File: antsJointTensorFusion.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (999 lines) | stat: -rw-r--r-- 33,697 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
#include "antsCommandLineParser.h"
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include "ReadWriteData.h"

#include "itkNumericSeriesFileNames.h"
#include "itkTimeProbe.h"
#include "itkWeightedVotingFusionImageFilter.h"

#include "itkDiffusionTensor3D.h"
#include "itkNthElementImageAdaptor.h"
#include "itkCastImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"

#include "stdio.h"

#include <algorithm>
#include <sstream>
#include <string>
#include <vector>

#include "ANTsVersion.h"

namespace ants
{

template <typename TFilter>
class CommandProgressUpdate : public itk::Command
{
public:
  using Self = CommandProgressUpdate<TFilter>;
  using Superclass = itk::Command;
  using Pointer = itk::SmartPointer<CommandProgressUpdate<TFilter>>;
  itkNewMacro(CommandProgressUpdate);

protected:
  CommandProgressUpdate() = default;
  ;

  using FilterType = TFilter;

  unsigned int m_CurrentProgress{ 0 };

public:
  void
  Execute(itk::Object * caller, const itk::EventObject & event) override
  {
    auto * po = dynamic_cast<itk::ProcessObject *>(caller);
    if (!po)
      return;
    //    std::cout << po->GetProgress() << std::endl;
    if (typeid(event) == typeid(itk::ProgressEvent))
    {
      if (this->m_CurrentProgress < 99)
      {
        this->m_CurrentProgress++;
        if (this->m_CurrentProgress % 10 == 0)
        {
          std::cout << this->m_CurrentProgress << std::flush;
        }
        else
        {
          std::cout << "*" << std::flush;
        }
      }
    }
  }

  void
  Execute(const itk::Object * object, const itk::EventObject & event) override
  {
    auto * po = dynamic_cast<itk::ProcessObject *>(const_cast<itk::Object *>(object));
    if (!po)
      return;

    if (typeid(event) == typeid(itk::ProgressEvent))
    {
      if (this->m_CurrentProgress < 99)
      {
        this->m_CurrentProgress++;
        if (this->m_CurrentProgress % 10 == 0)
        {
          std::cout << this->m_CurrentProgress << std::flush;
        }
        else
        {
          std::cout << "*" << std::flush;
        }
      }
    }
  }
};

template <unsigned int ImageDimension>
int
antsJointTensorFusion(itk::ants::CommandLineParser * parser)
{
  using RealType = float;
  using TensorType = itk::DiffusionTensor3D<RealType>;
  using ImageType = itk::Image<RealType, ImageDimension>;
  using TensorImageType = itk::Image<TensorType, ImageDimension>;
  using TensorAdaptorType = itk::NthElementImageAdaptor<TensorImageType, RealType>;
  using CastFilterType = itk::CastImageFilter<TensorAdaptorType, ImageType>;

  using LabelImageType = itk::Image<unsigned int, ImageDimension>;
  using MaskImageType = LabelImageType;

  using OptionType = typename itk::ants::CommandLineParser::OptionType;

  // Determine verbosity of output

  bool                         verbose = false;
  typename OptionType::Pointer verboseOption = parser->GetOption("verbose");
  if (verboseOption && verboseOption->GetNumberOfFunctions())
  {
    verbose = parser->Convert<bool>(verboseOption->GetFunction(0)->GetName());
  }

  if (verbose)
  {
    std::cout << std::endl
              << "Running antsJointTensorFusion for " << ImageDimension << "-dimensional images." << std::endl
              << std::endl;
  }

  // Instantiate the joint fusion filter

  using FusionFilterType = itk::WeightedVotingFusionImageFilter<ImageType, LabelImageType>;
  typename FusionFilterType::Pointer fusionFilter = FusionFilterType::New();
  using LabelType = typename LabelImageType::PixelType;


