File: WarpImageMultiTransform.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (883 lines) | stat: -rw-r--r-- 32,224 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
#include "antsUtilities.h"

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkMatrixOffsetTransformBase.h"
#include "itkTransformFactory.h"
#include "itkWarpImageMultiTransformFilter.h"
#include "itkTransformFileReader.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkLinearInterpolateImageFunction.h"
#include "antsUtilities.h"
// Needed for the LabelImageGaussianInterpolateImageFunction to work on
// vector images
#include "itkLabelImageGaussianInterpolateImageFunction.h"

namespace ants
{
static bool
IsInverseDeformation(const char * str)
{
  std::string            filename = str;
  std::string::size_type pos = filename.rfind("Inverse");

  if (pos == std::string::npos)
  {
    return false;
  }
  else
  {
    return true;
  }
}

static bool
WarpImageMultiTransform_ParseInput(int              argc,
                                   char **          argv,
                                   char *&          moving_image_filename,
                                   char *&          output_image_filename,
                                   TRAN_OPT_QUEUE & opt_queue,
                                   MISC_OPT &       misc_opt,
                                   int              NDimensions)
{
  opt_queue.clear();
  opt_queue.reserve(argc - 2);

  misc_opt.reference_image_filename = nullptr;
  misc_opt.use_BSpline_interpolator = false;
  misc_opt.use_TightestBoundingBox = false;
  misc_opt.use_RotationHeader = false;

  misc_opt.use_NN_interpolator = false;
  misc_opt.use_MultiLabel_interpolator = false;
  misc_opt.use_BSpline_interpolator = false;

  moving_image_filename = argv[0];
  output_image_filename = argv[1];

  int  ind = 2;
  bool set_current_affine_inv = false;

  while (ind < argc)
  {
    if (strcmp(argv[ind], "--use-NN") == 0)
    {
      misc_opt.use_NN_interpolator = true;
    }
    else if (strcmp(argv[ind], "--use-BSpline") == 0)
    {
      misc_opt.use_BSpline_interpolator = true;
    }
    else if (strcmp(argv[ind], "--use-ML") == 0)
    {
      misc_opt.use_MultiLabel_interpolator = true;
      ind++;
      if (ind >= argc)
      {
        return false;
      }

      char * s = argv[ind];
      if (strlen(s) > 3 && strcmp(s + strlen(s) - 3, "vox") == 0)
      {
        misc_opt.opt_ML.physical_units = false;
        s[strlen(s) - 3] = 0;
      }
      else if (strlen(s) > 2 && strcmp(s + strlen(s) - 2, "mm") == 0)
      {
        misc_opt.opt_ML.physical_units = true;
        s[strlen(s) - 2] = 0;
      }
      else
      {
        std::cout << "Wrong specification of sigma in --use-ML. Must end with 'mm' or 'vox'" << std::endl;
        return false;
      }

      misc_opt.opt_ML.sigma.resize(NDimensions);
      if (strchr(s, 'x'))
      {
        char * tok = strtok(s, "x");
        int    i = 0;
        while (tok != nullptr && i < NDimensions)
        {
          double x = atof(tok);
          if (x < 0)
          {
            std::cout << "Negative sigma specification:" << s << std::endl;
          }
          misc_opt.opt_ML.sigma[i] = x;
          tok = strtok(nullptr, "x");
          ++i;
        }
        if (i != NDimensions || tok != nullptr)
        {
          std::cout << "Invalid sigma specification:" << s << std::endl;
        }
      }
      else
      {
        double x = atof(s);
        if (x < 0)
        {
          std::cout << "Negative sigma specification:" << s << std::endl;
        }
        misc_opt.opt_ML.sigma.resize(NDimensions);
        std::fill(misc_opt.opt_ML.sigma.begin(), misc_opt.opt_ML.sigma.end(), x);
      }
    }

