1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
|
#include "antsCommandLineParser.h"
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include "ReadWriteData.h"
#include "itkNumericSeriesFileNames.h"
#include "itkTimeProbe.h"
#include "itkWeightedVotingFusionImageFilter.h"
#include "itkDiffusionTensor3D.h"
#include "itkNthElementImageAdaptor.h"
#include "itkCastImageFilter.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "stdio.h"
#include <algorithm>
#include <sstream>
#include <string>
#include <vector>
#include "ANTsVersion.h"
namespace ants
{
template <typename TFilter>
class CommandProgressUpdate : public itk::Command
{
public:
using Self = CommandProgressUpdate<TFilter>;
using Superclass = itk::Command;
using Pointer = itk::SmartPointer<CommandProgressUpdate<TFilter>>;
itkNewMacro(CommandProgressUpdate);
protected:
CommandProgressUpdate() = default;
;
using FilterType = TFilter;
unsigned int m_CurrentProgress{ 0 };
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
auto * po = dynamic_cast<itk::ProcessObject *>(caller);
if (!po)
return;
// std::cout << po->GetProgress() << std::endl;
if (typeid(event) == typeid(itk::ProgressEvent))
{
if (this->m_CurrentProgress < 99)
{
this->m_CurrentProgress++;
if (this->m_CurrentProgress % 10 == 0)
{
std::cout << this->m_CurrentProgress << std::flush;
}
else
{
std::cout << "*" << std::flush;
}
}
}
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto * po = dynamic_cast<itk::ProcessObject *>(const_cast<itk::Object *>(object));
if (!po)
return;
if (typeid(event) == typeid(itk::ProgressEvent))
{
if (this->m_CurrentProgress < 99)
{
this->m_CurrentProgress++;
if (this->m_CurrentProgress % 10 == 0)
{
std::cout << this->m_CurrentProgress << std::flush;
}
else
{
std::cout << "*" << std::flush;
}
}
}
}
};
template <unsigned int ImageDimension>
int
antsJointTensorFusion(itk::ants::CommandLineParser * parser)
{
using RealType = float;
using TensorType = itk::DiffusionTensor3D<RealType>;
using ImageType = itk::Image<RealType, ImageDimension>;
using TensorImageType = itk::Image<TensorType, ImageDimension>;
using TensorAdaptorType = itk::NthElementImageAdaptor<TensorImageType, RealType>;
using CastFilterType = itk::CastImageFilter<TensorAdaptorType, ImageType>;
using LabelImageType = itk::Image<unsigned int, ImageDimension>;
using MaskImageType = LabelImageType;
using OptionType = typename itk::ants::CommandLineParser::OptionType;
// Determine verbosity of output
bool verbose = false;
typename OptionType::Pointer verboseOption = parser->GetOption("verbose");
if (verboseOption && verboseOption->GetNumberOfFunctions())
{
verbose = parser->Convert<bool>(verboseOption->GetFunction(0)->GetName());
}
if (verbose)
{
std::cout << std::endl
<< "Running antsJointTensorFusion for " << ImageDimension << "-dimensional images." << std::endl
<< std::endl;
}
// Instantiate the joint fusion filter
using FusionFilterType = itk::WeightedVotingFusionImageFilter<ImageType, LabelImageType>;
typename FusionFilterType::Pointer fusionFilter = FusionFilterType::New();
using LabelType = typename LabelImageType::PixelType;
// Get the alpha and beta parameters
RealType alpha = 0.1;
typename OptionType::Pointer alphaOption = parser->GetOption("alpha");
if (alphaOption && alphaOption->GetNumberOfFunctions())
{
alpha = parser->Convert<RealType>(alphaOption->GetFunction(0)->GetName());
}
RealType beta = 2.0;
typename OptionType::Pointer betaOption = parser->GetOption("beta");
if (betaOption && betaOption->GetNumberOfFunctions())
{
beta = parser->Convert<RealType>(betaOption->GetFunction(0)->GetName());
}
fusionFilter->SetAlpha(alpha);
fusionFilter->SetBeta(beta);
// Get the search and patch radii
std::vector<unsigned int> searchRadius;
searchRadius.push_back(3);
typename OptionType::Pointer searchRadiusOption = parser->GetOption("search-radius");