  // Get the alpha and beta parameters

  RealType                     alpha = 0.1;
  typename OptionType::Pointer alphaOption = parser->GetOption("alpha");
  if (alphaOption && alphaOption->GetNumberOfFunctions())
  {
    alpha = parser->Convert<RealType>(alphaOption->GetFunction(0)->GetName());
  }

  RealType                     beta = 2.0;
  typename OptionType::Pointer betaOption = parser->GetOption("beta");
  if (betaOption && betaOption->GetNumberOfFunctions())
  {
    beta = parser->Convert<RealType>(betaOption->GetFunction(0)->GetName());
  }

  fusionFilter->SetAlpha(alpha);
  fusionFilter->SetBeta(beta);

  // Get the search and patch radii

  std::vector<unsigned int> searchRadius;
  searchRadius.push_back(3);
  typename OptionType::Pointer searchRadiusOption = parser->GetOption("search-radius");
  if (searchRadiusOption && searchRadiusOption->GetNumberOfFunctions())
  {
    searchRadius = parser->ConvertVector<unsigned int>(searchRadiusOption->GetFunction(0)->GetName());
  }
  if (searchRadius.size() == 1)
  {
    for (unsigned int d = 1; d < ImageDimension; d++)
    {
      searchRadius.push_back(searchRadius[0]);
    }
  }
  if (searchRadius.size() != ImageDimension)
  {
    if (verbose)
    {
      std::cerr << "Search radius specified incorrectly.  Please see usage options." << std::endl;
    }
    return EXIT_FAILURE;
  }
  typename FusionFilterType::NeighborhoodRadiusType searchNeighborhoodRadius;
  for (unsigned int d = 0; d < ImageDimension; d++)
  {
    searchNeighborhoodRadius[d] = searchRadius[d];
  }

  std::vector<unsigned int> patchRadius;
  patchRadius.push_back(2);
  typename OptionType::Pointer patchRadiusOption = parser->GetOption("patch-radius");
  if (patchRadiusOption && patchRadiusOption->GetNumberOfFunctions())
  {
    patchRadius = parser->ConvertVector<unsigned int>(patchRadiusOption->GetFunction(0)->GetName());
  }
  if (patchRadius.size() == 1)
  {
    for (unsigned int d = 1; d < ImageDimension; d++)
    {
      patchRadius.push_back(patchRadius[0]);
    }
  }
  if (patchRadius.size() != ImageDimension)
  {
    if (verbose)
    {
      std::cerr << "Patch radius specified incorrectly.  Please see usage options." << std::endl;
    }
    return EXIT_FAILURE;
  }
  typename FusionFilterType::NeighborhoodRadiusType patchNeighborhoodRadius;
  for (unsigned int d = 0; d < ImageDimension; d++)
  {
    patchNeighborhoodRadius[d] = patchRadius[d];
  }

  fusionFilter->SetNeighborhoodSearchRadius(searchNeighborhoodRadius);
  fusionFilter->SetNeighborhoodPatchRadius(patchNeighborhoodRadius);

  // Retain atlas voting and label posterior images

  bool retainAtlasVotingImages = false;
  bool retainLabelPosteriorImages = false;
  bool constrainSolutionToNonnegativeWeights = false;
  bool logEuclidean = false;

  typename OptionType::Pointer logEuclideanOption = parser->GetOption("log-euclidean");
  if (logEuclideanOption && logEuclideanOption->GetNumberOfFunctions() > 0)
  {
    logEuclidean = parser->Convert<bool>(logEuclideanOption->GetFunction()->GetName());
  }

  typename OptionType::Pointer retainLabelPosteriorOption = parser->GetOption("retain-label-posterior-images");
  if (retainLabelPosteriorOption && retainLabelPosteriorOption->GetNumberOfFunctions() > 0)
  {
    retainLabelPosteriorImages = parser->Convert<bool>(retainLabelPosteriorOption->GetFunction()->GetName());
  }

