1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include "ReadWriteData.h"
#include "antsCommandLineParser.h"
#include "itkCSVNumericObjectFileWriter.h"
#include "itkImageRegistrationMethodv4.h"
#include "itkSyNImageRegistrationMethod.h"
#include "itkDisplacementFieldTransform.h"
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4.h"
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkCorrelationImageToImageMetricv4.h"
#include "itkImageToImageMetricv4.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkImageMomentsCalculator.h"
#include "itkImageToHistogramFilter.h"
#include "itkHistogramMatchingImageFilter.h"
#include "itkIntensityWindowingImageFilter.h"
#include "itkTransformToDisplacementFieldFilter.h"
#include "itkIdentityTransform.h"
#include "itkAffineTransform.h"
#include "itkBSplineTransform.h"
#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkCompositeTransform.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransform.h"
#include "itkIdentityTransform.h"
#include "itkEuler2DTransform.h"
#include "itkEuler3DTransform.h"
#include "itkTransform.h"
#include "itkExtractImageFilter.h"
#include "itkBSplineTransformParametersAdaptor.h"
#include "itkBSplineSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor.h"
#include "itkGaussianSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor.h"
#include "itkTimeVaryingVelocityFieldTransformParametersAdaptor.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkConjugateGradientLineSearchOptimizerv4.h"
#include "itkQuasiNewtonOptimizerv4.h"
#include "itkHistogramMatchingImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkMacro.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkResampleImageFilter.h"
#include "itkShrinkImageFilter.h"
#include "itkTimeProbe.h"
#include "itkTransformFileReader.h"
#include "itkTransformFileWriter.h"
#include "itkSimilarity2DTransform.h"
#include "itkSimilarity3DTransform.h"
// Headers for interpolating functions (to support the --interpolation choice)
#include "itkBSplineInterpolateImageFunction.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkInterpolateImageFunction.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkWindowedSincInterpolateImageFunction.h"
#include <sstream>
namespace ants
{
/** \class antsRegistrationCommandIterationUpdate
* \brief change parameters between iterations of registration
*/
template <typename TFilter>
class antsRegistrationCommandIterationUpdate : public itk::Command
{
public:
using Self = antsRegistrationCommandIterationUpdate<TFilter>;
using Superclass = itk::Command;
using Pointer = itk::SmartPointer<Self>;
itkNewMacro(Self);
protected:
antsRegistrationCommandIterationUpdate() { this->m_LogStream = &std::cout; }
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto * filter = const_cast<TFilter *>(dynamic_cast<const TFilter *>(object));
unsigned int currentLevel = 0;
if (typeid(event) == typeid(itk::IterationEvent))
{
currentLevel = filter->GetCurrentLevel() + 1;
}
if (currentLevel < this->m_NumberOfIterations.size())
{
typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors =
filter->GetShrinkFactorsPerDimension(currentLevel);
typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
typename TFilter::TransformParametersAdaptorsContainerType adaptors =
filter->GetTransformParametersAdaptorsPerLevel();
this->Logger() << " Current level = " << currentLevel << std::endl;
this->Logger() << " number of iterations = " << this->m_NumberOfIterations[currentLevel] << std::endl;
this->Logger() << " shrink factors = " << shrinkFactors << std::endl;
this->Logger() << " smoothing sigmas = " << smoothingSigmas[currentLevel] << std::endl;
this->Logger() << " required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters()
<< std::endl;
using GradientDescentOptimizerType = itk::ConjugateGradientLineSearchOptimizerv4;
auto * optimizer = reinterpret_cast<GradientDescentOptimizerType *>(filter->GetModifiableOptimizer());
optimizer->SetNumberOfIterations(this->m_NumberOfIterations[currentLevel]);
optimizer->SetMinimumConvergenceValue(1.e-7);
optimizer->SetConvergenceWindowSize(10);
optimizer->SetLowerLimit(0);
optimizer->SetUpperLimit(2);
optimizer->SetEpsilon(0.1);
}
}
void
SetNumberOfIterations(const std::vector<unsigned int> & iterations)
{
this->m_NumberOfIterations = iterations;
}
void
SetLogStream(std::ostream & logStream)
{
this->m_LogStream = &logStream;
}
private:
std::ostream &
Logger() const
{
return *m_LogStream;
}
std::vector<unsigned int> m_NumberOfIterations;
std::ostream * m_LogStream;
};
template <typename T>
inline std::string
ants_moco_to_string(const T & t)
{
std::stringstream ss;
ss << t;
return ss.str();
}
template <typename ImageType>
typename ImageType::Pointer
PreprocessImage(ImageType * inputImage,
typename ImageType::PixelType lowerScaleFunction,
typename ImageType::PixelType upperScaleFunction,
float winsorizeLowerQuantile,
float winsorizeUpperQuantile,
ImageType * histogramMatchSourceImage = nullptr)
{
bool verbose = false;
using HistogramFilterType = itk::Statistics::ImageToHistogramFilter<ImageType>;
using InputBooleanObjectType = typename HistogramFilterType::InputBooleanObjectType;
using HistogramSizeType = typename HistogramFilterType::HistogramSizeType;
HistogramSizeType histogramSize(1);
histogramSize[0] = 256;
typename InputBooleanObjectType::Pointer autoMinMaxInputObject = InputBooleanObjectType::New();
