File: WarpTimeSeriesImageMultiTransform.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (789 lines) | stat: -rw-r--r-- 28,998 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include "itkImageFileReader.h"
#include "itkVariableLengthVector.h"
#include "itkImageFileWriter.h"
#include "itkMatrixOffsetTransformBase.h"
#include "itkTransformFactory.h"
#include "itkTransformFileReader.h"
#include "itkVectorNearestNeighborInterpolateImageFunction.h"
#include "ReadWriteData.h"
#include "itkWarpImageMultiTransformFilter.h"
#include "itkExtractImageFilter.h"

namespace ants
{
static bool
WarpTimeSeriesImageMultiTransform_ParseInput(int              argc,
                                             char **          argv,
                                             char *&          moving_image_filename,
                                             char *&          output_image_filename,
                                             TRAN_OPT_QUEUE & opt_queue,
                                             MISC_OPT &       misc_opt)
{
  opt_queue.clear();
  opt_queue.reserve(argc - 2);

  misc_opt.reference_image_filename = nullptr;
  misc_opt.use_NN_interpolator = false;
  misc_opt.use_TightestBoundingBox = false;
  misc_opt.use_RotationHeader = false;

  moving_image_filename = argv[0];
  output_image_filename = argv[1];

  int  ind = 2;
  bool set_current_affine_inv = false;

  while (ind < argc)
  {
    if (strcmp(argv[ind], "--use-NN") == 0)
    {
      misc_opt.use_NN_interpolator = true;
    }
    else if (strcmp(argv[ind], "-R") == 0)
    {
      ind++;
      if (ind >= argc)
      {
        return false;
      }
      misc_opt.reference_image_filename = argv[ind];
    }
    else if ((strcmp(argv[ind], "--tightest-bounding-box") == 0) && (strcmp(argv[ind], "-R") != 0))
    {
      misc_opt.use_TightestBoundingBox = true;
    }
    else if (strcmp(argv[ind], "--reslice-by-header") == 0)
    {
      misc_opt.use_RotationHeader = true;
      TRAN_OPT opt;
      opt.file_type = IMAGE_AFFINE_HEADER;
      opt.do_affine_inv = false;
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "--Id") == 0)
    {
      TRAN_OPT opt;
      opt.filename = "--Id";
      opt.do_affine_inv = false;
      opt.file_type = IDENTITY_TRANSFORM;
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "--moving-image-header") == 0 || strcmp(argv[ind], "-mh") == 0)
    {
      TRAN_OPT opt;
      opt.file_type = IMAGE_AFFINE_HEADER;
      opt.filename = moving_image_filename;
      //            opt.do_affine_inv = false;
      SetAffineInvFlag(opt, set_current_affine_inv);
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "--reference-image-header") == 0 || strcmp(argv[ind], "-rh") == 0)
    {
      if (misc_opt.reference_image_filename == nullptr)
      {
        std::cout
          << "reference image filename is not given yet. Specify it with -R before --reference-image-header / -rh."
          << std::endl;
        return false;
      }

      TRAN_OPT opt;
      opt.file_type = IMAGE_AFFINE_HEADER;
      opt.filename = misc_opt.reference_image_filename;
      //            opt.do_affine_inv = false;
      SetAffineInvFlag(opt, set_current_affine_inv);
      opt_queue.push_back(opt);
    }
    else if (strcmp(argv[ind], "-i") == 0)
    {
      set_current_affine_inv = true;
    }

    else if (strcmp(argv[ind], "--ANTS-prefix") == 0)
    {
      ind++;
      std::string prefix = argv[ind];
      std::string path, name, ext;
      FilePartsWithgz(prefix, path, name, ext);
      if (ext.empty())
      {
        ext = ".nii.gz";
      }

      std::string deform_file_name, x_deform_name;
      deform_file_name = path + name + std::string("Warp") + ext;
      x_deform_name = path + name + std::string("Warpxvec") + ext;
      if (CheckFileExistence(x_deform_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = deform_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = false;
        opt_queue.push_back(opt);
        std::cout << "found deformation file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }

