File: SuperResolution.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (365 lines) | stat: -rw-r--r-- 11,393 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
#include "antsUtilities.h"
#include <algorithm>

#include "itkAddImageFilter.h"
#include "itkBSplineScatteredDataPointSetToImageFilter.h"
#include "itkContinuousIndex.h"
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkImageRegionConstIteratorWithIndex.h"
#include "itkImportImageFilter.h"
#include "itkPointSet.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkTimeProbe.h"
#include "itkVector.h"
#include "itkVectorIndexSelectionCastImageFilter.h"

#include "ReadWriteData.h"

namespace ants
{
template <unsigned int ImageDimension>
int
SuperResolution(unsigned int argc, char * argv[])
{
  using RealType = float;
  using ImageType = itk::Image<RealType, ImageDimension>;

  using ScalarType = itk::Vector<RealType, 1>;
  using ScalarImageType = itk::Image<ScalarType, ImageDimension>;
  using PointSetType = itk::PointSet<ScalarType, ImageDimension>;
  using BSplineFilterType = itk::BSplineScatteredDataPointSetToImageFilter<PointSetType, ScalarImageType>;

  typename ImageType::Pointer domainImage = nullptr;
  ReadImage<ImageType>(domainImage, argv[3]);

  typename BSplineFilterType::Pointer bspliner = BSplineFilterType::New();

  typename PointSetType::Pointer bsplinePoints = PointSetType::New();
  bsplinePoints->Initialize();

  typename BSplineFilterType::WeightsContainerType::Pointer weights = BSplineFilterType::WeightsContainerType::New();
  weights->Initialize();

  unsigned int                          splineOrder = 3;
  typename BSplineFilterType::ArrayType numberOfLevels;
  typename BSplineFilterType::ArrayType ncps;

  bool     useGradientWeighting = true;
  RealType gradientSigma = atof(argv[4]);
  if (gradientSigma < itk::NumericTraits<RealType>::ZeroValue())
  {
    useGradientWeighting = false;
  }

  std::vector<unsigned int> meshSize = ConvertVector<unsigned int>(std::string(argv[5]));
  if (meshSize.size() == 1)
  {
    ncps.Fill(meshSize[0] + splineOrder);
  }
  else if (meshSize.size() == ImageDimension)
  {
    for (unsigned int d = 0; d < ImageDimension; d++)
    {
      ncps[d] = meshSize[d] + splineOrder;
    }
  }
  else
  {
    std::cerr << "Invalid ncps format." << std::endl;
    return EXIT_FAILURE;
  }

  std::vector<unsigned int> nlevels = ConvertVector<unsigned int>(std::string(argv[6]));
  if (nlevels.size() == 1)
  {
    numberOfLevels.Fill(nlevels[0]);
  }
  else if (nlevels.size() == ImageDimension)
  {
    for (unsigned int d = 0; d < ImageDimension; d++)
    {
      numberOfLevels[d] = nlevels[d];
    }
  }
  else
  {
    std::cerr << "Invalid nlevels format." << std::endl;
    return EXIT_FAILURE;
  }

  // Find the average for the offset

  typename ImageType::IndexType domainBeginIndex = domainImage->GetRequestedRegion().GetIndex();
  typename ImageType::IndexType domainEndIndex;
  for (unsigned int d = 0; d < ImageDimension; d++)
  {
    domainEndIndex[d] = domainBeginIndex[d] + domainImage->GetRequestedRegion().GetSize()[d] - 1;
  }

  RealType     averageIntensity = 0.0;
  unsigned int N = 0;
  for (unsigned int n = 7; n < argc; n++)
  {
    typename ImageType::Pointer inputImage = nullptr;
    ReadImage<ImageType>(inputImage, argv[n]);

    itk::ImageRegionConstIteratorWithIndex<ImageType> It(inputImage, inputImage->GetRequestedRegion());
    for (It.GoToBegin(); !It.IsAtEnd(); ++It)
    {
      typename ImageType::PointType imagePoint;
      inputImage->TransformIndexToPhysicalPoint(It.GetIndex(), imagePoint);

      itk::ContinuousIndex<RealType, ImageDimension> cidx;
      bool isInside = domainImage->TransformPhysicalPointToContinuousIndex(imagePoint, cidx);

      if (isInside)
      {
        for (unsigned int d = 0; d < ImageDimension; d++)
        {
          if (cidx[d] <= domainBeginIndex[d] || cidx[d] >= domainEndIndex[d])
          {
            isInside = false;
            break;
          }
        }
      }

      if (!isInside)
      {
        continue;
      }

      averageIntensity += It.Get();

      N++;
    }
  }
  averageIntensity /= static_cast<RealType>(N);


  typename ScalarImageType::DirectionType identity;
  identity.SetIdentity();

  const typename ScalarImageType::RegionType & bufferedRegion = domainImage->GetBufferedRegion();
  const itk::SizeValueType                     numberOfPixels = bufferedRegion.GetNumberOfPixels();
  const bool                                   filterHandlesMemory = false;

  using ImporterType = itk::ImportImageFilter<RealType, ImageDimension>;
  typename ImporterType::Pointer importer = ImporterType::New();
  importer->SetImportPointer(domainImage->GetBufferPointer(), numberOfPixels, filterHandlesMemory);
  importer->SetRegion(domainImage->GetBufferedRegion());
  importer->SetOrigin(domainImage->GetOrigin());
  importer->SetSpacing(domainImage->GetSpacing());
  importer->SetDirection(identity);
  importer->Update();

  const typename ImporterType::OutputImageType * parametricDomainImage = importer->GetOutput();