if (searchRadiusOption && searchRadiusOption->GetNumberOfFunctions())
{
searchRadius = parser->ConvertVector<unsigned int>(searchRadiusOption->GetFunction(0)->GetName());
}
if (searchRadius.size() == 1)
{
for (unsigned int d = 1; d < ImageDimension; d++)
{
searchRadius.push_back(searchRadius[0]);
}
}
if (searchRadius.size() != ImageDimension)
{
if (verbose)
{
std::cerr << "Search radius specified incorrectly. Please see usage options." << std::endl;
}
return EXIT_FAILURE;
}
typename FusionFilterType::NeighborhoodRadiusType searchNeighborhoodRadius;
for (unsigned int d = 0; d < ImageDimension; d++)
{
searchNeighborhoodRadius[d] = searchRadius[d];
}
std::vector<unsigned int> patchRadius;
patchRadius.push_back(2);
typename OptionType::Pointer patchRadiusOption = parser->GetOption("patch-radius");
if (patchRadiusOption && patchRadiusOption->GetNumberOfFunctions())
{
patchRadius = parser->ConvertVector<unsigned int>(patchRadiusOption->GetFunction(0)->GetName());
}
if (patchRadius.size() == 1)
{
for (unsigned int d = 1; d < ImageDimension; d++)
{
patchRadius.push_back(patchRadius[0]);
}
}
if (patchRadius.size() != ImageDimension)
{
if (verbose)
{
std::cerr << "Patch radius specified incorrectly. Please see usage options." << std::endl;
}
return EXIT_FAILURE;
}
typename FusionFilterType::NeighborhoodRadiusType patchNeighborhoodRadius;
for (unsigned int d = 0; d < ImageDimension; d++)
{
patchNeighborhoodRadius[d] = patchRadius[d];
}
fusionFilter->SetNeighborhoodSearchRadius(searchNeighborhoodRadius);
fusionFilter->SetNeighborhoodPatchRadius(patchNeighborhoodRadius);
// Retain atlas voting and label posterior images
bool retainAtlasVotingImages = false;
bool retainLabelPosteriorImages = false;
bool constrainSolutionToNonnegativeWeights = false;
bool logEuclidean = false;
typename OptionType::Pointer logEuclideanOption = parser->GetOption("log-euclidean");
if (logEuclideanOption && logEuclideanOption->GetNumberOfFunctions() > 0)
{
logEuclidean = parser->Convert<bool>(logEuclideanOption->GetFunction()->GetName());
}
typename OptionType::Pointer retainLabelPosteriorOption = parser->GetOption("retain-label-posterior-images");
if (retainLabelPosteriorOption && retainLabelPosteriorOption->GetNumberOfFunctions() > 0)
{
retainLabelPosteriorImages = parser->Convert<bool>(retainLabelPosteriorOption->GetFunction()->GetName());
}
typename OptionType::Pointer retainAtlasVotingOption = parser->GetOption("retain-atlas-voting-images");
if (retainAtlasVotingOption && retainAtlasVotingOption->GetNumberOfFunctions() > 0)
{
retainAtlasVotingImages = parser->Convert<bool>(retainAtlasVotingOption->GetFunction()->GetName());
}
typename OptionType::Pointer constrainWeightsOption = parser->GetOption("constrain-nonnegative");
if (constrainWeightsOption && constrainWeightsOption->GetNumberOfFunctions() > 0)
{
constrainSolutionToNonnegativeWeights = parser->Convert<bool>(constrainWeightsOption->GetFunction()->GetName());
}
typename OptionType::Pointer metricOption = parser->GetOption("patch-metric");
if (metricOption && metricOption->GetNumberOfFunctions() > 0)
{
std::string metricString = metricOption->GetFunction()->GetName();
ConvertToLowerCase(metricString);
if (metricString.compare("pc") == 0)
{
fusionFilter->SetSimilarityMetric(itk::NonLocalPatchBasedImageFilterEnums::SimilarityMetric::PEARSON_CORRELATION);
}
else if (metricString.compare("msq") == 0)
{
fusionFilter->SetSimilarityMetric(itk::NonLocalPatchBasedImageFilterEnums::SimilarityMetric::MEAN_SQUARES);
}
else
{
std::cerr << "Unrecognized metric option. See help menu." << std::endl;
return EXIT_FAILURE;
}
}
fusionFilter->SetRetainAtlasVotingWeightImages(retainAtlasVotingImages);
fusionFilter->SetRetainLabelPosteriorProbabilityImages(retainLabelPosteriorImages);
fusionFilter->SetConstrainSolutionToNonnegativeWeights(constrainSolutionToNonnegativeWeights);
// Get the target image