    else if (strcmp(argv[ind], "-R") == 0)
    {
      ind++;
      if (ind >= argc)
      {
        return false;
      }
      misc_opt.reference_image_filename = argv[ind];
    }
    else if ((strcmp(argv[ind], "--tightest-bounding-box") == 0) && (strcmp(argv[ind], "-R") != 0))
    {
      misc_opt.use_TightestBoundingBox = true;
    }
    else if (strcmp(argv[ind], "--reslice-by-header") == 0)
    {
      misc_opt.use_RotationHeader = true;
      TRAN_OPT opt;
      opt.file_type = IMAGE_AFFINE_HEADER;
      opt.do_affine_inv = false;
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "--Id") == 0)
    {
      TRAN_OPT opt;
      opt.filename = "--Id";
      opt.do_affine_inv = false;
      opt.file_type = IDENTITY_TRANSFORM;
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "--moving-image-header") == 0 || strcmp(argv[ind], "-mh") == 0)
    {
      TRAN_OPT opt;
      opt.file_type = IMAGE_AFFINE_HEADER;
      opt.filename = moving_image_filename;
      //            opt.do_affine_inv = false;
      SetAffineInvFlag(opt, set_current_affine_inv);
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "--reference-image-header") == 0 || strcmp(argv[ind], "-rh") == 0)
    {
      if (misc_opt.reference_image_filename == nullptr)
      {
        std::cout
          << "reference image filename is not given yet. Specify it with -R before --reference-image-header / -rh."
          << std::endl;
        return false;
      }

      TRAN_OPT opt;
      opt.file_type = IMAGE_AFFINE_HEADER;
      opt.filename = misc_opt.reference_image_filename;
      //            opt.do_affine_inv = false;
      SetAffineInvFlag(opt, set_current_affine_inv);
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "-i") == 0)
    {
      set_current_affine_inv = true;
    }

    else if (strcmp(argv[ind], "--ANTS-prefix") == 0)
    {
      ind++;
      std::string prefix = argv[ind];
      std::string path, name, ext;
      FilePartsWithgz(prefix, path, name, ext);
      if (ext.empty())
      {
        ext = ".nii.gz";
      }

      std::string deform_file_name, x_deform_name;
      deform_file_name = path + name + std::string("Warp") + ext;
      x_deform_name = path + name + std::string("Warpxvec") + ext;
      if (CheckFileExistence(x_deform_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = deform_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = false;
        opt_queue.push_back(opt);
        std::cout << "found deformation file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }

      std::string affine_file_name;
      affine_file_name = path + name + std::string("Affine") + GetPreferredTransformFileType();
      if (CheckFileExistence(affine_file_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = affine_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = false;
        opt_queue.push_back(opt);
        std::cout << "found affine file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }
    }
    else if (strcmp(argv[ind], "--ANTS-prefix-invert") == 0)
    {
      ind++;
      std::string prefix = argv[ind];
      std::string path, name, ext;
      FilePartsWithgz(prefix, path, name, ext);
      if (ext.empty())
      {
        ext = ".nii.gz";
      }

      std::string affine_file_name;
      affine_file_name = path + name + std::string("Affine") + GetPreferredTransformFileType();
      if (CheckFileExistence(affine_file_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = affine_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = true;
        opt_queue.push_back(opt);
        std::cout << "found affine file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }

      std::string deform_file_name, x_deform_name;
      deform_file_name = path + name + std::string("InverseWarp.nii.gz");
      x_deform_name = path + name + std::string("InverseWarpxvec.nii.gz");
      if (CheckFileExistence(x_deform_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = deform_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = false;
        opt_queue.push_back(opt);
        std::cout << "found deformation file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }
    }
    else
    {
      TRAN_OPT opt;
      opt.filename = argv[ind];
      opt.file_type = CheckFileType(opt.filename.c_str());
      opt.do_affine_inv = false;
      if (opt.file_type == AFFINE_FILE)
      {
        SetAffineInvFlag(opt, set_current_affine_inv);
      }
      else if (opt.file_type == DEFORMATION_FILE && set_current_affine_inv)
      {
        std::cout << "Ignore inversion of non-affine file type! " << std::endl;
        std::cout << "opt.do_affine_inv:" << opt.do_affine_inv << std::endl;
      }

      opt_queue.push_back(opt);
      DisplayOpt(opt);
    }
    ind++;
  }

  if (misc_opt.use_RotationHeader)
  {
    //                if (misc_opt.reference_image_filename) {
    //                    opt_queue[0].filename = misc_opt.reference_image_filename;
    //                } else {
    opt_queue[0].filename = "--Id";
    opt_queue[0].file_type = IDENTITY_TRANSFORM;
    opt_queue[0].do_affine_inv = false;
    //                }