  typename OptionType::Pointer retainAtlasVotingOption = parser->GetOption("retain-atlas-voting-images");
  if (retainAtlasVotingOption && retainAtlasVotingOption->GetNumberOfFunctions() > 0)
  {
    retainAtlasVotingImages = parser->Convert<bool>(retainAtlasVotingOption->GetFunction()->GetName());
  }

  typename OptionType::Pointer constrainWeightsOption = parser->GetOption("constrain-nonnegative");
  if (constrainWeightsOption && constrainWeightsOption->GetNumberOfFunctions() > 0)
  {
    constrainSolutionToNonnegativeWeights = parser->Convert<bool>(constrainWeightsOption->GetFunction()->GetName());
  }

  typename OptionType::Pointer metricOption = parser->GetOption("patch-metric");
  if (metricOption && metricOption->GetNumberOfFunctions() > 0)
  {
    std::string metricString = metricOption->GetFunction()->GetName();
    ConvertToLowerCase(metricString);
    if (metricString.compare("pc") == 0)
    {
      fusionFilter->SetSimilarityMetric(itk::NonLocalPatchBasedImageFilterEnums::SimilarityMetric::PEARSON_CORRELATION);
    }
    else if (metricString.compare("msq") == 0)
    {
      fusionFilter->SetSimilarityMetric(itk::NonLocalPatchBasedImageFilterEnums::SimilarityMetric::MEAN_SQUARES);
    }
    else
    {
      std::cerr << "Unrecognized metric option. See help menu." << std::endl;
      return EXIT_FAILURE;
    }
  }

  fusionFilter->SetRetainAtlasVotingWeightImages(retainAtlasVotingImages);
  fusionFilter->SetRetainLabelPosteriorProbabilityImages(retainLabelPosteriorImages);
  fusionFilter->SetConstrainSolutionToNonnegativeWeights(constrainSolutionToNonnegativeWeights);

  // Get the target image

  unsigned int numberOfTargetModalities = 0;

  typename FusionFilterType::InputImageList targetImageList;

  typename OptionType::Pointer targetImageOption = parser->GetOption("target-image");
  if (targetImageOption && targetImageOption->GetNumberOfFunctions())
  {
    if (targetImageOption->GetFunction(0)->GetNumberOfParameters() == 0)
    {
      typename TensorImageType::Pointer targetImage = nullptr;

      std::string targetFile = targetImageOption->GetFunction(0)->GetName();
      ReadTensorImage<TensorImageType>(targetImage, targetFile.c_str(), logEuclidean);

      numberOfTargetModalities = 6;
      for (unsigned int n = 0; n < numberOfTargetModalities; n++)
      {
        typename TensorAdaptorType::Pointer targetAdaptorImage = TensorAdaptorType::New();
        targetAdaptorImage->SetImage(targetImage);
        targetAdaptorImage->SelectNthElement(n);

        // Can't use image adaptor directly, get error due to missing "ImageType::NeighborhoodAccessorFunctorType" in
        // itk::ConstNeighborhoodIterator<itk::NthElementImageAdaptor<itk::Image<itk::DiffusionTensor3D<float>, 2>,
        // float>
        typename CastFilterType::Pointer castTensor = CastFilterType::New();
        castTensor->SetInput(targetAdaptorImage);
        castTensor->Update();

        targetImageList.push_back(castTensor->GetOutput());
      }
    }
    else
    {
      std::cout << "Only 1 modality (DiffusionTensor) allowed for target image" << std::endl;
      return EXIT_FAILURE;
    }
  }
  else
  {
    if (verbose)
    {
      std::cerr << "Target image(s) not specified." << std::endl;
    }
    return EXIT_FAILURE;
  }
  fusionFilter->SetTargetImage(targetImageList);