autoMinMaxInputObject->Set(true);
typename HistogramFilterType::Pointer histogramFilter = HistogramFilterType::New();
histogramFilter->SetInput(inputImage);
histogramFilter->SetAutoMinimumMaximumInput(autoMinMaxInputObject);
histogramFilter->SetHistogramSize(histogramSize);
histogramFilter->SetMarginalScale(10.0);
histogramFilter->Update();
float lowerFunction = histogramFilter->GetOutput()->Quantile(0, winsorizeLowerQuantile);
float upperFunction = histogramFilter->GetOutput()->Quantile(0, winsorizeUpperQuantile);
using IntensityWindowingImageFilterType = itk::IntensityWindowingImageFilter<ImageType, ImageType>;
typename IntensityWindowingImageFilterType::Pointer windowingFilter = IntensityWindowingImageFilterType::New();
windowingFilter->SetInput(inputImage);
windowingFilter->SetWindowMinimum(lowerFunction);
windowingFilter->SetWindowMaximum(upperFunction);
windowingFilter->SetOutputMinimum(lowerScaleFunction);
windowingFilter->SetOutputMaximum(upperScaleFunction);
windowingFilter->Update();
typename ImageType::Pointer outputImage = nullptr;
if (histogramMatchSourceImage)
{
using HistogramMatchingFilterType = itk::HistogramMatchingImageFilter<ImageType, ImageType>;
typename HistogramMatchingFilterType::Pointer matchingFilter = HistogramMatchingFilterType::New();
matchingFilter->SetInput(windowingFilter->GetOutput());
matchingFilter->SetReferenceImage(histogramMatchSourceImage);
matchingFilter->SetNumberOfHistogramLevels(256);
matchingFilter->SetNumberOfMatchPoints(12);
matchingFilter->ThresholdAtMeanIntensityOn();
matchingFilter->Update();
outputImage = matchingFilter->GetOutput();
outputImage->Update();
outputImage->DisconnectPipeline();
using CalculatorType = itk::MinimumMaximumImageCalculator<ImageType>;
typename CalculatorType::Pointer calc = CalculatorType::New();
calc->SetImage(inputImage);
calc->ComputeMaximum();
calc->ComputeMinimum();
if (itk::Math::abs(calc->GetMaximum() - calc->GetMinimum()) < static_cast<typename ImageType::PixelType>(1.e-9))
{
if (verbose)
std::cout << "Warning: bad time point - too little intensity variation" << std::endl;
return histogramMatchSourceImage;
}
}
else
{
outputImage = windowingFilter->GetOutput();
outputImage->Update();
outputImage->DisconnectPipeline();
}
return outputImage;
}
template <typename T>
struct ants_moco_index_cmp
{
ants_moco_index_cmp(const T _arr)
: arr(_arr)
{}
bool
operator()(const size_t a, const size_t b) const
{
return arr[a] < arr[b];
}
const T arr;
};
template <typename TFilter>
class CommandIterationUpdate final : public itk::Command
{
public:
using Self = CommandIterationUpdate<TFilter>;
using Superclass = itk::Command;
using Pointer = itk::SmartPointer<Self>;
itkNewMacro(Self);
protected:
CommandIterationUpdate() = default;
public:
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
bool verbose = false;
auto * filter = const_cast<TFilter *>(dynamic_cast<const TFilter *>(object));
if (typeid(event) != typeid(itk::IterationEvent))
{
return;
}
unsigned int currentLevel = filter->GetCurrentLevel();
typename TFilter::ShrinkFactorsPerDimensionContainerType shrinkFactors =
filter->GetShrinkFactorsPerDimension(currentLevel);
typename TFilter::SmoothingSigmasArrayType smoothingSigmas = filter->GetSmoothingSigmasPerLevel();
typename TFilter::TransformParametersAdaptorsContainerType adaptors =
filter->GetTransformParametersAdaptorsPerLevel();
if (verbose)
std::cout << " Current level = " << currentLevel << std::endl;
if (verbose)
std::cout << " number of iterations = " << this->m_NumberOfIterations[currentLevel] << std::endl;
if (verbose)
std::cout << " shrink factor = " << shrinkFactors[currentLevel] << std::endl;
if (verbose)
std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
if (verbose)
std::cout << " required fixed parameters = " << adaptors[currentLevel]->GetRequiredFixedParameters()
<< std::endl;
using OptimizerType = itk::ConjugateGradientLineSearchOptimizerv4;
auto * optimizer = reinterpret_cast<OptimizerType *>(filter->GetModifiableOptimizer());
optimizer->SetNumberOfIterations(this->m_NumberOfIterations[currentLevel]);
optimizer->SetMinimumConvergenceValue(1.e-7);
optimizer->SetConvergenceWindowSize(10);
optimizer->SetLowerLimit(0);
optimizer->SetUpperLimit(2);
optimizer->SetEpsilon(0.1);
}
void
SetNumberOfIterations(std::vector<unsigned int> iterations)
{
this->m_NumberOfIterations = iterations;
}
private:
std::vector<unsigned int> m_NumberOfIterations;
};
// Transform traits to generalize the rigid transform
//
template <unsigned int ImageDimension>
class RigidTransformTraits
{
// Don't worry about the fact that the default option is the
// affine Transform, that one will not actually be instantiated.
public:
using TransformType = itk::AffineTransform<double, ImageDimension>;
};
template <>
class RigidTransformTraits<2>
{
public:
using TransformType = itk::Euler2DTransform<double>;
};
template <>
class RigidTransformTraits<3>
{
public:
// typedef itk::VersorRigid3DTransform<double> TransformType;
// typedef itk::QuaternionRigidTransform<double> TransformType;
using TransformType = itk::Euler3DTransform<double>;
};
template <unsigned int ImageDimension>
class SimilarityTransformTraits
{
// Don't worry about the fact that the default option is the
// affine Transform, that one will not actually be instantiated.
