1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
|
/*=========================================================================1
Program: Advanced Normalization Tools
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "antsUtilities.h"
#include <algorithm>
#include "ReadWriteData.h"
#include "itkPreservationOfPrincipalDirectionTensorReorientationImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkWarpTensorImageMultiTransformFilter.h"
#include "itkTransformFileReader.h"
#include "itkTransformFactory.h"
namespace ants
{
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
RebaseTensorImage(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "RebaseTensorImage");
const int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
if (argc < 5)
{
std::cout << "Usage: " << argv[0] << " Dimension infile.nii outfile.nii <PHYSICAL/LOCAL/reference.nii.gz> "
<< std::endl;
if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
const int dim = std::stoi(argv[1]);
const char * const moving_image_filename = argv[2];
const char * const output_image_filename = argv[3];
if (dim != 3)
{
std::cout << "RebaseTensorImage only supports 3D image volumes" << std::endl;
return EXIT_FAILURE;
}
using PixelType = itk::DiffusionTensor3D<double>;
using TensorImageType = itk::Image<PixelType, 3>;
using ImageType = itk::Image<float, 3>;
// No reason to use log-euclidean space
TensorImageType::Pointer img_mov;
ReadTensorImage<TensorImageType>(img_mov, moving_image_filename, false);
TensorImageType::DirectionType::InternalMatrixType direction = img_mov->GetDirection().GetVnlMatrix();
direction.set_identity();
std::cout << "Transforming space of " << moving_image_filename;
// std::cout << i << " = " << argv[i-1] << std::endl;
char * convert = argv[4];
if (strcmp(convert, "PHYSICAL") == 0)
{
std::cout << " -> physical space";
direction = img_mov->GetDirection().GetVnlMatrix();
}
else if (strcmp(convert, "LOCAL") == 0)
{
std::cout << " -> local space";
direction = img_mov->GetDirection().GetTranspose();
}
else
{
std::cout << " -> " << convert << " space";
ImageType::Pointer target;
ReadImage<ImageType>(target, convert);
// converting from LOCAL to a reference LOCAL space
direction = target->GetDirection().GetTranspose() * img_mov->GetDirection().GetVnlMatrix();
}
// direction = direction.transpose(); // to accomodate for how
// eigenvectors are stored
std::cout << std::endl;
std::cout << "Final rebasing matrix: " << std::endl << direction << std::endl;
if (!direction.is_identity(0.00001))
{
itk::ImageRegionIteratorWithIndex<TensorImageType> it(img_mov, img_mov->GetLargestPossibleRegion());
while (!it.IsAtEnd())
{
/*
PixelType dt = it.Value();
PixelType::EigenValuesArrayType evalues;
PixelType::EigenVectorsMatrixType evectors;
dt.ComputeEigenAnalysis( evalues, evectors );
evectors = evectors * direction;
PixelType::EigenVectorsMatrixType emat;
emat.Fill( 0.0 );
for (unsigned int i=0; i<3; i++)
{
emat(i,i) = evalues[i];
}
PixelType::EigenVectorsMatrixType::InternalMatrixType matrixDT = evectors.GetTranspose() * emat.GetVnlMatrix() *
evectors.GetVnlMatrix();
*/
PixelType::EigenVectorsMatrixType::InternalMatrixType dt;
dt(0, 0) = it.Value()[0];
dt(0, 1) = dt(1, 0) = it.Value()[1];
dt(0, 2) = dt(2, 0) = it.Value()[2];
dt(1, 1) = it.Value()[3];
dt(1, 2) = dt(2, 1) = it.Value()[4];
dt(2, 2) = it.Value()[5];
if ((it.Value()[0] + it.Value()[3] + it.Value()[5]) > 0.00001)
{
PixelType::EigenVectorsMatrixType::InternalMatrixType matrixDT = direction * dt * direction.transpose();
PixelType outDT;
outDT[0] = matrixDT(0, 0);
outDT[1] = matrixDT(1, 0);
outDT[2] = matrixDT(2, 0);
outDT[3] = matrixDT(1, 1);
outDT[4] = matrixDT(2, 1);
outDT[5] = matrixDT(2, 2);
it.Set(outDT);
}
++it;
}
}
else
{
std::cout << "Identity transform detected.. image unmodified" << std::endl;
}
// No reason to use log-euclidean space here
WriteTensorImage<TensorImageType>(img_mov, output_image_filename, false);
return EXIT_SUCCESS;
}
} // namespace ants
|