      std::string affine_file_name;
      affine_file_name = path + name + std::string("Affine.txt");
      if (CheckFileExistence(affine_file_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = affine_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = false;
        opt_queue.push_back(opt);
        std::cout << "found affine file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }
    }
    else if (strcmp(argv[ind], "--ANTS-prefix-invert") == 0)
    {
      ind++;
      std::string prefix = argv[ind];
      std::string path, name, ext;
      FilePartsWithgz(prefix, path, name, ext);
      if (ext.empty())
      {
        ext = ".nii.gz";
      }

      std::string affine_file_name;
      affine_file_name = path + name + std::string("Affine.txt");
      if (CheckFileExistence(affine_file_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = affine_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = true;
        opt_queue.push_back(opt);
        std::cout << "found affine file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }

      std::string deform_file_name, x_deform_name;
      deform_file_name = path + name + std::string("InverseWarp.nii.gz");
      x_deform_name = path + name + std::string("InverseWarpxvec.nii.gz");
      if (CheckFileExistence(x_deform_name.c_str()))
      {
        TRAN_OPT opt;
        opt.filename = deform_file_name.c_str();
        opt.file_type = CheckFileType(opt.filename.c_str());
        opt.do_affine_inv = false;
        opt_queue.push_back(opt);
        std::cout << "found deformation file: " << opt.filename << std::endl;
        DisplayOpt(opt);
      }
    }
    else
    {
      TRAN_OPT opt;
      opt.filename = argv[ind];
      opt.file_type = CheckFileType(opt.filename.c_str());
      opt.do_affine_inv = false;
      if (opt.file_type == AFFINE_FILE)
      {
        SetAffineInvFlag(opt, set_current_affine_inv);
      }
      else if (opt.file_type == DEFORMATION_FILE && set_current_affine_inv)
      {
        std::cout << "Ignore inversion of non-affine file type! " << std::endl;
        std::cout << "opt.do_affine_inv:" << opt.do_affine_inv << std::endl;
      }

      opt_queue.push_back(opt);
      DisplayOpt(opt);
    }
    ind++;
  }

  if (misc_opt.use_RotationHeader)
  {
    //                if (misc_opt.reference_image_filename) {
    //                    opt_queue[0].filename = misc_opt.reference_image_filename;
    //                } else {
    opt_queue[0].filename = "--Id";
    opt_queue[0].file_type = IDENTITY_TRANSFORM;
    opt_queue[0].do_affine_inv = false;
    //                }

    //               TRAN_OPT opt;
    //               opt.file_type = IMAGE_AFFINE_HEADER;
    //               opt.filename = moving_image_filename;
    //               opt.do_affine_inv = true;
    //               opt_queue.push_back(opt);
    //
    //               std::cout << "Use Rotation Header!" << std::endl;
  }

  return true;
}

template <typename AffineTransformPointer>
void
GetIdentityTransform(AffineTransformPointer & aff)
{
  using AffineTransform = typename AffineTransformPointer::ObjectType;
  aff = AffineTransform::New();
  aff->SetIdentity();
}

template <int ImageDimension>
void
WarpImageMultiTransformFourD(char *           moving_image_filename,
                             char *           output_image_filename,
                             TRAN_OPT_QUEUE & opt_queue,
                             MISC_OPT &       misc_opt)
{
  using VectorImageType = itk::Image<float, ImageDimension>;                // 4D contains functional image
  using ImageType = itk::Image<float, ImageDimension - 1>;                  // 3D image domain -R option
  using VectorType = itk::Vector<float, ImageDimension - 1>;                // 3D warp
  using DisplacementFieldType = itk::Image<VectorType, ImageDimension - 1>; // 3D Field
  using AffineTransformType = itk::MatrixOffsetTransformBase<double, ImageDimension - 1, ImageDimension - 1>;
  using WarperType =
    itk::WarpImageMultiTransformFilter<ImageType, ImageType, DisplacementFieldType, AffineTransformType>;

  itk::TransformFactory<AffineTransformType>::RegisterTransform();


  typename VectorImageType::Pointer img_mov;