public:
using TransformType = itk::AffineTransform<double, ImageDimension>;
};
template <>
class SimilarityTransformTraits<2>
{
public:
using TransformType = itk::Similarity2DTransform<double>;
};
template <>
class SimilarityTransformTraits<3>
{
public:
using TransformType = itk::Similarity3DTransform<double>;
};
/*
template <unsigned int ImageDimension>
class CompositeAffineTransformTraits
{
// Don't worry about the fact that the default option is the
// affine Transform, that one will not actually be instantiated.
public:
typedef itk::AffineTransform<double, ImageDimension> TransformType;
};
template <>
class CompositeAffineTransformTraits<2>
{
public:
typedef itk::ANTSCenteredAffine2DTransform<double> TransformType;
};
template <>
class CompositeAffineTransformTraits<3>
{
public:
typedef itk::ANTSAffine3DTransform<double> TransformType;
};
*/
template <typename TImageIn, typename TImageOut>
void
AverageTimeImages(typename TImageIn::Pointer image_in,
typename TImageOut::Pointer image_avg,
std::vector<unsigned int> timelist)
{
bool verbose = false;
using ImageType = TImageIn;
using OutImageType = TImageOut;
enum
{
ImageDimension = ImageType::ImageDimension
};
using Iterator = itk::ImageRegionIteratorWithIndex<OutImageType>;
image_avg->FillBuffer(0);
unsigned int timedims = image_in->GetLargestPossibleRegion().GetSize()[ImageDimension - 1];
if (timelist.empty())
{
for (unsigned int timedim = 0; timedim < timedims; timedim++)
{
timelist.push_back(timedim);
}
}
if (verbose)
std::cout << " averaging with " << timelist.size() << " images of " << timedims << " timedims " << std::endl;
Iterator vfIter2(image_avg, image_avg->GetLargestPossibleRegion());
for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
{
typename OutImageType::PixelType fval = 0;
typename ImageType::IndexType ind;
typename OutImageType::IndexType spind = vfIter2.GetIndex();
for (unsigned int & xx : timelist)
{
for (unsigned int yy = 0; yy < ImageDimension - 1; yy++)
{
ind[yy] = spind[yy];
}
ind[ImageDimension - 1] = xx;
fval += image_in->GetPixel(ind);
}
fval /= static_cast<typename OutImageType::PixelType>(timelist.size());
image_avg->SetPixel(spind, fval);
}
if (verbose)
std::cout << " averaging images done " << std::endl;
}
template <unsigned int ImageDimension>
int
ants_motion(itk::ants::CommandLineParser * parser)
{
unsigned int verbose = 0;
itk::ants::CommandLineParser::OptionType::Pointer vOption = parser->GetOption("verbose");
if (vOption && vOption->GetNumberOfFunctions())
{
verbose = parser->Convert<unsigned int>(vOption->GetFunction(0)->GetName());
}
if (verbose)
std::cout << " verbose " << std::endl;
// We infer the number of stages by the number of transformations
// specified by the user which should match the number of metrics.
unsigned numberOfStages = 0;
using PixelType = float;
using RealType = double;
using FixedIOImageType = itk::Image<PixelType, ImageDimension>;
using FixedImageType = itk::Image<PixelType, ImageDimension>;
using MovingIOImageType = itk::Image<PixelType, ImageDimension + 1>;
using MovingImageType = itk::Image<PixelType, ImageDimension + 1>;
using VectorIOType = itk::Vector<RealType, ImageDimension + 1>;
using DisplacementIOFieldType = itk::Image<VectorIOType, ImageDimension + 1>;
using VectorType = itk::Vector<RealType, ImageDimension>;
using DisplacementFieldType = itk::Image<VectorType, ImageDimension>;
using vMatrix = vnl_matrix<RealType>;
vMatrix param_values;
using CompositeTransformType = itk::CompositeTransform<RealType, ImageDimension>;
std::vector<typename CompositeTransformType::Pointer> CompositeTransformVector;
using OptionType = typename itk::ants::CommandLineParser::OptionType;
typename OptionType::Pointer averageOption = parser->GetOption("average-image");
if (averageOption && averageOption->GetNumberOfFunctions())
{
typename OptionType::Pointer outputOption = parser->GetOption("output");
if (!outputOption)
{
std::cerr << "Output option not specified. Should be the output average image name." << std::endl;
return EXIT_FAILURE;
}
std::string outputPrefix = outputOption->GetFunction(0)->GetParameter(0);
if (outputPrefix.length() < 3)
{
outputPrefix = outputOption->GetFunction(0)->GetName();
}
std::string fn = averageOption->GetFunction(0)->GetName();
typename MovingIOImageType::Pointer movingImage;
ReadImage<MovingIOImageType>(movingImage, fn.c_str());
typename FixedIOImageType::Pointer avgImage;
using ExtractFilterType = itk::ExtractImageFilter<MovingIOImageType, FixedIOImageType>;
typename MovingIOImageType::RegionType extractRegion = movingImage->GetLargestPossibleRegion();
extractRegion.SetSize(ImageDimension, 0);
typename ExtractFilterType::Pointer extractFilter = ExtractFilterType::New();
extractFilter->SetInput(movingImage);
extractFilter->SetDirectionCollapseToSubmatrix();
if (ImageDimension == 2)
{
extractFilter->SetDirectionCollapseToIdentity();
}
unsigned int td = 0;
extractRegion.SetIndex(ImageDimension, td);
extractFilter->SetExtractionRegion(extractRegion);
extractFilter->Update();
avgImage = extractFilter->GetOutput();