    //               TRAN_OPT opt;
    //               opt.file_type = IMAGE_AFFINE_HEADER;
    //               opt.filename = moving_image_filename;
    //               opt.do_affine_inv = true;
    //               opt_queue.push_back(opt);
    //
    //               std::cout << "Use Rotation Header!" << std::endl;
  }

  return true;
}

template <typename AffineTransformPointer>
void
GetIdentityTransform(AffineTransformPointer & aff)
{
  using AffineTransform = typename AffineTransformPointer::ObjectType;
  aff = AffineTransform::New();
  aff->SetIdentity();
}

template <int ImageDimension, unsigned int NVectorComponents>
void
WarpImageMultiTransform(char *           moving_image_filename,
                        char *           output_image_filename,
                        TRAN_OPT_QUEUE & opt_queue,
                        MISC_OPT &       misc_opt)
{
  using RealType = float;
  using PixelType = itk::Vector<RealType, NVectorComponents>;
  using ImageType = itk::Image<PixelType, ImageDimension>;
  using RefImageType = itk::VectorImage<RealType, ImageDimension>;
  using VectorType = itk::Vector<RealType, ImageDimension>;
  using DisplacementFieldType = itk::Image<VectorType, ImageDimension>;
  using AffineTransformType = itk::MatrixOffsetTransformBase<double, ImageDimension, ImageDimension>;
  using WarperType =
    itk::WarpImageMultiTransformFilter<ImageType, ImageType, DisplacementFieldType, AffineTransformType>;

  itk::TransformFactory<AffineTransformType>::RegisterTransform();

  using ImageFileReaderType = itk::ImageFileReader<ImageType>;
  using VectorImageFileReaderType = itk::ImageFileReader<RefImageType>;
  typename ImageFileReaderType::Pointer reader_img = ImageFileReaderType::New();
  reader_img->SetFileName(moving_image_filename);
  reader_img->Update();
  typename ImageType::Pointer img_mov = reader_img->GetOutput();

  typename RefImageType::Pointer img_ref;

  typename VectorImageFileReaderType::Pointer reader_img_ref = VectorImageFileReaderType::New();
  if (misc_opt.reference_image_filename)
  {
    reader_img_ref->SetFileName(misc_opt.reference_image_filename);
    reader_img_ref->Update();
    img_ref = reader_img_ref->GetOutput();
  }
  // else
  //    img_ref = nullptr;

  typename WarperType::Pointer warper = WarperType::New();
  warper->SetInput(img_mov);
  PixelType zero;
  zero.Fill(0);
  warper->SetEdgePaddingValue(zero);

  if (misc_opt.use_NN_interpolator)
  {
    using NNInterpolateType =
      typename itk::NearestNeighborInterpolateImageFunction<ImageType, typename WarperType::CoordRepType>;
    typename NNInterpolateType::Pointer interpolator_NN = NNInterpolateType::New();
    std::cout << "User nearest neighbor interpolation (was Haha) " << std::endl;
    warper->SetInterpolator(interpolator_NN);
  }
  else if (misc_opt.use_MultiLabel_interpolator)
  {
    std::cout << " Need to fix in main itk repository " << std::endl;
    //      typedef VectorPixelCompare<RealType, NVectorComponents> CompareType;
    //      typedef typename itk::LabelImageGaussianInterpolateImageFunction<ImageType,
    //                                                                       typename WarperType::CoordRepType,
    //                                                                       CompareType> MLInterpolateType;
    //      typename MLInterpolateType::Pointer interpolator_ML = MLInterpolateType::New();
    //
    //
    //      std::cout << "Using multi-label anti-aliasing interpolation " << std::endl;
    //      vnl_vector_fixed<double, ImageDimension> sigma;
    //      for(size_t i = 0; i < ImageDimension; i++)
    //        {
    //        if(misc_opt.opt_ML.physical_units)
    //          sigma[i] = misc_opt.opt_ML.sigma[i] / img_mov->GetSpacing()[i];
    //        else
    //          sigma[i] = misc_opt.opt_ML.sigma[i];
    //        }
    //
    //      std::cout << "  Sigma = " << sigma << " (voxel units)" << std::endl;
    //
    //      interpolator_ML->SetParameters(sigma.data_block(), 4.0);
    //
    //      warper->SetInterpolator(interpolator_ML);
  }