  // Get the atlas images and segmentations

  typename OptionType::Pointer atlasImageOption = parser->GetOption("atlas-image");
  typename OptionType::Pointer atlasSegmentationOption = parser->GetOption("atlas-segmentation");

  unsigned int numberOfAtlases = 0;
  unsigned int numberOfAtlasSegmentations = 0;
  unsigned int numberOfAtlasModalities = 6;

  if (atlasImageOption && atlasImageOption->GetNumberOfFunctions())
  {
    numberOfAtlases = atlasImageOption->GetNumberOfFunctions();
  }
  if (atlasSegmentationOption && atlasSegmentationOption->GetNumberOfFunctions())
  {
    numberOfAtlasSegmentations = atlasSegmentationOption->GetNumberOfFunctions();
  }

  if (numberOfAtlases < 2)
  {
    if (verbose)
    {
      std::cerr << "At least 2 atlases are required." << std::endl;
    }
    return EXIT_FAILURE;
  }
  if (numberOfAtlasSegmentations != 0 && numberOfAtlasSegmentations != numberOfAtlases)
  {
    if (verbose)
    {
      std::cout << "Warning:  the number of atlases does not match the number of "
                << "segmentations.  Only performing joint intensity fusion." << std::endl;
    }
    numberOfAtlasSegmentations = 0;
  }

  for (unsigned int m = 0; m < numberOfAtlases; m++)
  {
    typename FusionFilterType::InputImageList atlasImageList;
    typename LabelImageType::Pointer          atlasSegmentation = nullptr;

    if (atlasImageOption->GetFunction(m)->GetNumberOfParameters() == 0)
    {
      numberOfAtlasModalities = 6;

      if (numberOfTargetModalities != numberOfAtlasModalities)
      {
        if (verbose)
        {
          std::cerr << "The number of atlas modalities does not match the number of target modalities." << std::endl;
        }
        return EXIT_FAILURE;
      }
      typename TensorImageType::Pointer atlasImage = nullptr;

      std::string atlasFile = atlasImageOption->GetFunction(m)->GetName();
      ReadTensorImage<TensorImageType>(atlasImage, atlasFile.c_str(), logEuclidean);
      for (unsigned int n = 0; n < numberOfAtlasModalities; n++)
      {
        typename TensorAdaptorType::Pointer atlasAdaptorImage = TensorAdaptorType::New();
        atlasAdaptorImage->SetImage(atlasImage);
        atlasAdaptorImage->SelectNthElement(n);

        typename CastFilterType::Pointer castTensor = CastFilterType::New();
        castTensor->SetInput(atlasAdaptorImage);
        castTensor->Update();

        atlasImageList.push_back(castTensor->GetOutput());
      }
    }
    else
    {
      std::cerr << "Only 1 modality (DiffusionTensor) allowed for atlas images" << std::endl;
      return EXIT_FAILURE;
    }
    if (numberOfAtlasSegmentations > 0)
    {
      std::string atlasSegmentationFile = atlasSegmentationOption->GetFunction(m)->GetName();
      ReadImage<LabelImageType>(atlasSegmentation, atlasSegmentationFile.c_str());
    }
    fusionFilter->AddAtlas(atlasImageList, atlasSegmentation);
  }

  // Get the exclusion images

  typename OptionType::Pointer exclusionImageOption = parser->GetOption("exclusion-image");
  if (exclusionImageOption && exclusionImageOption->GetNumberOfFunctions())
  {
    for (unsigned int n = 0; n < exclusionImageOption->GetNumberOfFunctions(); n++)
    {
      auto label = parser->Convert<LabelType>(exclusionImageOption->GetFunction(n)->GetName());

      typename LabelImageType::Pointer exclusionImage = nullptr;
      std::string                      exclusionFile = exclusionImageOption->GetFunction(n)->GetParameter(0);
      ReadImage<LabelImageType>(exclusionImage, exclusionFile.c_str());
      fusionFilter->AddLabelExclusionImage(label, exclusionImage);
    }
  }