std::vector<unsigned int> timelist;
AverageTimeImages<MovingIOImageType, FixedIOImageType>(movingImage, avgImage, timelist);
if (verbose)
std::cout << "average out " << outputPrefix << std::endl;
ANTs::WriteImage<FixedIOImageType>(avgImage, outputPrefix.c_str());
return EXIT_SUCCESS;
}
typename OptionType::Pointer transformOption = parser->GetOption("transform");
if (transformOption && transformOption->GetNumberOfFunctions())
{
numberOfStages = transformOption->GetNumberOfFunctions();
}
else
{
std::cerr << "No transformations are specified." << std::endl;
return EXIT_FAILURE;
}
if (verbose)
std::cout << "Registration using " << numberOfStages << " total stages." << std::endl;
// Get the interpolator and possible parameters
std::string whichInterpolator("linear");
typename OptionType::Pointer interpolationOption = parser->GetOption("interpolation");
if (interpolationOption && interpolationOption->GetNumberOfFunctions())
{
whichInterpolator = interpolationOption->GetFunction(0)->GetName();
ConvertToLowerCase(whichInterpolator);
}
using ImageType = itk::Image<PixelType, ImageDimension>; // Used only for templating interp functions
using InterpolatorType = itk::InterpolateImageFunction<ImageType, RealType>;
typename InterpolatorType::Pointer interpolator = nullptr;
if (!std::strcmp(whichInterpolator.c_str(), "linear"))
{
using LinearInterpolatorType = itk::LinearInterpolateImageFunction<ImageType, RealType>;
typename LinearInterpolatorType::Pointer linearInterpolator = LinearInterpolatorType::New();
interpolator = linearInterpolator;
}
else if (!std::strcmp(whichInterpolator.c_str(), "nearestneighbor"))
{
using NearestNeighborInterpolatorType = itk::NearestNeighborInterpolateImageFunction<ImageType, RealType>;
typename NearestNeighborInterpolatorType::Pointer nearestNeighborInterpolator =
NearestNeighborInterpolatorType::New();
interpolator = nearestNeighborInterpolator;
}
else if (!std::strcmp(whichInterpolator.c_str(), "bspline"))
{
using BSplineInterpolatorType = itk::BSplineInterpolateImageFunction<ImageType, RealType>;
typename BSplineInterpolatorType::Pointer bSplineInterpolator = BSplineInterpolatorType::New();
if (interpolationOption->GetFunction(0)->GetNumberOfParameters() > 0)
{
auto bsplineOrder = parser->Convert<unsigned int>(interpolationOption->GetFunction(0)->GetParameter(0));
bSplineInterpolator->SetSplineOrder(bsplineOrder);
}
interpolator = bSplineInterpolator;
}
else if (!std::strcmp(whichInterpolator.c_str(), "CosineWindowedSinc"))
{
using CosineInterpolatorType =
itk::WindowedSincInterpolateImageFunction<ImageType,
3,
itk::Function::CosineWindowFunction<3, RealType, RealType>,
itk::ConstantBoundaryCondition<ImageType>,
RealType>;
typename CosineInterpolatorType::Pointer cosineInterpolator = CosineInterpolatorType::New();
interpolator = cosineInterpolator;
}
else if (!std::strcmp(whichInterpolator.c_str(), "hammingwindowedsinc"))
{
using HammingInterpolatorType =
itk::WindowedSincInterpolateImageFunction<ImageType,
3,
itk::Function::HammingWindowFunction<3, RealType, RealType>,
itk::ConstantBoundaryCondition<ImageType>,
RealType>;
typename HammingInterpolatorType::Pointer hammingInterpolator = HammingInterpolatorType::New();
interpolator = hammingInterpolator;
}
else if (!std::strcmp(whichInterpolator.c_str(), "lanczoswindowedsinc"))
{
using LanczosInterpolatorType =
itk::WindowedSincInterpolateImageFunction<ImageType,
3,
itk::Function::LanczosWindowFunction<3, RealType, RealType>,
itk::ConstantBoundaryCondition<ImageType>,
RealType>;
typename LanczosInterpolatorType::Pointer lanczosInterpolator = LanczosInterpolatorType::New();
interpolator = lanczosInterpolator;
}
else if (!std::strcmp(whichInterpolator.c_str(), "blackmanwindowedsinc"))
{
using BlackmanInterpolatorType =
itk::WindowedSincInterpolateImageFunction<ImageType,
3,
itk::Function::BlackmanWindowFunction<3, RealType, RealType>,
itk::ConstantBoundaryCondition<ImageType>,
RealType>;
typename BlackmanInterpolatorType::Pointer blackmanInterpolator = BlackmanInterpolatorType::New();
interpolator = blackmanInterpolator;
}
else if (!std::strcmp(whichInterpolator.c_str(), "welchwindowedsinc"))
{
using WelchInterpolatorType =
itk::WindowedSincInterpolateImageFunction<ImageType,
3,
itk::Function::WelchWindowFunction<3, RealType, RealType>,
itk::ConstantBoundaryCondition<ImageType>,
RealType>;
typename WelchInterpolatorType::Pointer welchInterpolator = WelchInterpolatorType::New();
interpolator = welchInterpolator;
}
typename OptionType::Pointer metricOption = parser->GetOption("metric");
if (!metricOption || metricOption->GetNumberOfFunctions() != numberOfStages)
{
std::cerr << "The number of metrics specified does not match the number of stages." << std::endl;
return EXIT_FAILURE;
}
typename OptionType::Pointer iterationsOption = parser->GetOption("iterations");
if (!iterationsOption || iterationsOption->GetNumberOfFunctions() != numberOfStages)
{
std::cerr << "The number of iteration sets specified does not match the number of stages." << std::endl;
