels
using MaskFilterType = itk::MaskImageFilter<T1ImageType, T1ImageType>;
typename MaskFilterType::Pointer maskFilter = MaskFilterType::New();
maskFilter->SetInput(outImage);
maskFilter->SetMaskImage(subtractFilter->GetOutput());
maskFilter->Update();
typename T1ImageType::Pointer LesionEdge = nullptr;
LesionEdge = maskFilter->GetOutput();
// calculating mean lesion intesity
// Note: lesions should not be filled with values
// less than their originial values, this is a
// trick to exclude any CSF voxels in surronding voxels (if any)
typename MaskFilterType::Pointer maskFilterLesion = MaskFilterType::New();
maskFilterLesion->SetInput(T1Reader->GetOutput());
// do we need to pass a double lesion
maskFilterLesion->SetMaskImage(thresholdFilter->GetOutput());
maskFilterLesion->Update();
IteratorType it(maskFilterLesion->GetOutput(), maskFilterLesion->GetOutput()->GetLargestPossibleRegion());
it.GoToBegin();
/** Walk over the image. */
int counter = 0;
double meanInsideLesion = 0;
while (!it.IsAtEnd())
{
if (!itk::Math::FloatAlmostEqual(it.Value(), 0.0))
{
// counting number of voxels inside lesion
counter++;
meanInsideLesion += it.Get();
}
++it;
}
if (counter > 0)
{
meanInsideLesion /= (double)counter;
}
else
{
std::cerr << "Intensity in lesion " << i << " of " << LesionNumber << " is zero, will not fill" << std::endl;
continue;
}
// check that all outer voxels are more than the mean
// intensity of the lesion, i.e. not including CSF voxels
IteratorType itNoCSF(maskFilter->GetOutput(), maskFilter->GetOutput()->GetLargestPossibleRegion());
itNoCSF.GoToBegin();
std::vector<double> outerWMVoxels;
while (!itNoCSF.IsAtEnd())
{
if (itNoCSF.Get() >= meanInsideLesion)
{
outerWMVoxels.push_back(itNoCSF.Get());
} // end if
++itNoCSF;
} // end while
// walk through original T1
// and change inside the lesion with a random pick from
// collected normal appearing WM voxels (outerWMVoxels)
IteratorType it4(outImage, outImage->GetLargestPossibleRegion());
IteratorType itL(thresholdFilter->GetOutput(), thresholdFilter->GetOutput()->GetLargestPossibleRegion());
int max = outerWMVoxels.size();
if (max == 0)
{
std::cerr << "Intensity surrounding lesion " << i << " of " << LesionNumber
<< " is less than mean lesion intensity, will not fill" << std::endl;
continue;
}
int min = 0;
it4.GoToBegin();
itL.GoToBegin();
while (!it4.IsAtEnd())
{
if (itk::Math::FloatAlmostEqual(itL.Get(), 1.0))
{
int index = min + (rand() % (int)(max - min));
it4.Set(outerWMVoxels[index]);
} // end if
++it4;
++itL;
} // end while
} // end of loop for lesions
using WriterType = itk::ImageFileWriter<T1ImageType>;
typename WriterType::Pointer writer = WriterType::New();
writer->SetInput(outImage);
writer->SetFileName(OutputFileName);
try
{
writer->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
} // main int
int
LesionFilling(std::vector<std::string> args, std::ostream * itkNotUsed(out_stream))
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "LesionFilling");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
// LesionFilling dimension t1.nii.gz lesionmask output.nii.gz
if (argc < 3)
{
std::cout << "Example usage: " << argv[0]
<< " imageDimension T1_image.nii.gz lesion_mask.nii.gz output_lesion_filled.nii.gz" << std::endl;
if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
switch (std::stoi(argv[1]))
{
case 2:
{
return LesionFilling<2>(argc, argv);
}
break;
case 3:
{
return LesionFilling<3>(argc, argv);
}
break;
default:
std::cout << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
} // int LesionFilling std::vector
} // namespace ants
|