  // Get the mask

  typename itk::ants::CommandLineParser::OptionType::Pointer maskImageOption = parser->GetOption("mask-image");
  if (maskImageOption && maskImageOption->GetNumberOfFunctions())
  {
    typename MaskImageType::Pointer maskImage = nullptr;

    std::string inputFile = maskImageOption->GetFunction(0)->GetName();
    ReadImage<MaskImageType>(maskImage, inputFile.c_str());

    fusionFilter->SetMaskImage(maskImage);
  }

  // Run the fusion program
  itk::TimeProbe timer;
  timer.Start();

  if (verbose)
  {
    using CommandType = CommandProgressUpdate<FusionFilterType>;
    typename CommandType::Pointer observer = CommandType::New();
    fusionFilter->AddObserver(itk::ProgressEvent(), observer);
  }

  try
  {
    fusionFilter->Update();
  }
  catch (const itk::ExceptionObject & e)
  {
    if (verbose)
    {
      std::cerr << "Exception caught: " << e << std::endl;
    }
    return EXIT_FAILURE;
  }

  timer.Stop();

  if (verbose)
  {
    std::cout << std::endl << std::endl;
    fusionFilter->Print(std::cout, 3);
  }

  // write the output

  if (verbose)
  {
    std::cout << std::endl << "Writing output:" << std::endl;
  }
  typename OptionType::Pointer outputOption = parser->GetOption("output");
  if (outputOption && outputOption->GetNumberOfFunctions())
  {
    std::string labelFusionName;
    std::string intensityFusionName;
    std::string labelPosteriorName;
    std::string atlasVotingName;

    if (outputOption->GetFunction(0)->GetNumberOfParameters() == 0)
    {
      if (numberOfAtlasSegmentations != 0)
      {
        labelFusionName = outputOption->GetFunction(0)->GetName();
      }
      else
      {
        intensityFusionName = outputOption->GetFunction(0)->GetName();
      }
    }
    if (outputOption->GetFunction(0)->GetNumberOfParameters() > 0)
    {
      if (numberOfAtlasSegmentations != 0)
      {
        labelFusionName = outputOption->GetFunction(0)->GetParameter(0);
      }
    }
    if (outputOption->GetFunction(0)->GetNumberOfParameters() > 1)
    {
      intensityFusionName = outputOption->GetFunction(0)->GetParameter(1);
    }
    if (outputOption->GetFunction(0)->GetNumberOfParameters() > 2)
    {
      if (numberOfAtlasSegmentations != 0)
      {
        labelPosteriorName = outputOption->GetFunction(0)->GetParameter(2);
      }
    }
    if (outputOption->GetFunction(0)->GetNumberOfParameters() > 3)
    {
      atlasVotingName = outputOption->GetFunction(0)->GetParameter(3);
    }

    if (!labelFusionName.empty())
    {
      ANTs::WriteImage<LabelImageType>(fusionFilter->GetOutput(), labelFusionName.c_str());
    }
    if (!intensityFusionName.empty())
    {
      typename TensorImageType::Pointer jointTensorImage = TensorImageType::New();
      jointTensorImage->SetRegions(fusionFilter->GetJointIntensityFusionImage(0)->GetRequestedRegion().GetSize());
      jointTensorImage->SetSpacing(fusionFilter->GetJointIntensityFusionImage(0)->GetSpacing());
      jointTensorImage->SetOrigin(fusionFilter->GetJointIntensityFusionImage(0)->GetOrigin());
      jointTensorImage->SetDirection(fusionFilter->GetJointIntensityFusionImage(0)->GetDirection());
      jointTensorImage->AllocateInitialized();

      for (unsigned int i = 0; i < 6; i++)
      {
        if (verbose)
        {
          std::cout << "  Merging tensor fusion image channels " << std::endl;
        }
        typename ImageType::Pointer jointIntensityFusionImage = fusionFilter->GetJointIntensityFusionImage(i);

        typename itk::ImageRegionIteratorWithIndex<ImageType> valueIt(
          jointIntensityFusionImage, jointIntensityFusionImage->GetLargestPossibleRegion());