  N = 0;
  for (unsigned int n = 7; n < argc; n++)
  {
    typename ImageType::Pointer inputImage = nullptr;
    ReadImage<ImageType>(inputImage, argv[n]);

    typename ImageType::Pointer gradientImage = nullptr;
    if (useGradientWeighting)
    {
      using GradientFilterType = itk::GradientMagnitudeRecursiveGaussianImageFilter<ImageType, ImageType>;
      typename GradientFilterType::Pointer gradientFilter = GradientFilterType::New();
      gradientFilter->SetSigma(gradientSigma);
      gradientFilter->SetInput(inputImage);

      using RescaleFilterType = itk::RescaleIntensityImageFilter<ImageType, ImageType>;
      typename RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
      rescaler->SetOutputMinimum(0.0);
      rescaler->SetOutputMaximum(1.0);
      rescaler->SetInput(gradientFilter->GetOutput());

      gradientImage = rescaler->GetOutput();
      gradientImage->Update();
      gradientImage->DisconnectPipeline();
    }

    itk::ImageRegionConstIteratorWithIndex<ImageType> It(inputImage, inputImage->GetRequestedRegion());
    for (It.GoToBegin(); !It.IsAtEnd(); ++It)
    {
      typename ImageType::PointType imagePoint;
      inputImage->TransformIndexToPhysicalPoint(It.GetIndex(), imagePoint);

      itk::ContinuousIndex<RealType, ImageDimension> cidx;
      bool isInside = domainImage->TransformPhysicalPointToContinuousIndex(imagePoint, cidx);

      if (isInside)
      {
        for (unsigned int d = 0; d < ImageDimension; d++)
        {
          if (cidx[d] <= domainBeginIndex[d] || cidx[d] >= domainEndIndex[d])
          {
            isInside = false;
            break;
          }
        }
      }

      if (!isInside)
      {
        continue;
      }

      RealType weight = 1.0;
      if (gradientImage.IsNotNull())
      {
        weight = gradientImage->GetPixel(It.GetIndex());
      }
      if (itk::Math::FloatAlmostEqual(weight, itk::NumericTraits<RealType>::ZeroValue()))
      {
        continue;
      }

      //       domainImage->SetPixel( index, 1 );

      parametricDomainImage->TransformContinuousIndexToPhysicalPoint(cidx, imagePoint);

      ScalarType scalar;
      scalar[0] = It.Get() - averageIntensity;

      bsplinePoints->SetPointData(N, scalar);
      bsplinePoints->SetPoint(N, imagePoint);
      weights->InsertElement(N, weight);

      N++;
    }
  }

  itk::TimeProbe timer;
  timer.Start();

  typename ScalarImageType::PointType parametricOrigin = domainImage->GetOrigin();
  for (unsigned int d = 0; d < ImageDimension; d++)
  {
    parametricOrigin[d] += (domainImage->GetSpacing()[d] * domainImage->GetLargestPossibleRegion().GetIndex()[d]);
  }

  bspliner->SetOrigin(parametricOrigin);
  bspliner->SetSpacing(domainImage->GetSpacing());
  bspliner->SetSize(domainImage->GetRequestedRegion().GetSize());
  bspliner->SetDirection(domainImage->GetDirection());
  bspliner->SetGenerateOutputImage(true);
  bspliner->SetNumberOfLevels(numberOfLevels);
  bspliner->SetSplineOrder(splineOrder);
  bspliner->SetNumberOfControlPoints(ncps);
  bspliner->SetInput(bsplinePoints);
  bspliner->SetPointWeights(weights);
  bspliner->Update();

  timer.Stop();

  std::cout << "Elapsed Time:  " << timer.GetMean() << std::endl;

  using SelectorType = itk::VectorIndexSelectionCastImageFilter<ScalarImageType, ImageType>;
  typename SelectorType::Pointer selector = SelectorType::New();
  selector->SetInput(bspliner->GetOutput());
  selector->SetIndex(0);
  selector->Update();

  using AdderType = itk::AddImageFilter<ImageType>;
  typename AdderType::Pointer adder = AdderType::New();
  adder->SetInput(selector->GetOutput());
  adder->SetConstant2(averageIntensity);
  adder->Update();

  ANTs::WriteImage<ImageType>(adder->GetOutput(), argv[2]);

  return EXIT_SUCCESS;
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
SuperResolution(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "SuperResolution");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc < 8)
  {
    std::cerr
      << argv[0]
      << " imageDimension outputImage domainImage gradientSigma meshSize numberOfLevels inputImage1 ... inputImageN"
      << std::endl;
    std::cerr << std::endl;
    std::cerr
      << "    N.B. The \'gradientSigma\' parameter is used in calculating the gradient magnitude of the input images "
      << std::endl;
    std::cerr
      << "       for weighting the voxel points during fitting.  If a negative \'gradient\' sigma is specified then no "
      << std::endl;
    std::cerr << "       weighting is used." << std::endl;

    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  const int ImageDimension = static_cast<int>(std::stoi(argv[1]));

  switch (ImageDimension)
  {
    case 2:
      return SuperResolution<2>(argc, argv);
      break;
    case 3:
      return SuperResolution<3>(argc, argv);
      break;
    case 4:
      return SuperResolution<4>(argc, argv);
      break;
    default:
      std::cerr << "Unsupported dimension" << std::endl;
      exit(EXIT_FAILURE);
  }
  return EXIT_SUCCESS;
}
} // namespace ants