unsigned int numberOfTargetModalities = 0;
typename FusionFilterType::InputImageList targetImageList;
typename OptionType::Pointer targetImageOption = parser->GetOption("target-image");
if (targetImageOption && targetImageOption->GetNumberOfFunctions())
{
if (targetImageOption->GetFunction(0)->GetNumberOfParameters() == 0)
{
typename TensorImageType::Pointer targetImage = nullptr;
std::string targetFile = targetImageOption->GetFunction(0)->GetName();
ReadTensorImage<TensorImageType>(targetImage, targetFile.c_str(), logEuclidean);
numberOfTargetModalities = 6;
for (unsigned int n = 0; n < numberOfTargetModalities; n++)
{
typename TensorAdaptorType::Pointer targetAdaptorImage = TensorAdaptorType::New();
targetAdaptorImage->SetImage(targetImage);
targetAdaptorImage->SelectNthElement(n);
// Can't use image adaptor directly, get error due to missing "ImageType::NeighborhoodAccessorFunctorType" in
// itk::ConstNeighborhoodIterator<itk::NthElementImageAdaptor<itk::Image<itk::DiffusionTensor3D<float>, 2>,
// float>
typename CastFilterType::Pointer castTensor = CastFilterType::New();
castTensor->SetInput(targetAdaptorImage);
castTensor->Update();
targetImageList.push_back(castTensor->GetOutput());
}
}
else
{
std::cout << "Only 1 modality (DiffusionTensor) allowed for target image" << std::endl;
return EXIT_FAILURE;
}
}
else
{
if (verbose)
{
std::cerr << "Target image(s) not specified." << std::endl;
}
return EXIT_FAILURE;
}
fusionFilter->SetTargetImage(targetImageList);
// Get the atlas images and segmentations
typename OptionType::Pointer atlasImageOption = parser->GetOption("atlas-image");
typename OptionType::Pointer atlasSegmentationOption = parser->GetOption("atlas-segmentation");
unsigned int numberOfAtlases = 0;
unsigned int numberOfAtlasSegmentations = 0;
unsigned int numberOfAtlasModalities = 6;
if (atlasImageOption && atlasImageOption->GetNumberOfFunctions())
{
numberOfAtlases = atlasImageOption->GetNumberOfFunctions();
}
if (atlasSegmentationOption && atlasSegmentationOption->GetNumberOfFunctions())
{
numberOfAtlasSegmentations = atlasSegmentationOption->GetNumberOfFunctions();
}
if (numberOfAtlases < 2)
{
if (verbose)
{
std::cerr << "At least 2 atlases are required." << std::endl;
}
return EXIT_FAILURE;
}
if (numberOfAtlasSegmentations != 0 && numberOfAtlasSegmentations != numberOfAtlases)
{
if (verbose)
{
std::cout << "Warning: the number of atlases does not match the number of "
<< "segmentations. Only performing joint intensity fusion." << std::endl;
}
numberOfAtlasSegmentations = 0;
}
for (unsigned int m = 0; m < numberOfAtlases; m++)
{
typename FusionFilterType::InputImageList atlasImageList;
typename LabelImageType::Pointer atlasSegmentation = nullptr;
if (atlasImageOption->GetFunction(m)->GetNumberOfParameters() == 0)
{
numberOfAtlasModalities = 6;
if (numberOfTargetModalities != numberOfAtlasModalities)
{
if (verbose)
{
std::cerr << "The number of atlas modalities does not match the number of target modalities." << std::endl;
}
return EXIT_FAILURE;
}
typename TensorImageType::Pointer atlasImage = nullptr;
std::string atlasFile = atlasImageOption->GetFunction(m)->GetName();
ReadTensorImage<TensorImageType>(atlasImage, atlasFile.c_str(), logEuclidean);
for (unsigned int n = 0; n < numberOfAtlasModalities; n++)
{
typename TensorAdaptorType::Pointer atlasAdaptorImage = TensorAdaptorType::New();
atlasAdaptorImage->SetImage(atlasImage);
atlasAdaptorImage->SelectNthElement(n);
typename CastFilterType::Pointer castTensor = CastFilterType::New();
castTensor->SetInput(atlasAdaptorImage);
castTensor->Update();
atlasImageList.push_back(castTensor->GetOutput());
}
}
else
{
std::cerr << "Only 1 modality (DiffusionTensor) allowed for atlas images" << std::endl;
return EXIT_FAILURE;
}
if (numberOfAtlasSegmentations > 0)
{
std::string atlasSegmentationFile = atlasSegmentationOption->GetFunction(m)->GetName();