  else if (misc_opt.use_BSpline_interpolator)
  {
    std::cout << " Not currently supported because of a lack of vector support " << std::endl;
    /*
      typedef typename itk::BSplineInterpolateImageFunction<ImageType, typename WarperType::CoordRepType>
      BSInterpolateType; typename BSInterpolateType::Pointer interpolator_BS = BSInterpolateType::New();
      interpolator_BS->SetSplineOrder(3);
      std::cout << "User B-spline interpolation " << std::endl;
      warper->SetInterpolator(interpolator_BS);
    */
  }
  else
  {
    using LinInterpolateType =
      typename itk::LinearInterpolateImageFunction<ImageType, typename WarperType::CoordRepType>;
    typename LinInterpolateType::Pointer interpolator_LN = LinInterpolateType::New();
    std::cout << "User Linear interpolation " << std::endl;
    warper->SetInterpolator(interpolator_LN);
  }

  using TranReaderType = itk::TransformFileReader;
  using FieldReaderType = itk::ImageFileReader<DisplacementFieldType>;
  bool         takeaffinv = false;
  unsigned int transcount = 0;
  const int    kOptQueueSize = opt_queue.size();
  for (int i = 0; i < kOptQueueSize; i++)
  {
    const TRAN_OPT & opt = opt_queue[i];

    switch (opt.file_type)
    {
      case AFFINE_FILE:
      {
        typename TranReaderType::Pointer tran_reader = TranReaderType::New();
        tran_reader->SetFileName(opt.filename);
        tran_reader->Update();
        typename AffineTransformType::Pointer aff =
          dynamic_cast<AffineTransformType *>((tran_reader->GetTransformList())->front().GetPointer());
        if (opt.do_affine_inv)
        {
          typename AffineTransformType::Pointer aff_inv = AffineTransformType::New();
          aff->GetInverse(aff_inv);
          aff = aff_inv;
          takeaffinv = true;
        }
        // std::cout <<" aff " << transcount <<  std::endl;
        warper->PushBackAffineTransform(aff);
        if (transcount == 0)
        {
          warper->SetOutputParametersFromImage(img_mov);
        }
        transcount++;
        break;
      }

      case IDENTITY_TRANSFORM:
      {
        typename AffineTransformType::Pointer aff;
        GetIdentityTransform(aff);
        // std::cout << " aff id" << transcount << std::endl;
        warper->PushBackAffineTransform(aff);
        transcount++;
        break;
      }

      case IMAGE_AFFINE_HEADER:
      {
        typename AffineTransformType::Pointer aff = AffineTransformType::New();
        typename ImageFileReaderType::Pointer reader_image_affine = ImageFileReaderType::New();
        reader_image_affine->SetFileName(opt.filename);
        reader_image_affine->Update();
        typename ImageType::Pointer img_affine = reader_image_affine->GetOutput();

        GetAffineTransformFromImage<ImageType, AffineTransformType>(img_affine, aff);

        if (opt.do_affine_inv)
        {
          typename AffineTransformType::Pointer aff_inv = AffineTransformType::New();
          aff->GetInverse(aff_inv);
          aff = aff_inv;
          takeaffinv = true;
        }

        // std::cout <<" aff from image header " << transcount <<  std::endl;
        warper->PushBackAffineTransform(aff);

        //            if (transcount==0){
        //                warper->SetOutputParametersFromImage( img_mov);
        //            }

        transcount++;
        break;
      }

      case DEFORMATION_FILE:
      {
        typename FieldReaderType::Pointer field_reader = FieldReaderType::New();
        field_reader->SetFileName(opt.filename);
        field_reader->Update();
        typename DisplacementFieldType::Pointer field = field_reader->GetOutput();

        warper->PushBackDisplacementFieldTransform(field);
        warper->SetOutputParametersFromImage(field);

        transcount++;
        break;
      }
      default:
        std::cout << "Unknown file type!" << std::endl;
    }
  }