return EXIT_FAILURE;
}
typename OptionType::Pointer shrinkFactorsOption = parser->GetOption("shrinkFactors");
if (!shrinkFactorsOption || shrinkFactorsOption->GetNumberOfFunctions() != numberOfStages)
{
std::cerr << "The number of shrinkFactor sets specified does not match the number of stages." << std::endl;
return EXIT_FAILURE;
}
typename OptionType::Pointer smoothingSigmasOption = parser->GetOption("smoothingSigmas");
if (!smoothingSigmasOption || smoothingSigmasOption->GetNumberOfFunctions() != numberOfStages)
{
std::cerr << "The number of smoothing sigma sets specified does not match the number of stages." << std::endl;
return EXIT_FAILURE;
}
typename OptionType::Pointer outputOption = parser->GetOption("output");
if (!outputOption)
{
std::cerr << "Output option not specified." << std::endl;
return EXIT_FAILURE;
}
std::string outputPrefix = outputOption->GetFunction(0)->GetParameter(0);
if (outputPrefix.length() < 3)
{
outputPrefix = outputOption->GetFunction(0)->GetName();
}
unsigned int nimagestoavg = 0;
itk::ants::CommandLineParser::OptionType::Pointer navgOption = parser->GetOption("n-images");
if (navgOption && navgOption->GetNumberOfFunctions())
{
nimagestoavg = parser->Convert<unsigned int>(navgOption->GetFunction(0)->GetName());
if (verbose)
std::cout << " nimagestoavg " << nimagestoavg << std::endl;
}
unsigned int writeDisplacementField = 0;
itk::ants::CommandLineParser::OptionType::Pointer wdopt = parser->GetOption("write-displacement");
if (wdopt && wdopt->GetNumberOfFunctions())
{
writeDisplacementField = parser->Convert<unsigned int>(wdopt->GetFunction(0)->GetName());
}
bool doEstimateLearningRateOnce(false);
// OptionType::Pointer rateOption = parser->GetOption("use-estimate-learning-rate-once");
// if (rateOption && rateOption->GetNumberOfFunctions())
// {
// std::string rateFunction = rateOption->GetFunction(0)->GetName();
// ConvertToLowerCase(rateFunction);
// if (rateFunction.compare("1") == 0 || rateFunction.compare("true") == 0)
// {
// doEstimateLearningRateOnce = true;
// }
// }
bool doHistogramMatch(true);
OptionType::Pointer histogramMatchOption = parser->GetOption("use-histogram-matching");
if (histogramMatchOption && histogramMatchOption->GetNumberOfFunctions())
{
std::string histogramMatchFunction = histogramMatchOption->GetFunction(0)->GetName();
ConvertToLowerCase(histogramMatchFunction);
if (histogramMatchFunction.compare("0") == 0 || histogramMatchFunction.compare("false") == 0)
{
doHistogramMatch = false;
}
}
// Zero seed means use default behavior: registration randomizer seeds from system time
// and does not re-seed iterator
int antsRandomSeed = 0;
itk::ants::CommandLineParser::OptionType::Pointer randomSeedOption = parser->GetOption("random-seed");
if (randomSeedOption && randomSeedOption->GetNumberOfFunctions())
{
antsRandomSeed = parser->Convert<int>(randomSeedOption->GetFunction(0)->GetName());
}
else
{
char * envSeed = getenv("ANTS_RANDOM_SEED");
if (envSeed != nullptr)
{
antsRandomSeed = std::stoi(envSeed);
}
}
unsigned int nparams = 2;
itk::TimeProbe totalTimer;
totalTimer.Start();
double metricmean = 0;
using AffineTransformType = itk::AffineTransform<RealType, ImageDimension>;
using AffineRegistrationType = itk::ImageRegistrationMethodv4<FixedImageType, FixedImageType, AffineTransformType>;
// We iterate backwards because the command line options are stored as a stack (first in last out)
typename DisplacementIOFieldType::Pointer displacementout = nullptr;
typename DisplacementIOFieldType::Pointer displacementinv = nullptr;
for (int currentStage = numberOfStages - 1; currentStage >= 0; currentStage--)
{
if (verbose)
std::cout << std::endl << "Stage " << numberOfStages - currentStage << std::endl;
std::stringstream currentStageString;
currentStageString << currentStage;
// Get the fixed and moving images
std::string fixedImageFileName = metricOption->GetFunction(currentStage)->GetParameter(0);
std::string movingImageFileName = metricOption->GetFunction(currentStage)->GetParameter(1);
if (verbose)
std::cout << " fixed image: " << fixedImageFileName << std::endl;
if (verbose)
std::cout << " moving image: " << movingImageFileName << std::endl;
typename FixedImageType::Pointer fixed_time_slice = nullptr;
typename FixedImageType::Pointer moving_time_slice = nullptr;
typename FixedIOImageType::Pointer fixedInImage;
ReadImage<FixedIOImageType>(fixedInImage, fixedImageFileName.c_str());
fixedInImage->Update();
fixedInImage->DisconnectPipeline();
typename FixedImageType::Pointer fixedImage;
fixedImage = arCastImage<FixedIOImageType, FixedImageType>(fixedInImage);
typename MovingIOImageType::Pointer movingInImage;
typename MovingImageType::Pointer movingImage;
ReadImage<MovingIOImageType>(movingInImage, movingImageFileName.c_str());
movingInImage->Update();
movingInImage->DisconnectPipeline();
movingImage = arCastImage<MovingIOImageType, MovingImageType>(movingInImage);
unsigned int timedims = movingImage->GetLargestPossibleRegion().GetSize()[ImageDimension];
