File: TileImages.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (269 lines) | stat: -rw-r--r-- 8,794 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#include "antsUtilities.h"
#include <algorithm>

#include "itkExtractImageFilter.h"
#include "itkTileImageFilter.h"
#include "ReadWriteData.h"

#include <string>
#include <vector>

namespace ants
{

template <unsigned int ImageDimension>
int
TileImages(unsigned int argc, char * argv[])
{
  using PixelType = float;
  using ImageType = itk::Image<PixelType, ImageDimension>;

  using FilterType = itk::TileImageFilter<ImageType, ImageType>;
  typename FilterType::Pointer         filter = FilterType::New();
  typename FilterType::LayoutArrayType array;

  std::vector<unsigned int> layout = ConvertVector<unsigned int>(std::string(argv[3]));
  for (unsigned int d = 0; d < ImageDimension; d++)
  {
    array[d] = layout[d];
  }
  filter->SetLayout(array);
  for (unsigned int n = 4; n < argc; n++)
  {
    typename ImageType::Pointer inputImage;
    ReadImage<ImageType>(inputImage, argv[n]);

    filter->SetInput(n - 4, inputImage);
  }
  filter->Update();

  ANTs::WriteImage<ImageType>(filter->GetOutput(), argv[2]);

  return EXIT_SUCCESS;
}

int
CreateMosaic(unsigned int argc, char * argv[])
{
  if (argc != 5)
  {
    std::cerr << "Usage: " << argv[0] << " imageDimension outputImage layout inputImage1" << std::endl;
    return EXIT_FAILURE;
  }

  constexpr unsigned int ImageDimension = 3;

  using PixelType = float;
  using ImageType = itk::Image<PixelType, ImageDimension>;
  using SliceType = itk::Image<PixelType, ImageDimension - 1>;

  ImageType::Pointer inputImage;
  ReadImage<ImageType>(inputImage, argv[4]);

  std::vector<int> layout = ConvertVector<int>(std::string(argv[3]));
  if (layout.size() != 3)
  {
    std::cerr << "Layout for CreateMosaic is DxRxC where" << std::endl;
    std::cerr << "  D is direction, i.e. 0, 1, or 2.  If not any of those numbers, we pick the coarsest spacing."
              << std::endl;
    std::cerr << "  R is number of rows." << std::endl;
    std::cerr << "  C is number of cols." << std::endl;
    std::cerr << "  If R < 0 and C > 0 (or vice versa), the negative value is selected based on D" << std::endl;
    return EXIT_FAILURE;
  }

  ImageType::SpacingType spacing = inputImage->GetSpacing();
  ImageType::SizeType    size = inputImage->GetRequestedRegion().GetSize();

  if (layout[0] < 0 || layout[0] > 2)
  {
    float        maxSpacing = spacing[0];
    unsigned int maxIndex = 0;
    for (unsigned int d = 1; d < ImageDimension; d++)
    {
      if (spacing[d] > static_cast<double>(maxSpacing))
      {
        maxSpacing = spacing[d];
        maxIndex = d;
      }
    }
    layout[0] = maxIndex;
  }

  unsigned long numberOfSlices = size[layout[0]];

  int numberOfRows = std::min(static_cast<int>(layout[1]), static_cast<int>(numberOfSlices));
  int numberOfColumns = std::min(static_cast<int>(layout[2]), static_cast<int>(numberOfSlices));

  if (numberOfRows <= 0 && numberOfColumns > 0)
  {
    numberOfRows = std::ceil(static_cast<float>(numberOfSlices) / static_cast<float>(numberOfColumns));
  }
  else if (numberOfColumns <= 0 && numberOfRows > 0)
  {
    numberOfColumns = std::ceil(static_cast<float>(numberOfSlices) / static_cast<float>(numberOfRows));
  }
  else if (numberOfColumns <= 0 && numberOfRows <= 0)
  {
    numberOfRows = static_cast<int>(std::sqrt(static_cast<float>(numberOfSlices)));
    numberOfColumns = std::ceil(static_cast<float>(numberOfSlices) / static_cast<float>(numberOfRows));
  }

  std::cout << "Slices[" << layout[0] << "]: " << numberOfSlices << std::endl;
  std::cout << "Rows:  " << numberOfRows << std::endl;
  std::cout << "Columns:  " << numberOfColumns << std::endl;

  using FilterType = itk::TileImageFilter<SliceType, SliceType>;
  FilterType::LayoutArrayType array;

  array[0] = numberOfColumns;
  array[1] = numberOfRows;