  // std::cout << " transcount " << transcount << std::endl; warper->PrintTransformList();
  if (transcount == 2)
  {
    std::cout << "  We check the syntax of your call .... " << std::endl;
    const TRAN_OPT & opt1 = opt_queue[0];
    const TRAN_OPT & opt2 = opt_queue[1];

    if (opt1.file_type == AFFINE_FILE && opt2.file_type == DEFORMATION_FILE)
    {
      bool defisinv = IsInverseDeformation(opt2.filename.c_str());
      if (!takeaffinv)
      {
        std::cout << " Your 1st parameter should be an inverse affine map and the 2nd an InverseWarp  --- exiting "
                     "without applying warp.  Check that , if using an inverse affine map, you pass the -i option "
                     "before the Affine.txt."
                  << std::endl;
        return;
      }
      if (!defisinv)
      {
        std::cout << " Your 2nd  parameter should be an InverseWarp when your 1st parameter is an inverse affine map  "
                     "--- exiting without applying warp.  "
                  << std::endl;
        return;
      }
    }
    if (opt2.file_type == AFFINE_FILE && opt1.file_type == DEFORMATION_FILE)
    {
      bool defisinv = IsInverseDeformation(opt1.filename.c_str());
      if (defisinv)
      {
        std::cout << " Your 1st parameter should be a Warp (not Inverse) when your 2nd parameter is an affine map --- "
                     "exiting without applying warp.  "
                  << std::endl;
        return;
      }
      if (takeaffinv)
      {
        std::cout << " Your 2nd parameter should be a regular affine map (not inverted) if the 1st is a Warp --- "
                     "exiting without applying warp. "
                  << std::endl;
        return;
      }
    }
    std::cout << " syntax probably ok. " << std::endl;
  }
  else
  {
    std::cout << " You are doing something more complex -- we wont check syntax in this case " << std::endl;
  }

  if (img_ref.IsNotNull())
  {
    warper->SetOutputParametersFromImage(img_ref);
  }
  else
  {
    if (misc_opt.use_TightestBoundingBox == true)
    {
      // compute the desired spacking after inputting all the transform files using the

      typename ImageType::SizeType  largest_size;
      typename ImageType::PointType origin_warped;
      GetLargestSizeAfterWarp<WarperType, ImageType>(warper, img_mov, largest_size, origin_warped);
      // Use img_mov as initial template space, then overwrite individual components as desired
      warper->SetOutputParametersFromImage(img_mov);

      warper->SetOutputSize(largest_size);
      warper->SetOutputOrigin(origin_warped);
      {
        typename ImageType::DirectionType d;
        d.SetIdentity();
        warper->SetOutputDirection(d);
      }
    }
  }

  std::cout << "output origin: " << warper->GetOutputOrigin() << std::endl;
  std::cout << "output size: " << warper->GetOutputSize() << std::endl;
  std::cout << "output spacing: " << warper->GetOutputSpacing() << std::endl;
  std::cout << "output direction: " << warper->GetOutputDirection() << std::endl;

  // warper->PrintTransformList();
  warper->DetermineFirstDeformNoInterp();
  warper->Update();

  //    {
  //        typename ImageType::IndexType ind_orig, ind_warped;
  //        ind_orig[0] = 128;
  //        ind_orig[1] = 128;
  //        ind_orig[2] = 16;
  //        typename ImageType::PointType pt_orig, pt_warped;
  //        warper->GetOutput()->TransformIndexToPhysicalPoint(ind_orig, pt_orig);
  //        warper->MultiTransformSinglePoint(pt_orig, pt_warped);
  //        img_mov->TransformPhysicalPointToIndex(pt_warped, ind_warped);
  //        std::cout << "Transform output index " << ind_orig << "("<<pt_orig<<")"
  //        << " from moving image index " << ind_warped << "("<<pt_warped<<")" << std::endl;
  //    }

  //    typename ImageType::PointType pt_in, pt_out;
  //    for(unsigned int i=0; i<ImageDimension; i++){
  //        pt_in[i] = warper->GetOutputSize()[i] * 0.5;
  //    }
  //    warper->MultiTransformSinglePoint(pt_in, pt_out);
  //    std::cout << "pt_in=" << pt_in << " pt_out=" <<pt_out << std::endl;

  typename ImageType::Pointer img_output = warper->GetOutput();

  using ImageFileWriterType = itk::ImageFileWriter<ImageType>;
  typename ImageFileWriterType::Pointer writer_img = ImageFileWriterType::New();
  if (img_ref)
  {
    img_output->SetDirection(img_ref->GetDirection());
  }
  writer_img->SetFileName(output_image_filename);
  writer_img->SetInput(img_output);
  writer_img->Update();
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
WarpImageMultiTransform(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "WarpImageMultiTransform");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc <= 3)
  {
    std::cout << " \n " << std::endl;
    std::cout << "Usage: \n " << std::endl;