typename MovingIOImageType::Pointer outputImage = MovingIOImageType::New();
typename MovingIOImageType::RegionType outRegion;
typename MovingIOImageType::SizeType outSize;
typename MovingIOImageType::SpacingType outSpacing;
typename MovingIOImageType::PointType outOrigin;
typename MovingIOImageType::DirectionType outDirection;
for (unsigned int d = 0; d < ImageDimension; d++)
{
outSize[d] = fixedImage->GetLargestPossibleRegion().GetSize()[d];
outSpacing[d] = fixedImage->GetSpacing()[d];
outOrigin[d] = fixedImage->GetOrigin()[d];
for (unsigned int e = 0; e < ImageDimension; e++)
{
outDirection(e, d) = fixedImage->GetDirection()(e, d);
}
}
for (unsigned int d = 0; d < ImageDimension; d++)
{
outDirection(d, ImageDimension) = 0;
outDirection(ImageDimension, d) = 0;
}
outDirection(ImageDimension, ImageDimension) = 1.0;
outSize[ImageDimension] = timedims;
outSpacing[ImageDimension] = movingImage->GetSpacing()[ImageDimension];
outOrigin[ImageDimension] = movingImage->GetOrigin()[ImageDimension];
outRegion.SetSize(outSize);
outputImage->SetRegions(outRegion);
outputImage->SetSpacing(outSpacing);
outputImage->SetOrigin(outOrigin);
outputImage->SetDirection(outDirection);
outputImage->AllocateInitialized();
if (writeDisplacementField > 0)
{
/** Handle all output: images and displacement fields */
using IdentityIOTransformType = itk::IdentityTransform<RealType, ImageDimension + 1>;
typename IdentityIOTransformType::Pointer identityIOTransform = IdentityIOTransformType::New();
using ConverterType = typename itk::TransformToDisplacementFieldFilter<DisplacementIOFieldType, RealType>;
typename ConverterType::Pointer idconverter = ConverterType::New();
idconverter->SetOutputOrigin(outputImage->GetOrigin());
idconverter->SetOutputStartIndex(outputImage->GetBufferedRegion().GetIndex());
idconverter->SetSize(outputImage->GetBufferedRegion().GetSize());
idconverter->SetOutputSpacing(outputImage->GetSpacing());
idconverter->SetOutputDirection(outputImage->GetDirection());
idconverter->SetTransform(identityIOTransform);
idconverter->Update();
displacementout = idconverter->GetOutput();
typename ConverterType::Pointer invconverter = ConverterType::New();
invconverter->SetOutputOrigin(movingInImage->GetOrigin());
invconverter->SetOutputStartIndex(movingInImage->GetBufferedRegion().GetIndex());
invconverter->SetSize(movingInImage->GetBufferedRegion().GetSize());
invconverter->SetOutputSpacing(movingInImage->GetSpacing());
invconverter->SetOutputDirection(movingInImage->GetDirection());
invconverter->SetTransform(identityIOTransform);
invconverter->Update();
displacementinv = invconverter->GetOutput();
}
// Get the number of iterations and use that information to specify the number of levels
std::vector<unsigned int> iterations =
parser->ConvertVector<unsigned int>(iterationsOption->GetFunction(currentStage)->GetName());
unsigned int numberOfLevels = iterations.size();
if (verbose)
std::cout << " number of levels = " << numberOfLevels << std::endl;
// Get shrink factors
std::vector<unsigned int> factors =
parser->ConvertVector<unsigned int>(shrinkFactorsOption->GetFunction(currentStage)->GetName());
typename AffineRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize(factors.size());
if (factors.size() != numberOfLevels)
{
std::cerr << "ERROR: The number of shrink factors does not match the number of levels." << std::endl;
return EXIT_FAILURE;
}
else
{
for (unsigned int n = 0; n < shrinkFactorsPerLevel.Size(); n++)
{
shrinkFactorsPerLevel[n] = factors[n];
}
if (verbose)
std::cout << " shrink factors per level: " << shrinkFactorsPerLevel << std::endl;
}
// Get smoothing sigmas
std::string smoothingSigmasString = smoothingSigmasOption->GetFunction(currentStage)->GetName();
bool smoothingSigmasAreInPhysicalUnits = false;
const size_t mmPosition = smoothingSigmasString.find("mm");
const size_t voxPosition = smoothingSigmasString.find("vox");
if (mmPosition != std::string::npos)
{
smoothingSigmasString.replace(mmPosition, 2, "");
smoothingSigmasAreInPhysicalUnits = true;
}
else if (voxPosition != std::string::npos)
{
smoothingSigmasString.replace(voxPosition, 3, "");
smoothingSigmasAreInPhysicalUnits = false;
}
else
{
smoothingSigmasAreInPhysicalUnits = false;
}
std::vector<float> sigmas = parser->ConvertVector<float>(smoothingSigmasString);
typename AffineRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize(sigmas.size());
if (sigmas.size() != numberOfLevels)
{
std::cerr << "ERROR: The number of smoothing sigmas does not match the number of levels." << std::endl;
return EXIT_FAILURE;
}
else
{
for (unsigned int n = 0; n < smoothingSigmasPerLevel.Size(); n++)
{
smoothingSigmasPerLevel[n] = sigmas[n];
}
if (verbose)
{
std::cout << " smoothing sigmas per level: " << smoothingSigmasPerLevel << std::endl;
std::cout << " smoothing sigmas in physical space units: " << smoothingSigmasAreInPhysicalUnits << std::endl;
}
}
// the fixed image is a reference image in 3D while the moving is a 4D image
// loop over every time point and register image_i+1 to image_i
//
// Set up the image metric and scales estimator