  ReadImage<VectorImageType>(img_mov, moving_image_filename);
  std::cout << " Four-D image size: " << img_mov->GetLargestPossibleRegion().GetSize() << std::endl;
  typename ImageType::Pointer img_ref;
  if (misc_opt.reference_image_filename)
  {
    ReadImage<ImageType>(img_ref, misc_opt.reference_image_filename);
  }

  using ExtractFilterType = itk::ExtractImageFilter<VectorImageType, ImageType>;

  // ORIENTATION ALERT -- the way this code sets up
  // transformedvecimage doesn't really make complete sense to me. In
  // particular, the 'grab upper dim-1 x dim-1 of directions' method
  // of setting lower-dimension dir cosines can lead to singular mattrices.
  // allocate output image
  typename VectorImageType::RegionType region = img_mov->GetLargestPossibleRegion();
  for (unsigned int i = 0; i < ImageDimension - 1; i++)
  {
    region.SetSize(i, img_ref->GetLargestPossibleRegion().GetSize()[i]);
  }
  typename VectorImageType::Pointer transformedvecimage = AllocImage<VectorImageType>(region);

  typename VectorImageType::DirectionType direction = transformedvecimage->GetDirection();
  direction.Fill(0);
  typename VectorImageType::PointType   origin;
  typename VectorImageType::SpacingType spc;
  for (unsigned int i = 0; i < ImageDimension - 1; i++)
  {
    for (unsigned int j = 0; j < ImageDimension - 1; j++)
    {
      direction[i][j] = img_ref->GetDirection()[i][j];
    }
    spc[i] = img_ref->GetSpacing()[i];
    origin[i] = img_ref->GetOrigin()[i];
  }
  direction[ImageDimension - 1][ImageDimension - 1] = 1;
  origin[ImageDimension - 1] = img_mov->GetOrigin()[ImageDimension - 1];
  spc[ImageDimension - 1] = img_mov->GetSpacing()[ImageDimension - 1];
  transformedvecimage->SetDirection(direction);
  transformedvecimage->SetSpacing(spc);
  transformedvecimage->SetOrigin(origin);

  std::cout << " 4D-In-Spc " << img_mov->GetSpacing() << std::endl;
  std::cout << " 4D-In-Org " << img_mov->GetOrigin() << std::endl;
  std::cout << " 4D-In-Size " << img_mov->GetLargestPossibleRegion().GetSize() << std::endl;
  std::cout << " 4D-In-Dir " << img_mov->GetDirection() << std::endl;
  std::cout << " ...... " << std::endl;
  std::cout << " 4D-Out-Spc " << transformedvecimage->GetSpacing() << std::endl;
  std::cout << " 4D-Out-Org " << transformedvecimage->GetOrigin() << std::endl;
  std::cout << " 4D-Out-Size " << transformedvecimage->GetLargestPossibleRegion().GetSize() << std::endl;
  std::cout << " 4D-Out-Dir " << transformedvecimage->GetDirection() << std::endl;

  unsigned int timedims = img_mov->GetLargestPossibleRegion().GetSize()[ImageDimension - 1];
  for (unsigned int timedim = 0; timedim < timedims; timedim++)
  {
    typename WarperType::Pointer warper = WarperType::New();
    warper->SetEdgePaddingValue(0);

    if (misc_opt.use_NN_interpolator)
    {
      using NNInterpolateType =
        typename itk::NearestNeighborInterpolateImageFunction<ImageType, typename WarperType::CoordRepType>;
      typename NNInterpolateType::Pointer interpolator_NN = NNInterpolateType::New();
      std::cout << " Use Nearest Neighbor interpolation " << std::endl;
      warper->SetInterpolator(interpolator_NN);
    }

    using TranReaderType = itk::TransformFileReader;
    using FieldReaderType = itk::ImageFileReader<DisplacementFieldType>;

