1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
#ifndef antsDisplacementAndVelocityFieldRegistrationCommandIterationUpdate__h_
#define antsDisplacementAndVelocityFieldRegistrationCommandIterationUpdate__h_
#include "itkImageDuplicator.h"
namespace ants
{
/*
There are two types of registration that do not use generic "itkImageRegistrationMethodv4" filter and generic
optimization structures:
- DisplacementFieldRegistrationType
including:
* SyN registration
* BSplineSyN registration
- VelocityFieldRegistrationType
including:
* TimeVaryingVelocityFeild
* TimeVaryingBSplineVelocityField
As these registration types have their own specific optimization processes, a different observer is needed to watch
their internal optimization procedure.
*/
template <typename TFilter>
class antsDisplacementAndVelocityFieldRegistrationCommandIterationUpdate final : public itk::Command
{
public:
typedef antsDisplacementAndVelocityFieldRegistrationCommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro(Self);
typedef typename TFilter::FixedImageType FixedImageType;
typedef typename TFilter::MovingImageType MovingImageType;
/** ImageDimension constants */
static constexpr unsigned int VImageDimension = FixedImageType::ImageDimension;
typedef typename TFilter::OutputTransformType OutputTransformType;
typedef typename TFilter::OutputTransformType::ScalarType RealType;
typedef itk::ImageToImageMetricv4<FixedImageType, MovingImageType, FixedImageType, RealType> MetricType;
typedef typename MetricType::MeasureType MeasureType;
typedef typename MetricType::VirtualImageType VirtualImageType;
typedef itk::CompositeTransform<RealType, VImageDimension> CompositeTransformType;
typedef typename CompositeTransformType::TransformType TransformBaseType;
typedef itk::DisplacementFieldTransform<RealType, VImageDimension> DisplacementFieldTransformType;
typedef typename DisplacementFieldTransformType::DisplacementFieldType DisplacementFieldType;
typedef typename DisplacementFieldType::PixelType DisplacementVectorType;
typedef itk::ImageDuplicator<DisplacementFieldType> DisplacementFieldDuplicatorType;
protected:
antsDisplacementAndVelocityFieldRegistrationCommandIterationUpdate()
{
m_clock.Start();
m_clock.Stop();
const itk::RealTimeClock::TimeStampType now = m_clock.GetTotal();
this->m_lastTotalTime = now;
m_clock.Start();
this->m_LogStream = &std::cout;
this->m_ComputeFullScaleCCInterval = 0;
this->m_WriteIterationsOutputsInIntervals = 0;
this->m_CurrentStageNumber = 0;
}
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) final
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) final
{
TFilter const * const filter = dynamic_cast<const TFilter *>(object);
if (typeid(event) == typeid(itk::InitializeEvent))
{
const unsigned int currentLevel = filter->GetCurrentLevel();
typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors =
filter->GetShrinkFactorsPerDimension(currentLevel);
typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
typename TFilter::TransformParametersAdaptorsContainerType adaptors =
filter->GetTransformParametersAdaptorsPerLevel();
bool smoothingSigmasAreInPhysicalUnits = filter->GetSmoothingSigmasAreSpecifiedInPhysicalUnits();
m_clock.Stop();
const itk::RealTimeClock::TimeStampType now = m_clock.GetTotal();
this->Logger() << " Current level = " << currentLevel + 1 << " of " << this->m_NumberOfIterations.size()
<< std::endl;
this->Logger() << " number of iterations = " << this->m_NumberOfIterations[currentLevel] << std::endl;
this->Logger() << " shrink factors = " << shrinkFactors << std::endl;
this->Logger() << " smoothing sigmas = " << smoothingSigmas[currentLevel];
if (smoothingSigmasAreInPhysicalUnits)
{
this->Logger() << " mm" << std::endl;
}
else
{
this->Logger() << " vox" << std::endl;
}
this->Logger() << " required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters()
<< std::flush << std::endl;
// this->Logger() << "\n LEVEL_TIME_INDEX: " << now << " SINCE_LAST: " << (now-this->m_lastTotalTime) <<
// std::endl;
this->m_lastTotalTime = now;
m_clock.Start();
typedef itk::GradientDescentOptimizerv4Template<RealType> GradientDescentOptimizerType;
GradientDescentOptimizerType * optimizer =
reinterpret_cast<GradientDescentOptimizerType *>(const_cast<TFilter *>(filter)->GetModifiableOptimizer());
// TODO: This looks very wrong. There is a const_cast above, and then the change
// of the number of iterations here on what should be a const object.