    //    std::cout << argv[0] <<  " ImageDimension moving_image output_image [-R reference_image |
    // --tightest-bounding-box] (--reslice-by-header) [--use-NN]"
    // << "[--ANTS-prefix prefix-name | --ANTS-prefix-invert prefix-name] {[deformation_field | [-i]
    // InverseAffineTransform.txt | --Id | [-i] --moving-image-header / -mh  | [-i] --reference-image-header / -rh]} \n"
    // << std::endl;
    std::cout << argv[0]
              << " ImageDimension moving_image output_image  -R reference_image --use-NN   "
                 "SeriesOfTransformations--(See Below) "
              << std::endl;
    std::cout << " SeriesOfTransformations --- " << argv[0]
              << " can apply, via concatenation, an unlimited number of transformations to your data ." << std::endl;
    std::cout << " Thus, SeriesOfTransformations may be  an Affine transform followed by a warp  another affine and "
                 "then another warp. "
              << std::endl;
    std::cout << "  Inverse affine transformations are invoked by calling   -i MyAffine.txt " << std::endl;
    std::cout
      << " InverseWarps are invoked by passing the InverseWarp.nii.gz  filename (see below for a note about this).  "
      << std::endl;
    std::cout << std::endl;
    std::cout << " Example 1: Mapping a warped image into the reference_image domain by applying abcdWarp.nii.gz and "
                 "then abcdAffine.txt\n"
              << std::endl;

    std::cout << argv[0] << " 3 moving_image output_image -R reference_image abcdWarp.nii.gz abcdAffine.txt\n"
              << std::endl;

    std::cout << " Example 2: To map the fixed/reference_image warped into the moving_image domain by applying the "
                 "inversion of abcdAffine.txt and then abcdInverseWarp.nii.gz .\n"
              << std::endl;

    std::cout << argv[0]
              << " 3 reference_image output_image -R moving_image -i  abcdAffine.txt abcdInverseWarp.nii.gz \n \n"
              << std::endl;
    std::cout << "  Note that the inverse maps (Ex. 2) are passed to this program in the reverse order of the forward "
                 "maps (Ex. 1). "
              << std::endl;
    std::cout << " This makes sense, geometrically ... see ANTS.pdf for visualization of this syntax." << std::endl;
    std::cout << std::endl;
    std::cout << " Compulsory arguments:\n " << std::endl;

    std::cout << " ImageDimension: 2 or 3 (for 2 or 3 Dimensional registration)\n " << std::endl;

    std::cout << " moving_image: the image to apply the transformation to\n " << std::endl;

    std::cout << " output_image: the resulting image\n \n " << std::endl;

    std::cout << " Optional arguments:\n " << std::endl;

    std::cout << " -R: reference_image space that you wish to warp INTO." << std::endl;
    std::cout << "       --tightest-bounding-box: Computes the tightest bounding box using all the affine "
                 "transformations. It will be overridden by -R reference_image if given."
              << std::endl;
    std::cout << "       --reslice-by-header: equivalent to -i -mh, or -fh -i -mh if used together with -R. It uses "
                 "the orientation matrix and origin encoded in the image file header. "
              << std::endl;
    std::cout
      << "       It can be used together with -R. This is typically not used together with any other transforms.\n "
      << std::endl;

    std::cout << " --use-NN: Use Nearest Neighbor Interpolation. \n " << std::endl;
    std::cout << " --use-BSpline: Use 3rd order B-Spline Interpolation. \n " << std::endl;
    std::cout << " --use-ML sigma: Use anti-aliasing interpolation for multi-label images, with Gaussian smoothing "
                 "with standard deviation sigma. \n "
              << std::endl;
    std::cout << "                 Sigma can be specified in physical or voxel units, as in Convert3D. It can be a "
                 "scalar or a vector. \n "
              << std::endl;
    std::cout << "                 Examples:  --use-ML 0.4mm    -use-ML 0.8x0.8x0.8vox    " << std::endl;