    unsigned int transcount = 0;
    const int    kOptQueueSize = opt_queue.size();
    for (int i = 0; i < kOptQueueSize; i++)
    {
      const TRAN_OPT & opt = opt_queue[i];

      switch (opt.file_type)
      {
        case AFFINE_FILE:
        {
          typename TranReaderType::Pointer tran_reader = TranReaderType::New();
          tran_reader->SetFileName(opt.filename);
          tran_reader->Update();
          typename AffineTransformType::Pointer aff =
            dynamic_cast<AffineTransformType *>((tran_reader->GetTransformList())->front().GetPointer());
          if (opt.do_affine_inv)
          {
            typename AffineTransformType::Pointer aff_inv = AffineTransformType::New();
            aff->GetInverse(aff_inv);
            aff = aff_inv;
          }
          // std::cout <<" aff " << transcount <<  std::endl;
          warper->PushBackAffineTransform(aff);
          if (transcount == 0)
          {
            warper->SetOutputParametersFromImage(img_ref);
          }
          transcount++;
        }
        break;
        case IDENTITY_TRANSFORM:
        {
          typename AffineTransformType::Pointer aff;
          GetIdentityTransform(aff);
          // std::cout << " aff id" << transcount << std::endl;
          warper->PushBackAffineTransform(aff);
          transcount++;
        }
        break;
        case DEFORMATION_FILE:
        {
          typename FieldReaderType::Pointer field_reader = FieldReaderType::New();
          field_reader->SetFileName(opt.filename);
          field_reader->Update();
          typename DisplacementFieldType::Pointer field = field_reader->GetOutput();

          warper->PushBackDisplacementFieldTransform(field);
          warper->SetOutputParametersFromImage(field);

          transcount++;
        }
        break;
        default:
        {
          std::cout << "Unknown file type!" << std::endl;
        }
      }
    }

    // warper->PrintTransformList();
    if (img_ref.IsNotNull())
    {
      warper->SetOutputParametersFromImage(img_ref);
    }
    else
    {
      if (misc_opt.use_TightestBoundingBox == true)
      {
        // compute the desired spacking after inputting all the transform files using the
        std::cout << " not implemented " << std::endl;
        /*
          typename ImageType::SizeType largest_size;
          typename ImageType::PointType origin_warped;
          GetLaregstSizeAfterWarp(warper, warpthisimage , largest_size, origin_warped);
          warper->SetOutputParametersFromImage( warpthisimage );
          warper->SetOutputSize(largest_size);
          warper->SetOutputOrigin(origin_warped);
          {
          typename ImageType::DirectionType d;
          d.SetIdentity();
          warper->SetOutputDirection(d);
          }
          */
      }
    }

    if (timedim % std::max(timedims / 10, static_cast<unsigned int>(1)) == 0)
    {
      std::cout << (float)timedim / (float)timedims * 100 << " % done ... " << std::flush;
    }
    typename VectorImageType::RegionType extractRegion = img_mov->GetLargestPossibleRegion();
    extractRegion.SetSize(ImageDimension - 1, 0);
    extractRegion.SetIndex(ImageDimension - 1, timedim);
    typename ExtractFilterType::Pointer extractFilter = ExtractFilterType::New();
    extractFilter->SetInput(img_mov);
    extractFilter->SetDirectionCollapseToSubmatrix();
    extractFilter->SetExtractionRegion(extractRegion);
    extractFilter->Update();
    typename ImageType::Pointer       warpthisimage = extractFilter->GetOutput();
    typename ImageType::SpacingType   qspc = warpthisimage->GetSpacing();
    typename ImageType::PointType     qorg = warpthisimage->GetOrigin();
    typename ImageType::DirectionType qdir = warpthisimage->GetDirection();
    qdir.Fill(0);
    for (unsigned int qq = 0; qq < ImageDimension - 1; qq++)
    {
      for (unsigned int pp = 0; pp < ImageDimension - 1; pp++)
      {
        qdir[qq][pp] = img_mov->GetDirection()[qq][pp];
      }
      qspc[qq] = img_mov->GetSpacing()[qq];
      qorg[qq] = img_mov->GetOrigin()[qq];
    }
    warpthisimage->SetSpacing(qspc);
    warpthisimage->SetOrigin(qorg);
    warpthisimage->SetDirection(qdir);