std::vector<unsigned int> timelist;
std::vector<double> metriclist;
for (unsigned int timedim = 0; timedim < timedims; timedim++)
{
timelist.push_back(timedim);
}
for (unsigned int timedim = 0; timedim < timedims; timedim++)
{
typename CompositeTransformType::Pointer compositeTransform = nullptr;
if (currentStage == static_cast<int>(numberOfStages) - 1)
{
compositeTransform = CompositeTransformType::New();
CompositeTransformVector.push_back(compositeTransform);
}
else if (CompositeTransformVector.size() == timedims && !CompositeTransformVector[timedim].IsNull())
{
compositeTransform = CompositeTransformVector[timedim];
if (timedim == 0)
{
if (verbose)
std::cout << " use existing transform " << compositeTransform->GetParameters() << std::endl;
}
}
using IdentityTransformType = itk::IdentityTransform<RealType, ImageDimension>;
typename IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
//
using ExtractFilterType = itk::ExtractImageFilter<MovingImageType, FixedImageType>;
typename MovingImageType::RegionType extractRegion = movingImage->GetLargestPossibleRegion();
extractRegion.SetSize(ImageDimension, 0);
bool maptoneighbor = true;
typename OptionType::Pointer fixedOption = parser->GetOption("useFixedReferenceImage");
if (fixedOption && fixedOption->GetNumberOfFunctions())
{
std::string fixedFunction = fixedOption->GetFunction(0)->GetName();
ConvertToLowerCase(fixedFunction);
if (fixedFunction.compare("1") == 0 || fixedFunction.compare("true") == 0)
{
if (timedim == 0)
{
if (verbose)
std::cout << " using fixed reference image for all frames " << std::endl;
}
fixed_time_slice = fixedImage;
extractRegion.SetIndex(ImageDimension, timedim);
typename ExtractFilterType::Pointer extractFilter2 = ExtractFilterType::New();
extractFilter2->SetInput(movingImage);
extractFilter2->SetDirectionCollapseToSubmatrix();
if (ImageDimension == 2)
{
extractFilter2->SetDirectionCollapseToIdentity();
}
extractFilter2->SetExtractionRegion(extractRegion);
extractFilter2->Update();
moving_time_slice = extractFilter2->GetOutput();
maptoneighbor = false;
}
}
if (maptoneighbor)
{
extractRegion.SetIndex(ImageDimension, timedim);
typename ExtractFilterType::Pointer extractFilter = ExtractFilterType::New();
extractFilter->SetInput(movingImage);
extractFilter->SetDirectionCollapseToSubmatrix();
if (ImageDimension == 2)
{
extractFilter->SetDirectionCollapseToIdentity();
}
extractFilter->SetExtractionRegion(extractRegion);
extractFilter->Update();
fixed_time_slice = extractFilter->GetOutput();
unsigned int td = timedim + 1;
if (td > timedims - 1)
{
td = timedims - 1;
}
extractRegion.SetIndex(ImageDimension, td);
typename ExtractFilterType::Pointer extractFilter2 = ExtractFilterType::New();
extractFilter2->SetInput(movingImage);
extractFilter2->SetDirectionCollapseToSubmatrix();
if (ImageDimension == 2)
{
extractFilter->SetDirectionCollapseToIdentity();
}
extractFilter2->SetExtractionRegion(extractRegion);
extractFilter2->Update();
moving_time_slice = extractFilter2->GetOutput();
}
typename FixedImageType::Pointer preprocessFixedImage =
PreprocessImage<FixedImageType>(fixed_time_slice, 0, 1, 0.001, 0.999, nullptr);
if (verbose)
std::cout << " use histogram matching " << doHistogramMatch << std::endl;
typename FixedImageType::Pointer preprocessMovingImage =
PreprocessImage<FixedImageType>(moving_time_slice, 0, 1, 0.001, 0.999, preprocessFixedImage);
using MetricType = itk::ImageToImageMetricv4<FixedImageType, FixedImageType>;
typename MetricType::Pointer metric;
std::string whichMetric = metricOption->GetFunction(currentStage)->GetName();
ConvertToLowerCase(whichMetric);
float samplingPercentage = 1.0;
if (metricOption->GetFunction(0)->GetNumberOfParameters() > 5)
{
samplingPercentage = parser->Convert<float>(metricOption->GetFunction(currentStage)->GetParameter(5));
}
std::string samplingStrategy = "";
if (metricOption->GetFunction(0)->GetNumberOfParameters() > 4)
{
samplingStrategy = metricOption->GetFunction(currentStage)->GetParameter(4);
}
ConvertToLowerCase(samplingStrategy);
typename AffineRegistrationType::MetricSamplingStrategyEnum metricSamplingStrategy =
AffineRegistrationType::MetricSamplingStrategyEnum::NONE;
if (std::strcmp(samplingStrategy.c_str(), "random") == 0)
{
if (timedim == 0)
{
if (verbose)
std::cout << " random sampling (percentage = " << samplingPercentage << ")" << std::endl;
}
metricSamplingStrategy = AffineRegistrationType::MetricSamplingStrategyEnum::RANDOM;
}
if (std::strcmp(samplingStrategy.c_str(), "regular") == 0)
{
if (timedim == 0)
{
if (verbose)
std::cout << " regular sampling (percentage = " << samplingPercentage << ")" << std::endl;
}
metricSamplingStrategy = AffineRegistrationType::MetricSamplingStrategyEnum::REGULAR;
}
bool useGradientFilter = false;
if (metricOption->GetFunction(0)->GetNumberOfParameters() > 6)
{
useGradientFilter = parser->Convert<bool>(metricOption->GetFunction(currentStage)->GetParameter(6));
}
if (std::strcmp(whichMetric.c_str(), "cc") == 0)
{