        while (!valueIt.IsAtEnd())
        {
          TensorType dt = jointTensorImage->GetPixel(valueIt.GetIndex());
          dt[i] = valueIt.Value();
          jointTensorImage->SetPixel(valueIt.GetIndex(), dt);
          ++valueIt;
        }
      }
      if (verbose)
      {
        std::cout << "  Writing tensor fusion image" << std::endl;
      }
      WriteTensorImage<TensorImageType>(jointTensorImage, intensityFusionName.c_str());
    }
    if (!labelPosteriorName.empty() && fusionFilter->GetRetainLabelPosteriorProbabilityImages())
    {
      typename FusionFilterType::LabelSetType labelSet = fusionFilter->GetLabelSet();

      typename FusionFilterType::LabelSetType::const_iterator labelIt;
      for (labelIt = labelSet.begin(); labelIt != labelSet.end(); ++labelIt)
      {
        if (*labelIt == 0)
        {
          continue;
        }
        if (verbose)
        {
          std::cout << "  Writing label probability image (label " << *labelIt << ")" << std::endl;
        }

        char buffer[256];
        std::snprintf(buffer, sizeof(buffer), labelPosteriorName.c_str(), *labelIt);
        ANTs::WriteImage<typename FusionFilterType::ProbabilityImageType>(
          fusionFilter->GetLabelPosteriorProbabilityImage(*labelIt), buffer);
      }
    }
    if (!atlasVotingName.empty() && fusionFilter->GetRetainAtlasVotingWeightImages())
    {
      itk::NumericSeriesFileNames::Pointer fileNamesCreator = itk::NumericSeriesFileNames::New();
      fileNamesCreator->SetStartIndex(1);
      fileNamesCreator->SetEndIndex(numberOfAtlases);
      fileNamesCreator->SetSeriesFormat(atlasVotingName.c_str());

      const std::vector<std::string> & imageNames = fileNamesCreator->GetFileNames();
      for (unsigned int i = 0; i < imageNames.size(); i++)
      {
        if (verbose)
        {
          std::cout << "  Writing atlas voting image (atlas " << i + 1 << ")" << std::endl;
        }
        ANTs::WriteImage<typename FusionFilterType::ProbabilityImageType>(fusionFilter->GetAtlasVotingWeightImage(i),
                                                                          imageNames[i].c_str());
      }
    }
  }

  if (verbose)
  {
    std::cout << "Elapsed time: " << timer.GetMean() << std::endl;
  }

  return EXIT_SUCCESS;
}

void
InitializeCommandLineOptions(itk::ants::CommandLineParser * parser)
{
  using OptionType = itk::ants::CommandLineParser::OptionType;

  {
    std::string description = std::string("This option forces the image to be treated as a specified-") +
                              std::string("dimensional image.  If not specified, the program tries to ") +
                              std::string("infer the dimensionality from the input image.");
    OptionType::Pointer option = OptionType::New();
    option->SetLongName("image-dimensionality");
    option->SetShortName('d');
    option->SetUsageOption(0, "2/3/4");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("The target image (or multimodal target images) assumed to be ") +
                              std::string("aligned to a common image domain.");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("target-image");
    option->SetShortName('t');
    option->SetUsageOption(0, "targetImage");
    option->SetUsageOption(1, "[targetImageModality0,targetImageModality1,...,targetImageModalityN]");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("The atlas image (or multimodal atlas images) assumed to be ") +
                              std::string("aligned to a common image domain.");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("atlas-image");
    option->SetShortName('g');
    option->SetUsageOption(0, "atlasImage");
    option->SetUsageOption(1, "[atlasImageModality0,atlasImageModality1,...,atlasImageModalityN]");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description =
      std::string("The atlas segmentation images.  For performing label fusion the number of ") +
      std::string("specified segmentations should be identical to the number of atlas image sets.");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("atlas-segmentation");
    option->SetShortName('l');
    option->SetUsageOption(0, "atlasSegmentation");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description =
      std::string("Regularization term added to matrix Mx for calculating the inverse.  Default = 0.1");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("alpha");
    option->SetShortName('a');
    option->SetUsageOption(0, "0.1");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description =
      std::string("Exponent for mapping intensity difference to the joint error.  Default = 2.0");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("beta");
    option->SetShortName('b');
    option->SetUsageOption(0, "2.0");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Retain label posterior probability images.  Requires atlas segmentations ") +
                              std::string("to be specified.  Default = false");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("retain-label-posterior-images");
    option->SetShortName('r');
    option->SetUsageOption(0, "(0)/1");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Retain atlas voting images.  Default = false");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("retain-atlas-voting-images");
    option->SetShortName('f');
    option->SetUsageOption(0, "(0)/1");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Constrain solution to non-negative weights.");