    warper->SetInput(warpthisimage);
    warper->DetermineFirstDeformNoInterp();
    warper->Update();

    using Iterator = itk::ImageRegionIteratorWithIndex<ImageType>;
    Iterator vfIter2(warper->GetOutput(), warper->GetOutput()->GetLargestPossibleRegion());
    for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
    {
      typename ImageType::PixelType       fval = vfIter2.Get();
      typename VectorImageType::IndexType ind;
      for (unsigned int xx = 0; xx < ImageDimension - 1; xx++)
      {
        ind[xx] = vfIter2.GetIndex()[xx];
      }
      ind[ImageDimension - 1] = timedim;
      transformedvecimage->SetPixel(ind, fval);
      //    if ( ind[0] == 53 && ind[1] == 19 && ind[2] == 30 ) std::cout << " fval " << fval << " td " << timedim <<
      // std::endl;
    }

    if (timedim == 0)
    {
      std::cout << warper->GetOutput()->GetDirection() << std::endl;
    }
  }
  std::cout << " 100 % complete " << std::endl;
  ANTs::WriteImage<VectorImageType>(transformedvecimage, output_image_filename);
}

template <int ImageDimension>
void
WarpImageMultiTransform(char *           moving_image_filename,
                        char *           output_image_filename,
                        TRAN_OPT_QUEUE & opt_queue,
                        MISC_OPT &       misc_opt)
{
  using VectorImageType = itk::VectorImage<float, ImageDimension>;
  using ImageType = itk::Image<float, ImageDimension>;
  using VectorType = itk::Vector<float, ImageDimension>;
  using DisplacementFieldType = itk::Image<VectorType, ImageDimension>;
  using AffineTransformType = itk::MatrixOffsetTransformBase<double, ImageDimension, ImageDimension>;
  using WarperType =
    itk::WarpImageMultiTransformFilter<ImageType, ImageType, DisplacementFieldType, AffineTransformType>;

  itk::TransformFactory<AffineTransformType>::RegisterTransform();

  typename VectorImageType::Pointer  img_mov;
  typename itk::ImageIOBase::Pointer imageIO =
    itk::ImageIOFactory::CreateImageIO(moving_image_filename, itk::IOFileModeEnum::ReadMode);
  imageIO->SetFileName(moving_image_filename);
  imageIO->ReadImageInformation();
  //    std::cout << " Dimension " << imageIO->GetNumberOfDimensions()  << " Components "
  // <<imageIO->GetNumberOfComponents() << std::endl;
  unsigned int veclength = imageIO->GetNumberOfComponents();
  std::cout << " read veclength as:: " << veclength << std::endl;
  ReadImage<VectorImageType>(img_mov, moving_image_filename);
  typename ImageType::Pointer img_ref;

  if (misc_opt.reference_image_filename)
  {
    ReadImage<ImageType>(img_ref, misc_opt.reference_image_filename);
  }

  typename VectorImageType::Pointer img_output = AllocImage<VectorImageType>(img_ref);
  img_output->SetNumberOfComponentsPerPixel(veclength);

  typename ImageType::IndexType index;
  index.Fill(0);
  typename VectorImageType::PixelType vec = img_mov->GetPixel(index);
  vec.Fill(0);
  img_output->FillBuffer(vec);
  for (unsigned int tensdim = 0; tensdim < veclength; tensdim++)
  {
    using IndexSelectCasterType = itk::VectorIndexSelectionCastImageFilter<VectorImageType, ImageType>;
    typename IndexSelectCasterType::Pointer fieldCaster = IndexSelectCasterType::New();
    fieldCaster->SetInput(img_mov);
    fieldCaster->SetIndex(tensdim);
    fieldCaster->Update();
    typename ImageType::Pointer tenscomponent = fieldCaster->GetOutput();
    tenscomponent->SetSpacing(img_mov->GetSpacing());
    tenscomponent->SetOrigin(img_mov->GetOrigin());
    tenscomponent->SetDirection(img_mov->GetDirection());