  ImageType::RegionType region;
  size[layout[0]] = 0;

  FilterType::Pointer filter = FilterType::New();
  filter->SetLayout(array);

  for (unsigned int n = 0; n < numberOfSlices; n++)
  {
    ImageType::IndexType index;
    index.Fill(0);
    index[layout[0]] = static_cast<int>(n);
    region.SetIndex(index);
    region.SetSize(size);

    using ExtracterType = itk::ExtractImageFilter<ImageType, SliceType>;
    ExtracterType::Pointer extracter = ExtracterType::New();
    extracter->SetInput(inputImage);
    extracter->SetExtractionRegion(region);
    extracter->SetDirectionCollapseToIdentity();
    extracter->Update();

    filter->SetInput(n, extracter->GetOutput());
  }
  filter->Update();

  ANTs::WriteImage<SliceType>(filter->GetOutput(), argv[2]);

  return EXIT_SUCCESS;
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
TileImages(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "TileImages");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc < 4)
  {
    std::cout << argv[0] << " imageDimension outputImage layout inputImage1 ... inputImageN" << std::endl;
    std::cout << "  The layout has the same dimension as the output image. If all entries of " << std::endl;
    std::cout << "  the layout are positive, the tiled output will contain the exact number  " << std::endl;
    std::cout << "  of tiles. If the layout contains a 0 in the last dimension, the filter " << std::endl;
    std::cout << "  will compute a size that will accommodate all of the images. " << std::endl;
    std::cout << "  The input images must have a dimension less than or equal to the output " << std::endl;
    std::cout << "  image. The output image could have a larger dimension than the input. " << std::endl;
    std::cout << "  For example, This filter can be used to create a 3-d volume from a series " << std::endl;
    std::cout << "  of 2-d inputs by specifying a layout of 1x1x0. " << std::endl << std::endl;

    std::cout << "  In addition to the above functionality, there is another usage option" << std::endl;
    std::cout << "  for creating a 2-d tiled mosaic from a 3-D image.  The command line options" << std::endl;
    std::cout << "  are the same except only 1 input is expected and the layout for this option" << std::endl;
    std::cout << "  is DxRxC where:" << std::endl;
    std::cout << "      D is direction, i.e. 0, 1, or 2.  If not any of those numbers, we pick the coarsest spacing."
              << std::endl;
    std::cout << "      R is number of rows." << std::endl;
    std::cout << "      C is number of cols." << std::endl;
    std::cout << "      If R < 0 and C > 0 (or vice versa), the negative value is selected based on D" << std::endl;

    // Should add the following options:
    //    * add rgb overlay (with alpha value?)
    //    * number of slices to skip
    //    * beginning and ending slice
    //    * add or subtract border around each slice/tile
    //    * if adding, set pad constant value


    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  const int ImageDimension = static_cast<int>(std::stoi(argv[1]));

  if (ImageDimension == 3 && argc == 5)
  {
    CreateMosaic(argc, argv);
  }
  else
  {
    switch (ImageDimension)
    {
      case 2:
      {
        return TileImages<2>(argc, argv);
      }
      break;
      case 3:
      {
        return TileImages<3>(argc, argv);
      }
      break;
      case 4:
      {
        return TileImages<4>(argc, argv);
      }
      break;
      default:
        std::cout << "Unsupported dimension" << std::endl;
        return EXIT_FAILURE;
    }
  }
  return EXIT_SUCCESS;
}
} // namespace ants