    OptionType::Pointer option = OptionType::New();
    option->SetShortName('c');
    option->SetLongName("constrain-nonnegative");
    option->SetUsageOption(0, "(0)/1");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Use log Euclidean space for tensor math");

    OptionType::Pointer option = OptionType::New();
    option->SetShortName('u');
    option->SetLongName("log-euclidean");
    option->SetUsageOption(0, "(0)/1");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Patch radius for similarity measures.  Default = 2x2x2");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("patch-radius");
    option->SetShortName('p');
    option->SetUsageOption(0, "2");
    option->SetUsageOption(1, "2x2x2");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Metric to be used in determining the most similar neighborhood patch.  ") +
                              std::string("Options include Pearson's correlation (PC) and mean squares (MSQ). ") +
                              std::string("Default = PC (Pearson correlation).");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("patch-metric");
    option->SetShortName('m');
    option->SetUsageOption(0, "(PC)/MSQ");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Search radius for similarity measures.  Default = 3x3x3");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("search-radius");
    option->SetShortName('s');
    option->SetUsageOption(0, "3");
    option->SetUsageOption(1, "3x3x3");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Specify an exclusion region for the given label.");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("exclusion-image");
    option->SetShortName('e');
    option->SetUsageOption(0, "label[exclusionImage]");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("If a mask image is specified, fusion is only performed in the mask region.");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("mask-image");
    option->SetShortName('x');
    option->SetUsageOption(0, "maskImageFilename");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("The output is the intensity and/or label fusion image.  Additional ") +
                              std::string("optional outputs include the label posterior probability images ") +
                              std::string("and the atlas voting weight images.");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("output");
    option->SetShortName('o');
    option->SetUsageOption(0, "labelFusionImage");
    option->SetUsageOption(1, "intensityFusionImageFileNameFormat");
    option->SetUsageOption(2,
                           "[labelFusionImage,intensityFusionImageFileNameFormat,<"
                           "labelPosteriorProbabilityImageFileNameFormat>,<atlasVotingWeightImageFileNameFormat>]");
    option->SetDescription(description);
    parser->AddOption(option);
  }


  {
    std::string         description = std::string("Get version information.");
    OptionType::Pointer option = OptionType::New();
    option->SetLongName("version");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Verbose output.");

    OptionType::Pointer option = OptionType::New();
    option->SetShortName('v');
    option->SetLongName("verbose");
    option->SetUsageOption(0, "(0)/1");
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Print the help menu (short version).");

    OptionType::Pointer option = OptionType::New();
    option->SetShortName('h');
    option->SetDescription(description);
    parser->AddOption(option);
  }

  {
    std::string description = std::string("Print the help menu.");

    OptionType::Pointer option = OptionType::New();
    option->SetLongName("help");
    option->SetDescription(description);
    parser->AddOption(option);
  }
}

// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
antsJointTensorFusion(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "antsJointTensorFusion");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  itk::ants::CommandLineParser::Pointer parser = itk::ants::CommandLineParser::New();

  parser->SetCommand(argv[0]);

  std::string commandDescription =
    std::string("antsJointTensorFusion is an image fusion algorithm developed by Hongzhi Wang and ") +
    std::string("Paul Yushkevich which won segmentation challenges at MICCAI 2012 and MICCAI 2013. ") +
    std::string("The original label fusion framework was extended to accommodate intensities by ") +
    std::string("Brian Avants.  This implementation is based on Paul's original ITK-style ") +
    std::string("implementation and Brian's ANTsR implementation.  References include  1) H. Wang, ") +
    std::string("J. W. Suh, S. Das, J. Pluta, C. Craige, P. Yushkevich, Multi-atlas ") +
    std::string("segmentation with joint label fusion IEEE Trans. on Pattern ") +
    std::string("Analysis and Machine Intelligence, 35(3), 611-623, 2013. and 2) ") +
    std::string("H. Wang and P. A. Yushkevich, Multi-atlas segmentation with joint ") +
    std::string("label fusion and corrective learning--an open source implementation, ") +
    std::string("Front. Neuroinform., 2013. ");

  parser->SetCommandDescription(commandDescription);
  InitializeCommandLineOptions(parser);

  if (parser->Parse(argc, argv) == EXIT_FAILURE)
  {
    return EXIT_FAILURE;
  }

  if (argc == 1)
  {
    parser->PrintMenu(std::cerr, 5, false);
    return EXIT_FAILURE;
  }
  else if (parser->GetOption("help")->GetFunction() &&
           parser->Convert<bool>(parser->GetOption("help")->GetFunction()->GetName()))
  {
    parser->PrintMenu(std::cout, 5, false);
    return EXIT_SUCCESS;
  }
  else if (parser->GetOption('h')->GetFunction() &&
           parser->Convert<bool>(parser->GetOption('h')->GetFunction()->GetName()))
  {
    parser->PrintMenu(std::cout, 5, true);
    return EXIT_SUCCESS;
  }
  // Show automatic version
  itk::ants::CommandLineParser::OptionType::Pointer versionOption = parser->GetOption("version");
  if (versionOption && versionOption->GetNumberOfFunctions())
  {
    std::string versionFunction = versionOption->GetFunction(0)->GetName();
    ConvertToLowerCase(versionFunction);
    if (versionFunction.compare("1") == 0 || versionFunction.compare("true") == 0)
    {
      // Print Version Information
      std::cout << ANTs::Version::ExtendedVersionString() << std::endl;
      return EXIT_SUCCESS;
    }
  }
  // Get dimensionality
  unsigned int dimension = 3;

  itk::ants::CommandLineParser::OptionType::Pointer dimOption = parser->GetOption("image-dimensionality");
  if (dimOption && dimOption->GetNumberOfFunctions())
  {
    dimension = parser->Convert<unsigned int>(dimOption->GetFunction(0)->GetName());
  }
  else
  {
    // Read in the first intensity image to get the image dimension.
    std::string filename;

    itk::ants::CommandLineParser::OptionType::Pointer imageOption = parser->GetOption("target-image");
    if (imageOption && imageOption->GetNumberOfFunctions() > 0)
    {
      if (imageOption->GetFunction(0)->GetNumberOfParameters() > 0)
      {
        filename = imageOption->GetFunction(0)->GetParameter(0);
      }
      else
      {
        filename = imageOption->GetFunction(0)->GetName();
      }
    }
    else
    {
      std::cerr << "No input images were specified.  Specify an input image"
                << " with the -t option" << std::endl;
      return EXIT_FAILURE;
    }
    itk::ImageIOBase::Pointer imageIO =
      itk::ImageIOFactory::CreateImageIO(filename.c_str(), itk::IOFileModeEnum::ReadMode);
    dimension = imageIO->GetNumberOfDimensions();
  }

  switch (dimension)
  {
    case 2:
    {
      return antsJointTensorFusion<2>(parser);
    }
    break;
    case 3:
    {
      return antsJointTensorFusion<3>(parser);
    }
    break;
    case 4:
    {
      return antsJointTensorFusion<4>(parser);
    }
    break;
    default:
      std::cout << "Unsupported dimension" << std::endl;
      return EXIT_FAILURE;
  }
  return EXIT_SUCCESS;
}
} // namespace ants