optimizer->SetNumberOfIterations(this->m_NumberOfIterations[currentLevel]);
}
else if (typeid(event) == typeid(itk::IterationEvent))
{
const unsigned int currentLevel = filter->GetCurrentLevel();
const unsigned int lCurrentIteration = filter->GetCurrentIteration();
if (lCurrentIteration == 1)
{
if (this->m_ComputeFullScaleCCInterval != 0)
{
// Print header line one time
this->Logger() << "XXDIAGNOSTIC,Iteration,metricValue,convergenceValue,ITERATION_TIME_INDEX,SINCE_LAST,"
"FullScaleCCInterval="
<< this->m_ComputeFullScaleCCInterval << std::flush << std::endl;
}
else
{
this->Logger() << "XXDIAGNOSTIC,Iteration,metricValue,convergenceValue,ITERATION_TIME_INDEX,SINCE_LAST"
<< std::endl;
}
}
m_clock.Stop();
const itk::RealTimeClock::TimeStampType now = m_clock.GetTotal();
MeasureType metricValue = 0.0;
const unsigned int lastIteration = this->m_NumberOfIterations[currentLevel];
if ((this->m_ComputeFullScaleCCInterval != 0) &&
(lCurrentIteration == 1 || (lCurrentIteration % this->m_ComputeFullScaleCCInterval == 0) ||
lCurrentIteration == lastIteration))
{
// This function finds the similarity value between the original fixed image and the original moving images
// using a CC metric type with radius 4.
// The feature can be used to observe the progress of the registration process at each iteration.
this->UpdateFullScaleMetricValue(filter, metricValue);
}
if ((this->m_WriteIterationsOutputsInIntervals != 0) &&
(lCurrentIteration == 1 || (lCurrentIteration % this->m_WriteIterationsOutputsInIntervals == 0) ||
lCurrentIteration == lastIteration))
{
// This function writes the output volume of each iteration to the disk.
// The feature can be used to observe the progress of the registration process at each iteration,
// and make a short movie from the the registration process.
this->WriteIntervalVolumes(filter);
}
else
{
this->Logger() << " "; // if the output of current iteration is written to disk, and star
} // will appear before line, else a free space will be printed to keep visual alignment.
std::streamsize ss = std::cout.precision();
this->Logger() << "1DIAGNOSTIC, " << std::setw(5) << lCurrentIteration << ", " << std::scientific
<< std::setprecision(12) << filter->GetCurrentMetricValue() << ", " << std::scientific
<< std::setprecision(12) << filter->GetCurrentConvergenceValue() << ", " << std::setprecision(4)
<< now << ", " << std::setprecision(4) << (now - this->m_lastTotalTime) << ", ";
if ((this->m_ComputeFullScaleCCInterval != 0) && fabs(metricValue) > 1e-7)
{
this->Logger() << std::scientific << std::setprecision(12) << metricValue << std::flush << std::endl;
}
else
{
this->Logger() << std::endl;
}
this->Logger() << std::setprecision(ss);
this->Logger().unsetf(std::ios::fixed | std::ios::scientific);
this->m_lastTotalTime = now;
m_clock.Start();
}
else
{
// Invalid event type
return;
}
}
itkSetMacro(ComputeFullScaleCCInterval, unsigned int);
itkSetMacro(WriteIterationsOutputsInIntervals, unsigned int);
itkSetMacro(CurrentStageNumber, unsigned int);
void
SetNumberOfIterations(const std::vector<unsigned int> & iterations)
{
this->m_NumberOfIterations = iterations;
}
void
SetLogStream(std::ostream & logStream)
{
this->m_LogStream = &logStream;
}
void
SetOrigFixedImage(typename FixedImageType::Pointer origFixedImage)
{
this->m_origFixedImage = origFixedImage;
}
void
SetOrigMovingImage(typename MovingImageType::Pointer origMovingImage)
{
this->m_origMovingImage = origMovingImage;
}
void
UpdateFullScaleMetricValue(const TFilter * const filter, MeasureType & metricValue) const
{
// Get the registration metric from the filter, input metric is needed to find the type of input transform.
typename MetricType::ConstPointer inputMetric(dynamic_cast<MetricType const *>(filter->GetMetric()));
// //////////////////////////////////Define the CC Metric Type to Compute Similarity
// Measure////////////////////////////
// This metric type is used to measure the general similarity metric between the original input fixed and moving
// images.
typename MetricType::Pointer metric;
typedef itk::
ANTSNeighborhoodCorrelationImageToImageMetricv4<FixedImageType, MovingImageType, FixedImageType, MeasureType>
CorrelationMetricType;
typename CorrelationMetricType::Pointer correlationMetric = CorrelationMetricType::New();
{
typename CorrelationMetricType::RadiusType radius;
radius.Fill(4); // NOTE: This is just a common reference for fine-tuning parameters, so perhaps a smaller window
// would be sufficient.
correlationMetric->SetRadius(radius);
}
correlationMetric->SetUseMovingImageGradientFilter(false);
correlationMetric->SetUseFixedImageGradientFilter(false);
metric = correlationMetric;
/*
Below, the implementation is just provided for SyN registration filter.