ReadImage<LabelImageType>(atlasSegmentation, atlasSegmentationFile.c_str());
}
fusionFilter->AddAtlas(atlasImageList, atlasSegmentation);
}
// Get the exclusion images
typename OptionType::Pointer exclusionImageOption = parser->GetOption("exclusion-image");
if (exclusionImageOption && exclusionImageOption->GetNumberOfFunctions())
{
for (unsigned int n = 0; n < exclusionImageOption->GetNumberOfFunctions(); n++)
{
auto label = parser->Convert<LabelType>(exclusionImageOption->GetFunction(n)->GetName());
typename LabelImageType::Pointer exclusionImage = nullptr;
std::string exclusionFile = exclusionImageOption->GetFunction(n)->GetParameter(0);
ReadImage<LabelImageType>(exclusionImage, exclusionFile.c_str());
fusionFilter->AddLabelExclusionImage(label, exclusionImage);
}
}
// Get the mask
typename itk::ants::CommandLineParser::OptionType::Pointer maskImageOption = parser->GetOption("mask-image");
if (maskImageOption && maskImageOption->GetNumberOfFunctions())
{
typename MaskImageType::Pointer maskImage = nullptr;
std::string inputFile = maskImageOption->GetFunction(0)->GetName();
ReadImage<MaskImageType>(maskImage, inputFile.c_str());
fusionFilter->SetMaskImage(maskImage);
}
// Run the fusion program
itk::TimeProbe timer;
timer.Start();
if (verbose)
{
using CommandType = CommandProgressUpdate<FusionFilterType>;
typename CommandType::Pointer observer = CommandType::New();
fusionFilter->AddObserver(itk::ProgressEvent(), observer);
}
try
{
fusionFilter->Update();
}
catch (const itk::ExceptionObject & e)
{
if (verbose)
{
std::cerr << "Exception caught: " << e << std::endl;
}
return EXIT_FAILURE;
}
timer.Stop();
if (verbose)
{
std::cout << std::endl << std::endl;
fusionFilter->Print(std::cout, 3);
}
// write the output
if (verbose)
{
std::cout << std::endl << "Writing output:" << std::endl;
}
typename OptionType::Pointer outputOption = parser->GetOption("output");
if (outputOption && outputOption->GetNumberOfFunctions())
{
std::string labelFusionName;
std::string intensityFusionName;
std::string labelPosteriorName;
std::string atlasVotingName;
if (outputOption->GetFunction(0)->GetNumberOfParameters() == 0)
{
if (numberOfAtlasSegmentations != 0)
{
labelFusionName = outputOption->GetFunction(0)->GetName();
}
else
{
intensityFusionName = outputOption->GetFunction(0)->GetName();
}
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
if (numberOfAtlasSegmentations != 0)
{
labelFusionName = outputOption->GetFunction(0)->GetParameter(0);
}
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 1)
{
intensityFusionName = outputOption->GetFunction(0)->GetParameter(1);
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 2)
{
if (numberOfAtlasSegmentations != 0)
{
labelPosteriorName = outputOption->GetFunction(0)->GetParameter(2);
}
}
if (outputOption->GetFunction(0)->GetNumberOfParameters() > 3)
{
atlasVotingName = outputOption->GetFunction(0)->GetParameter(3);
}
if (!labelFusionName.empty())
{
ANTs::WriteImage<LabelImageType>(fusionFilter->GetOutput(), labelFusionName.c_str());
}
if (!intensityFusionName.empty())
{
typename TensorImageType::Pointer jointTensorImage = TensorImageType::New();
jointTensorImage->SetRegions(fusionFilter->GetJointIntensityFusionImage(0)->GetRequestedRegion().GetSize());
jointTensorImage->SetSpacing(fusionFilter->GetJointIntensityFusionImage(0)->GetSpacing());
jointTensorImage->SetOrigin(fusionFilter->GetJointIntensityFusionImage(0)->GetOrigin());
jointTensorImage->SetDirection(fusionFilter->GetJointIntensityFusionImage(0)->GetDirection());
jointTensorImage->AllocateInitialized();
for (unsigned int i = 0; i < 6; i++)
{
if (verbose)
{
std::cout << " Merging tensor fusion image channels " << std::endl;
}
typename ImageType::Pointer jointIntensityFusionImage = fusionFilter->GetJointIntensityFusionImage(i);
typename itk::ImageRegionIteratorWithIndex<ImageType> valueIt(