    //    std::cout << " --ANTS-prefix prefix-name: followed by a deformation field filename. \n " << std::endl;

    //    std::cout << " --ANTS-prefix-invert: . \n" << std::endl;

    std::cout << " -i: will use the inversion of the following affine transform. \n " << std::endl;

    //    std::cout << " --Id: use an identity transform. \n " << std::endl;

    // std::cout << " --moving-image-header or -mh: will use the orientation header of the moving image file. This is
    // typically not used with --reslice-by-header.\n " << std::endl;

    //    std::cout << " --reference-image-header or -rh: use the orientation matrix and origin encoded in the image
    // file header. It can be used together with -R.\n " << std::endl;
    std::cout << " \n " << std::endl;

    //        std::cout << " For ANTS users:" << std::endl;

    std::cout << " Other Example Usages:" << std::endl;
    std::cout << " Reslice the image: WarpImageMultiTransform 3 Imov.nii.gz Iout.nii.gz --tightest-bounding-box "
                 "--reslice-by-header"
              << std::endl;
    std::cout << " Reslice the image to a reference image: WarpImageMultiTransform 3 Imov.nii.gz Iout.nii.gz -R "
                 "Iref.nii.gz --tightest-bounding-box --reslice-by-header\n"
              << std::endl;

    std::cout << " Important Notes: " << std::endl;
    std::cout << R"( Prefixname "abcd" without any extension will use ".nii.gz" by default)" << std::endl;
    std::cout << " The abcdWarp and abcdInverseWarp do not exist. They are formed on the basis of "
                 "abcd(Inverse)Warp.nii.gz when calling "
              << argv[0] << ", yet you have to use them as if they exist." << std::endl;
    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  TRAN_OPT_QUEUE opt_queue;
  char *         moving_image_filename = nullptr;
  char *         output_image_filename = nullptr;

  MISC_OPT misc_opt;

  const int  kImageDim = std::stoi(argv[1]);
  const bool is_parsing_ok = WarpImageMultiTransform_ParseInput(
    argc - 2, argv + 2, moving_image_filename, output_image_filename, opt_queue, misc_opt, kImageDim);

  if (is_parsing_ok)
  {
    itk::ImageIOBase::Pointer imageIO =
      itk::ImageIOFactory::CreateImageIO(moving_image_filename, itk::IOFileModeEnum::ReadMode);
    imageIO->SetFileName(moving_image_filename);
    imageIO->ReadImageInformation();
    unsigned int ncomponents = imageIO->GetNumberOfComponents();

    std::cout << "moving_image_filename: " << moving_image_filename << " components " << ncomponents << std::endl;
    std::cout << "output_image_filename: " << output_image_filename << std::endl;
    std::cout << "reference_image_filename: ";
    if (misc_opt.reference_image_filename)
    {
      std::cout << misc_opt.reference_image_filename << std::endl;
    }
    else
    {
      std::cout << "NULL" << std::endl;
    }
    DisplayOptQueue(opt_queue);

    try
    {
      switch (kImageDim)
      {
        case 2:

          switch (ncomponents)
          {
            case 2:
              WarpImageMultiTransform<2, 2>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
              break;
            default:
              WarpImageMultiTransform<2, 1>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
              break;
          }
          break;
        case 3:

          switch (ncomponents)
          {
            case 3:
              WarpImageMultiTransform<3, 3>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
              break;
            case 6:
              WarpImageMultiTransform<3, 6>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
              break;
            default:
              WarpImageMultiTransform<3, 1>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
              break;
          }
          break;
        case 4:

          switch (ncomponents)
          {
            case 4:
              WarpImageMultiTransform<4, 4>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
              break;
            default:
              WarpImageMultiTransform<4, 1>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
              break;
          }
          break;
        default:
          std::cout << " not supported " << kImageDim << std::endl;
          return EXIT_FAILURE;
      }
    }
    catch (const itk::ExceptionObject & e)
    {
      std::cout << "Exception caught during WarpImageMultiTransform." << std::endl;
      std::cout << e << std::endl;
      return EXIT_FAILURE;
    }
    //      WarpImageMultiTransform<2,2>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
  }
  else
  {
    std::cout << "Input error!" << std::endl;
    return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}
} // namespace ants