TODO: expand the similarity metric implementation for other registration types mentioned above.
*/
if (strcmp(inputMetric->GetMovingTransform()->GetNameOfClass(), "DisplacementFieldTransform") == 0)
{
/*
Filter returns the SyN internal trnasforms (MovingToMiddleTransform & FixedToMiddleTransform) at each iteration.
These transforms are used to generate input transforms of full scale CC metric. NOTICE: Using const_cast for
filter does not make any issue because the requested outputs are copied to another objects, and there will be no
change to them at future.
*/
// Copy the SyN internal transforms at each iteration
typename DisplacementFieldTransformType::Pointer myFixedToMiddleTransform = DisplacementFieldTransformType::New();
typename DisplacementFieldTransformType::Pointer myMovingToMiddleTransform =
DisplacementFieldTransformType::New();
// copy FixedToMiddleTransform
typename DisplacementFieldDuplicatorType::Pointer FixedDisplacementDuplicator =
DisplacementFieldDuplicatorType::New();
FixedDisplacementDuplicator->SetInputImage(
const_cast<DisplacementFieldTransformType *>(filter->GetFixedToMiddleTransform())->GetDisplacementField());
FixedDisplacementDuplicator->Update();
typename DisplacementFieldDuplicatorType::Pointer FixedInverseDisplacementDuplicator =
DisplacementFieldDuplicatorType::New();
FixedInverseDisplacementDuplicator->SetInputImage(
const_cast<DisplacementFieldTransformType *>(filter->GetFixedToMiddleTransform())
->GetInverseDisplacementField());
FixedInverseDisplacementDuplicator->Update();
myFixedToMiddleTransform->SetDisplacementField(FixedDisplacementDuplicator->GetOutput());
myFixedToMiddleTransform->SetInverseDisplacementField(FixedInverseDisplacementDuplicator->GetOutput());
// copy MovingToMiddleTransform
typename DisplacementFieldDuplicatorType::Pointer MovingDisplacementDuplicator =
DisplacementFieldDuplicatorType::New();
MovingDisplacementDuplicator->SetInputImage(
const_cast<DisplacementFieldTransformType *>(filter->GetMovingToMiddleTransform())->GetDisplacementField());
MovingDisplacementDuplicator->Update();
typename DisplacementFieldDuplicatorType::Pointer MovingInverseDisplacementDuplicator =
DisplacementFieldDuplicatorType::New();
MovingInverseDisplacementDuplicator->SetInputImage(
const_cast<DisplacementFieldTransformType *>(filter->GetMovingToMiddleTransform())
->GetInverseDisplacementField());
MovingInverseDisplacementDuplicator->Update();
myMovingToMiddleTransform->SetDisplacementField(MovingDisplacementDuplicator->GetOutput());
myMovingToMiddleTransform->SetInverseDisplacementField(MovingInverseDisplacementDuplicator->GetOutput());
// Based on SyN Registration implementation, fixed composite and moving composite transforms are generated to
// compute the metric value at each iteration.
typedef typename TFilter::InitialTransformType InitialTransformType;
typename CompositeTransformType::Pointer fixedComposite = CompositeTransformType::New();
typename CompositeTransformType::Pointer movingComposite = CompositeTransformType::New();
fixedComposite->AddTransform(const_cast<InitialTransformType *>(filter->GetFixedInitialTransform()));
fixedComposite->AddTransform(myFixedToMiddleTransform->GetInverseTransform());
fixedComposite->FlattenTransformQueue();
fixedComposite->SetOnlyMostRecentTransformToOptimizeOn();
movingComposite->AddTransform(const_cast<InitialTransformType *>(filter->GetMovingInitialTransform()));
movingComposite->AddTransform(myMovingToMiddleTransform->GetInverseTransform());
movingComposite->FlattenTransformQueue();
movingComposite->SetOnlyMostRecentTransformToOptimizeOn();
// SyN uses the above composite transforms to compute the current metric value in two ways as follows:
/*
At the first method, the input images are downsampled by the fixed and moving transforms,
and then, the output of resamplers are passed to the CC similarity metric with identity transforms.