jointIntensityFusionImage, jointIntensityFusionImage->GetLargestPossibleRegion());
while (!valueIt.IsAtEnd())
{
TensorType dt = jointTensorImage->GetPixel(valueIt.GetIndex());
dt[i] = valueIt.Value();
jointTensorImage->SetPixel(valueIt.GetIndex(), dt);
++valueIt;
}
}
if (verbose)
{
std::cout << " Writing tensor fusion image" << std::endl;
}
WriteTensorImage<TensorImageType>(jointTensorImage, intensityFusionName.c_str());
}
if (!labelPosteriorName.empty() && fusionFilter->GetRetainLabelPosteriorProbabilityImages())
{
typename FusionFilterType::LabelSetType labelSet = fusionFilter->GetLabelSet();
typename FusionFilterType::LabelSetType::const_iterator labelIt;
for (labelIt = labelSet.begin(); labelIt != labelSet.end(); ++labelIt)
{
if (*labelIt == 0)
{
continue;
}
if (verbose)
{
std::cout << " Writing label probability image (label " << *labelIt << ")" << std::endl;
}
char buffer[256];
std::snprintf(buffer, sizeof(buffer), labelPosteriorName.c_str(), *labelIt);
ANTs::WriteImage<typename FusionFilterType::ProbabilityImageType>(
fusionFilter->GetLabelPosteriorProbabilityImage(*labelIt), buffer);
}
}
if (!atlasVotingName.empty() && fusionFilter->GetRetainAtlasVotingWeightImages())
{
itk::NumericSeriesFileNames::Pointer fileNamesCreator = itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex(1);
fileNamesCreator->SetEndIndex(numberOfAtlases);
fileNamesCreator->SetSeriesFormat(atlasVotingName.c_str());
const std::vector<std::string> & imageNames = fileNamesCreator->GetFileNames();
for (unsigned int i = 0; i < imageNames.size(); i++)
{
if (verbose)
{
std::cout << " Writing atlas voting image (atlas " << i + 1 << ")" << std::endl;
}
ANTs::WriteImage<typename FusionFilterType::ProbabilityImageType>(fusionFilter->GetAtlasVotingWeightImage(i),
imageNames[i].c_str());
}
}
}
if (verbose)
{
std::cout << "Elapsed time: " << timer.GetMean() << std::endl;
}
return EXIT_SUCCESS;
}
void
InitializeCommandLineOptions(itk::ants::CommandLineParser * parser)
{
using OptionType = itk::ants::CommandLineParser::OptionType;
{
std::string description = std::string("This option forces the image to be treated as a specified-") +
std::string("dimensional image. If not specified, the program tries to ") +
std::string("infer the dimensionality from the input image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("image-dimensionality");
option->SetShortName('d');
option->SetUsageOption(0, "2/3/4");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The target image (or multimodal target images) assumed to be ") +
std::string("aligned to a common image domain.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("target-image");
option->SetShortName('t');
option->SetUsageOption(0, "targetImage");
option->SetUsageOption(1, "[targetImageModality0,targetImageModality1,...,targetImageModalityN]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The atlas image (or multimodal atlas images) assumed to be ") +
std::string("aligned to a common image domain.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("atlas-image");
option->SetShortName('g');
option->SetUsageOption(0, "atlasImage");
option->SetUsageOption(1, "[atlasImageModality0,atlasImageModality1,...,atlasImageModalityN]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("The atlas segmentation images. For performing label fusion the number of ") +
std::string("specified segmentations should be identical to the number of atlas image sets.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("atlas-segmentation");
option->SetShortName('l');
option->SetUsageOption(0, "atlasSegmentation");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Regularization term added to matrix Mx for calculating the inverse. Default = 0.1");
OptionType::Pointer option = OptionType::New();
option->SetLongName("alpha");
option->SetShortName('a');