    typename WarperType::Pointer warper = WarperType::New();
    warper->SetInput(tenscomponent);
    //      PixelType nullPix;
    // nullPix.Fill(0);
    warper->SetEdgePaddingValue(0);

    if (misc_opt.use_NN_interpolator)
    {
      using NNInterpolateType =
        typename itk::NearestNeighborInterpolateImageFunction<ImageType, typename WarperType::CoordRepType>;
      typename NNInterpolateType::Pointer interpolator_NN = NNInterpolateType::New();
      std::cout << "Haha" << std::endl;
      warper->SetInterpolator(interpolator_NN);
    }

    using TranReaderType = itk::TransformFileReader;
    using FieldReaderType = itk::ImageFileReader<DisplacementFieldType>;

    unsigned int transcount = 0;
    const int    kOptQueueSize = opt_queue.size();
    for (int i = 0; i < kOptQueueSize; i++)
    {
      const TRAN_OPT & opt = opt_queue[i];

      switch (opt.file_type)
      {
        case AFFINE_FILE:
        {
          typename TranReaderType::Pointer tran_reader = TranReaderType::New();
          tran_reader->SetFileName(opt.filename);
          tran_reader->Update();
          typename AffineTransformType::Pointer aff =
            dynamic_cast<AffineTransformType *>((tran_reader->GetTransformList())->front().GetPointer());
          if (opt.do_affine_inv)
          {
            typename AffineTransformType::Pointer aff_inv = AffineTransformType::New();
            aff->GetInverse(aff_inv);
            aff = aff_inv;
          }
          // std::cout <<" aff " << transcount <<  std::endl;
          warper->PushBackAffineTransform(aff);
          if (transcount == 0)
          {
            warper->SetOutputParametersFromImage(img_mov);
          }
          transcount++;
        }
        break;
        case IDENTITY_TRANSFORM:
        {
          typename AffineTransformType::Pointer aff;
          GetIdentityTransform(aff);
          // std::cout << " aff id" << transcount << std::endl;
          warper->PushBackAffineTransform(aff);
          transcount++;
        }
        break;
        case DEFORMATION_FILE:
        {
          typename FieldReaderType::Pointer field_reader = FieldReaderType::New();
          field_reader->SetFileName(opt.filename);
          field_reader->Update();
          typename DisplacementFieldType::Pointer field = field_reader->GetOutput();

          warper->PushBackDisplacementFieldTransform(field);
          warper->SetOutputParametersFromImage(field);

          transcount++;
        }
        break;
        default:
        {
          std::cout << "Unknown file type!" << std::endl;
        }
      }
    }

    // warper->PrintTransformList();

    if (img_ref.IsNotNull())
    {
      warper->SetOutputParametersFromImage(img_ref);
    }
    else
    {
      if (misc_opt.use_TightestBoundingBox == true)
      {
        // compute the desired spacking after inputting all the transform files using the

        typename ImageType::SizeType  largest_size;
        typename ImageType::PointType origin_warped;
        GetLargestSizeAfterWarp<WarperType, VectorImageType>(warper, img_mov, largest_size, origin_warped);
        warper->SetOutputParametersFromImage(img_mov);
        warper->SetOutputSize(largest_size);
        warper->SetOutputOrigin(origin_warped);
        {
          typename ImageType::DirectionType d;
          d.SetIdentity();
          warper->SetOutputDirection(d);
        }
      }
    }

    warper->DetermineFirstDeformNoInterp();
    warper->Update();