*/
if (filter->GetDownsampleImagesForMetricDerivatives())
{
typedef itk::ResampleImageFilter<FixedImageType, FixedImageType, RealType> FixedResamplerType;
typename FixedResamplerType::Pointer fixedResampler = FixedResamplerType::New();
fixedResampler->SetTransform(fixedComposite);
fixedResampler->SetInput(this->m_origFixedImage);
fixedResampler->SetOutputParametersFromImage(this->m_origFixedImage);
fixedResampler->SetDefaultPixelValue(0);
fixedResampler->Update();
typedef itk::ResampleImageFilter<MovingImageType, MovingImageType, RealType> MovingResamplerType;
typename MovingResamplerType::Pointer movingResampler = MovingResamplerType::New();
movingResampler->SetTransform(movingComposite);
movingResampler->SetInput(this->m_origMovingImage);
movingResampler->SetOutputParametersFromImage(this->m_origFixedImage);
movingResampler->SetDefaultPixelValue(0);
movingResampler->Update();
typedef typename itk::IdentityTransform<RealType, VImageDimension> IdentityTransformType;
typename IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
typename DisplacementFieldType::Pointer identityField = DisplacementFieldType::New();
identityField->CopyInformation(this->m_origFixedImage);
identityField->SetRegions(this->m_origFixedImage->GetRequestedRegion());
identityField->AllocateInitialized();
typename DisplacementFieldTransformType::Pointer identityDisplacementFieldTransform =
DisplacementFieldTransformType::New();
identityDisplacementFieldTransform->SetDisplacementField(identityField);
metric->SetFixedImage(fixedResampler->GetOutput());
metric->SetFixedTransform(identityTransform);
metric->SetMovingImage(movingResampler->GetOutput());
metric->SetMovingTransform(identityDisplacementFieldTransform);
}
/*
At the second method, the computed fixed and moving composite transforms are passed to the CC similarity metric
directly with the full scale fixed and moving images.
*/
else if (!(filter->GetDownsampleImagesForMetricDerivatives()))
{
metric->SetFixedImage(this->m_origFixedImage);
metric->SetFixedTransform(fixedComposite);
metric->SetMovingImage(this->m_origMovingImage);
metric->SetMovingTransform(movingComposite);
}
}
metric->SetVirtualDomainFromImage(this->m_origFixedImage);
metric->Initialize();
metricValue = metric->GetValue();
}
void
WriteIntervalVolumes(TFilter const * const filter) const
{
// //////////////////////////
// Get output transform from the registration filter at each iteration
// It can be useful in some cases e.g. when we want to present the registration progress as a series of consequent
// pictures.
typename DisplacementFieldTransformType::Pointer OutputTransformAtCurrentIteration =
DisplacementFieldTransformType::New();
// Filter return the MovingToMiddleTransform and FixedToMiddleTransform of each iteration, so they should be
// composed to generate the final output transform of current iteration
// Notice that using const_cast for filter does not make any issue, because the inputMovingTransform will never be
// used in any processing. It is only copied to another transform.
typedef itk::ComposeDisplacementFieldsImageFilter<DisplacementFieldType, DisplacementFieldType> ComposerType;
typename ComposerType::Pointer composer = ComposerType::New();
composer->SetDisplacementField(const_cast<DisplacementFieldTransformType *>(filter->GetMovingToMiddleTransform())
->GetInverseDisplacementField());
composer->SetWarpingField(
const_cast<DisplacementFieldTransformType *>(filter->GetFixedToMiddleTransform())->GetDisplacementField());
composer->Update();
typename ComposerType::Pointer inverseComposer = ComposerType::New();
inverseComposer->SetDisplacementField(
const_cast<DisplacementFieldTransformType *>(filter->GetFixedToMiddleTransform())->GetInverseDisplacementField());
inverseComposer->SetWarpingField(
const_cast<DisplacementFieldTransformType *>(filter->GetMovingToMiddleTransform())->GetDisplacementField());
inverseComposer->Update();
OutputTransformAtCurrentIteration->SetDisplacementField(composer->GetOutput());
OutputTransformAtCurrentIteration->SetInverseDisplacementField(inverseComposer->GetOutput());
// Now this output transform is copied to another instance to prevent undesired changes.