option->SetUsageOption(0, "0.1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Exponent for mapping intensity difference to the joint error. Default = 2.0");
OptionType::Pointer option = OptionType::New();
option->SetLongName("beta");
option->SetShortName('b');
option->SetUsageOption(0, "2.0");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Retain label posterior probability images. Requires atlas segmentations ") +
std::string("to be specified. Default = false");
OptionType::Pointer option = OptionType::New();
option->SetLongName("retain-label-posterior-images");
option->SetShortName('r');
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Retain atlas voting images. Default = false");
OptionType::Pointer option = OptionType::New();
option->SetLongName("retain-atlas-voting-images");
option->SetShortName('f');
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Constrain solution to non-negative weights.");
OptionType::Pointer option = OptionType::New();
option->SetShortName('c');
option->SetLongName("constrain-nonnegative");
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Use log Euclidean space for tensor math");
OptionType::Pointer option = OptionType::New();
option->SetShortName('u');
option->SetLongName("log-euclidean");
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Patch radius for similarity measures. Default = 2x2x2");
OptionType::Pointer option = OptionType::New();
option->SetLongName("patch-radius");
option->SetShortName('p');
option->SetUsageOption(0, "2");
option->SetUsageOption(1, "2x2x2");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Metric to be used in determining the most similar neighborhood patch. ") +
std::string("Options include Pearson's correlation (PC) and mean squares (MSQ). ") +
std::string("Default = PC (Pearson correlation).");
OptionType::Pointer option = OptionType::New();
option->SetLongName("patch-metric");
option->SetShortName('m');
option->SetUsageOption(0, "(PC)/MSQ");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Search radius for similarity measures. Default = 3x3x3");
OptionType::Pointer option = OptionType::New();
option->SetLongName("search-radius");
option->SetShortName('s');
option->SetUsageOption(0, "3");
option->SetUsageOption(1, "3x3x3");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Specify an exclusion region for the given label.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("exclusion-image");
option->SetShortName('e');
option->SetUsageOption(0, "label[exclusionImage]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("If a mask image is specified, fusion is only performed in the mask region.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("mask-image");
option->SetShortName('x');
option->SetUsageOption(0, "maskImageFilename");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("The output is the intensity and/or label fusion image. Additional ") +
std::string("optional outputs include the label posterior probability images ") +
std::string("and the atlas voting weight images.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("output");
option->SetShortName('o');
option->SetUsageOption(0, "labelFusionImage");
option->SetUsageOption(1, "intensityFusionImageFileNameFormat");
option->SetUsageOption(2,
"[labelFusionImage,intensityFusionImageFileNameFormat,<"
"labelPosteriorProbabilityImageFileNameFormat>,<atlasVotingWeightImageFileNameFormat>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Get version information.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("version");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Verbose output.");
OptionType::Pointer option = OptionType::New();
option->SetShortName('v');
option->SetLongName("verbose");
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu (short version).");
OptionType::Pointer option = OptionType::New();
option->SetShortName('h');