    using Iterator = itk::ImageRegionIteratorWithIndex<VectorImageType>;
    Iterator vfIter2(img_output, img_output->GetLargestPossibleRegion());
    for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
    {
      typename VectorImageType::PixelType tens = vfIter2.Get();
      tens[tensdim] = warper->GetOutput()->GetPixel(vfIter2.GetIndex());
      vfIter2.Set(tens);
    }
  }
  ANTs::WriteImage<VectorImageType>(img_output, output_image_filename);
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
WarpTimeSeriesImageMultiTransform(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "WarpTimeSeriesImageMultiTransform");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc <= 3)
  {
    std::cout << "\nUsage 1 (Forward warp): " << argv[0]
              << " ImageDimension <moving_image.ext> <output_image.ext> -R <fixed_image.ext> <MyWarp.ext> "
                 "<MyAffine.txt> [interpolation]"
              << std::endl;

    std::cout << "\nUsage 2 (Inverse warp): " << argv[0]
              << " ImageDimension <fixed_image.ext> <output_image.ext> -R <moving_image.ext> -i <MyAffine.txt> "
                 "<MyInverseWarp.ext> [interpolation]"
              << std::endl;

    std::cout << "\nUsage Information " << std::endl;
    std::cout << " ImageDimension            : 3 or 4 (required argument)." << std::endl;
    std::cout << " <moving_image.ext>        : The image to apply the transformation to. The moving_image will be "
                 "either a 3-D image with vector voxels or a 4D image with scalar voxels."
              << std::endl;
    std::cout << " <output_image.ext>        : The resulting image. Output will be of the same type as input, but will "
                 "be resampled to the domain size defined by the -R image."
              << std::endl;
    std::cout << " <MyWarp.ext> <MyAffine.txt>    : Mappings can be stringed together, e.g.: MyAffine.txt "
                 "MySecondAffine.txt MyWarp.nii.gz MySecondWarp.nii.gz -i MyInverseAffine.txt"
              << std::endl;

    std::cout << "\nOptions:" << std::endl;
    std::cout << " -i                : Will use the inversion of the following affine transform." << std::endl;
    std::cout << " \n -R                : Reference image space that you wish to warp into." << std::endl;
    std::cout << " --reslice-by-header        : Equivalient to -i -mh, or -fh -i -mh if used together with -R. It uses "
                 "the orientation matrix and origin encoded in the image file header. "
              << std::endl;
    std::cout << " --tightest-bounding-box    : Computes the tightest bounding box using all the affine "
                 "transformations. It will be overridden by -R <reference_image.ext> if given."
              << std::endl;
    std::cout
      << " These options can be used together with -R and are typically not used together with any other transforms."
      << std::endl;

    std::cout << "\nInterpolation:" << std::endl;
    std::cout << " --use-NN            : Use Nearest Neighbor Interpolator" << std::endl;
    std::cout << " --use-BSpline            : Use 3rd order B-Spline Interpolation." << std::endl;

    std::cout << "\n " << std::endl;
    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  TRAN_OPT_QUEUE opt_queue;
  char *         moving_image_filename = nullptr;
  char *         output_image_filename = nullptr;

  MISC_OPT misc_opt;

  int kImageDim = std::stoi(argv[1]);

  const bool is_parsing_ok = WarpTimeSeriesImageMultiTransform_ParseInput(
    argc - 2, argv + 2, moving_image_filename, output_image_filename, opt_queue, misc_opt);

  if (is_parsing_ok)
  {
    std::cout << "moving_image_filename: " << moving_image_filename << std::endl;
    std::cout << "output_image_filename: " << output_image_filename << std::endl;
    std::cout << "reference_image_filename: ";
    if (misc_opt.reference_image_filename)
    {
      std::cout << misc_opt.reference_image_filename << std::endl;
    }
    else
    {
      std::cout << "NULL" << std::endl;
    }
    DisplayOptQueue(opt_queue);

    switch (kImageDim)
    {
      case 2:
      {
        WarpImageMultiTransform<2>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
      }
      break;
      case 3:
      {
        WarpImageMultiTransform<3>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
      }
      break;
      case 4:
      {
        WarpImageMultiTransformFourD<4>(moving_image_filename, output_image_filename, opt_queue, misc_opt);
      }
      break;
    }
  }
  else
  {
    std::cout << "Input error!" << std::endl;
    return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}
} // namespace ants