typename DisplacementFieldDuplicatorType::Pointer disDuplicator = DisplacementFieldDuplicatorType::New();
disDuplicator->SetInputImage(OutputTransformAtCurrentIteration->GetDisplacementField());
disDuplicator->Update();
typename DisplacementFieldDuplicatorType::Pointer disInverseDuplicator = DisplacementFieldDuplicatorType::New();
disInverseDuplicator->SetInputImage(OutputTransformAtCurrentIteration->GetInverseDisplacementField());
disInverseDuplicator->Update();
typename DisplacementFieldTransformType::Pointer outputTransformReadyToUse = DisplacementFieldTransformType::New();
outputTransformReadyToUse->SetDisplacementField(disDuplicator->GetOutput());
outputTransformReadyToUse->SetInverseDisplacementField(disInverseDuplicator->GetOutput());
// Now add this updated transform to the composite transform including the initial trnasform
typedef typename TFilter::InitialTransformType InitialTransformType;
typename CompositeTransformType::Pointer outputCompositTransform = CompositeTransformType::New();
if (filter->GetMovingInitialTransform())
{
outputCompositTransform->AddTransform(const_cast<InitialTransformType *>(filter->GetMovingInitialTransform()));
}
outputCompositTransform->AddTransform(outputTransformReadyToUse);
outputCompositTransform->FlattenTransformQueue();
outputCompositTransform->SetOnlyMostRecentTransformToOptimizeOn();
// Now we use the output transform to get warped image using linear interpolation
typedef itk::LinearInterpolateImageFunction<MovingImageType, RealType> LinearInterpolatorType;
typename LinearInterpolatorType::Pointer linearInterpolator = LinearInterpolatorType::New();
typedef itk::ResampleImageFilter<FixedImageType, MovingImageType, RealType> ResampleFilterType;
typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform(outputCompositTransform);
resampler->SetInput(this->m_origMovingImage);
resampler->SetOutputParametersFromImage(this->m_origFixedImage);
resampler->SetInterpolator(linearInterpolator);
resampler->SetDefaultPixelValue(0);
resampler->Update();
// write the results to the disk
const unsigned int curLevel = filter->GetCurrentLevel();
const unsigned int curIter = filter->GetCurrentIteration();
std::stringstream currentFileName;
currentFileName << "Stage" << this->m_CurrentStageNumber + 1 << "_level" << curLevel + 1;
/*
The name arrangement of written files are important to us.
To prevent: "Iter1 Iter10 Iter2 Iter20" we use the following style.
Then the order is: "Iter1 Iter2 ... Iters10 ... Itert20"
*/
if (curIter < 10)
{
currentFileName << "_Iter000" << curIter << ".nii.gz";
}
else if (curIter < 100)
{
currentFileName << "_Iter00" << curIter << ".nii.gz";
}
else if (curIter < 1000)
{
currentFileName << "_Iter0" << curIter << ".nii.gz";
}
else
{
currentFileName << "_Iter" << curIter << ".nii.gz";
}
std::cout << "*"; // The star befor each DIAGNOSTIC shows that its output is writtent out.
std::cout << currentFileName.str()
<< std::endl; // The star befor each DIAGNOSTIC shows that its output is writtent out.
typedef itk::ImageFileWriter<MovingImageType> WarpedImageWriterType;
typename WarpedImageWriterType::Pointer writer = WarpedImageWriterType::New();
writer->SetFileName(currentFileName.str().c_str());
writer->SetInput(resampler->GetOutput());
try
{
writer->Update();
}
catch (const itk::ExceptionObject & err)
{
std::cout << "Can't write warped image " << currentFileName.str().c_str() << std::endl;
std::cout << "Exception Object caught: " << std::endl;
std::cout << err << std::endl;
}
}
private:
std::ostream &
Logger() const
{
return *m_LogStream;
}
/**
* WeakPointer to the Optimizer
*/
// itk::WeakPointer<OptimizerType> m_Optimizer;
std::vector<unsigned int> m_NumberOfIterations;
std::ostream * m_LogStream;
itk::TimeProbe m_clock;
itk::RealTimeClock::TimeStampType m_lastTotalTime;
unsigned int m_ComputeFullScaleCCInterval;
unsigned int m_WriteIterationsOutputsInIntervals;
unsigned int m_CurrentStageNumber;
typename FixedImageType::Pointer m_origFixedImage;
typename MovingImageType::Pointer m_origMovingImage;
};
} // end namespace ants
#endif // antsDisplacementAndVelocityFieldRegistrationCommandIterationUpdate__h_
|