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("help");
option->SetDescription(description);
parser->AddOption(option);
}
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
antsJointTensorFusion(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "antsJointTensorFusion");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
itk::ants::CommandLineParser::Pointer parser = itk::ants::CommandLineParser::New();
parser->SetCommand(argv[0]);
std::string commandDescription =
std::string("antsJointTensorFusion is an image fusion algorithm developed by Hongzhi Wang and ") +
std::string("Paul Yushkevich which won segmentation challenges at MICCAI 2012 and MICCAI 2013. ") +
std::string("The original label fusion framework was extended to accommodate intensities by ") +
std::string("Brian Avants. This implementation is based on Paul's original ITK-style ") +
std::string("implementation and Brian's ANTsR implementation. References include 1) H. Wang, ") +
std::string("J. W. Suh, S. Das, J. Pluta, C. Craige, P. Yushkevich, Multi-atlas ") +
std::string("segmentation with joint label fusion IEEE Trans. on Pattern ") +
std::string("Analysis and Machine Intelligence, 35(3), 611-623, 2013. and 2) ") +
std::string("H. Wang and P. A. Yushkevich, Multi-atlas segmentation with joint ") +
std::string("label fusion and corrective learning--an open source implementation, ") +
std::string("Front. Neuroinform., 2013. ");
parser->SetCommandDescription(commandDescription);
InitializeCommandLineOptions(parser);
if (parser->Parse(argc, argv) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
if (argc == 1)
{
parser->PrintMenu(std::cerr, 5, false);
return EXIT_FAILURE;
}
else if (parser->GetOption("help")->GetFunction() &&
parser->Convert<bool>(parser->GetOption("help")->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, false);
return EXIT_SUCCESS;
}
else if (parser->GetOption('h')->GetFunction() &&
parser->Convert<bool>(parser->GetOption('h')->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, true);
return EXIT_SUCCESS;
}
// Show automatic version
itk::ants::CommandLineParser::OptionType::Pointer versionOption = parser->GetOption("version");
if (versionOption && versionOption->GetNumberOfFunctions())
{
std::string versionFunction = versionOption->GetFunction(0)->GetName();
ConvertToLowerCase(versionFunction);
if (versionFunction.compare("1") == 0 || versionFunction.compare("true") == 0)
{
// Print Version Information
std::cout << ANTs::Version::ExtendedVersionString() << std::endl;
return EXIT_SUCCESS;
}
}
// Get dimensionality
unsigned int dimension = 3;
itk::ants::CommandLineParser::OptionType::Pointer dimOption = parser->GetOption("image-dimensionality");
if (dimOption && dimOption->GetNumberOfFunctions())
{
dimension = parser->Convert<unsigned int>(dimOption->GetFunction(0)->GetName());
}
else
{
// Read in the first intensity image to get the image dimension.
std::string filename;
itk::ants::CommandLineParser::OptionType::Pointer imageOption = parser->GetOption("target-image");
if (imageOption && imageOption->GetNumberOfFunctions() > 0)
{
if (imageOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
filename = imageOption->GetFunction(0)->GetParameter(0);
}
else
{
filename = imageOption->GetFunction(0)->GetName();
}
}
else
{
std::cerr << "No input images were specified. Specify an input image"
<< " with the -t option" << std::endl;
return EXIT_FAILURE;
}
itk::ImageIOBase::Pointer imageIO =
itk::ImageIOFactory::CreateImageIO(filename.c_str(), itk::IOFileModeEnum::ReadMode);
dimension = imageIO->GetNumberOfDimensions();
}
switch (dimension)
{
case 2:
{
return antsJointTensorFusion<2>(parser);
}
break;
case 3:
{
return antsJointTensorFusion<3>(parser);
}
break;
case 4:
{
return antsJointTensorFusion<4>(parser);
}
break;
default:
std::cout << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
} // namespace ants
|