auto radiusOption = parser->Convert<unsigned int>(metricOption->GetFunction(currentStage)->GetParameter(3));
if (timedim == 0)
{
if (verbose)
std::cout << " using the CC metric (radius = " << radiusOption << ")." << std::endl;
}
using CorrelationMetricType =
itk::ANTSNeighborhoodCorrelationImageToImageMetricv4<FixedImageType, FixedImageType>;
typename CorrelationMetricType::Pointer correlationMetric = CorrelationMetricType::New();
typename CorrelationMetricType::RadiusType radius;
radius.Fill(radiusOption);
correlationMetric->SetRadius(radius);
correlationMetric->SetUseMovingImageGradientFilter(useGradientFilter);
correlationMetric->SetUseFixedImageGradientFilter(useGradientFilter);
metric = correlationMetric;
}
else if (std::strcmp(whichMetric.c_str(), "mi") == 0)
{
auto binOption = parser->Convert<unsigned int>(metricOption->GetFunction(currentStage)->GetParameter(3));
if (timedim == 0)
{
if (verbose)
std::cout << " using the Mattes MI metric." << std::endl;
}
using MutualInformationMetricType =
itk::MattesMutualInformationImageToImageMetricv4<FixedImageType, FixedImageType>;
typename MutualInformationMetricType::Pointer mutualInformationMetric = MutualInformationMetricType::New();
// mutualInformationMetric = mutualInformationMetric;
mutualInformationMetric->SetNumberOfHistogramBins(binOption);
mutualInformationMetric->SetUseMovingImageGradientFilter(useGradientFilter);
mutualInformationMetric->SetUseFixedImageGradientFilter(useGradientFilter);
metric = mutualInformationMetric;
}
else if (std::strcmp(whichMetric.c_str(), "demons") == 0)
{
if (timedim == 0)
{
if (verbose)
std::cout << " using the Demons metric." << std::endl;
}
using DemonsMetricType = itk::MeanSquaresImageToImageMetricv4<FixedImageType, FixedImageType>;
typename DemonsMetricType::Pointer demonsMetric = DemonsMetricType::New();
demonsMetric->SetUseMovingImageGradientFilter(useGradientFilter);
demonsMetric->SetUseFixedImageGradientFilter(useGradientFilter);
// demonsMetric = demonsMetric;
metric = demonsMetric;
}
else if (std::strcmp(whichMetric.c_str(), "gc") == 0)
{
if (timedim == 0)
{
if (verbose)
std::cout << " using the global correlation metric." << std::endl;
}
using corrMetricType = itk::CorrelationImageToImageMetricv4<FixedImageType, FixedImageType>;
typename corrMetricType::Pointer corrMetric = corrMetricType::New();
corrMetric->SetUseMovingImageGradientFilter(useGradientFilter);
corrMetric->SetUseFixedImageGradientFilter(useGradientFilter);
metric = corrMetric;
if (verbose)
std::cout << " global corr metric set " << std::endl;
}
else
{
std::cerr << "ERROR: Unrecognized image metric: " << whichMetric << std::endl;
return EXIT_FAILURE;
}
metric->SetVirtualDomainFromImage(fixed_time_slice);
using ScalesEstimatorType = itk::RegistrationParameterScalesFromPhysicalShift<MetricType>;
typename ScalesEstimatorType::Pointer scalesEstimator = ScalesEstimatorType::New();
scalesEstimator->SetMetric(metric);
scalesEstimator->SetTransformForward(true);
auto learningRate = parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(0));
using OptimizerType = itk::ConjugateGradientLineSearchOptimizerv4;
OptimizerType::Pointer optimizer = OptimizerType::New();
optimizer->SetNumberOfIterations(iterations[0]);
optimizer->SetMinimumConvergenceValue(1.e-7);
optimizer->SetConvergenceWindowSize(10);
optimizer->SetLowerLimit(0);
optimizer->SetUpperLimit(2);
optimizer->SetEpsilon(0.1);
typename OptionType::Pointer scalesOption = parser->GetOption("useScalesEstimator");
if (scalesOption && scalesOption->GetNumberOfFunctions())
{
std::string scalesFunction = scalesOption->GetFunction(0)->GetName();
ConvertToLowerCase(scalesFunction);
if (scalesFunction.compare("1") == 0 || scalesFunction.compare("true") == 0)
{
if (timedim == 0)
{
if (verbose)
std::cout << " employing scales estimator " << std::endl;
}
optimizer->SetScalesEstimator(scalesEstimator);
}
else
{
if (timedim == 0)
{
if (verbose)
std::cout << " not employing scales estimator " << scalesFunction << std::endl;
}
}
}
optimizer->SetMaximumStepSizeInPhysicalUnits(learningRate);
optimizer->SetDoEstimateLearningRateOnce(doEstimateLearningRateOnce);
optimizer->SetDoEstimateLearningRateAtEachIteration(!doEstimateLearningRateOnce);
// optimizer->SetMaximumNewtonStepSizeInPhysicalUnits(sqrt(small_step)*learningR);
// Set up the image registration methods along with the transforms
std::string whichTransform = transformOption->GetFunction(currentStage)->GetName();
ConvertToLowerCase(whichTransform);
// initialize with moments
using ImageCalculatorType = typename itk::ImageMomentsCalculator<FixedImageType>;
typename ImageCalculatorType::Pointer calculator1 = ImageCalculatorType::New();
typename ImageCalculatorType::Pointer calculator2 = ImageCalculatorType::New();
calculator1->SetImage(fixed_time_slice);
calculator2->SetImage(moving_time_slice);
typename ImageCalculatorType::VectorType fixed_center;
fixed_center.Fill(0);
typename ImageCalculatorType::VectorType moving_center;
moving_center.Fill(0);
try
{
calculator1->Compute();
fixed_center = calculator1->GetCenterOfGravity();
try
{
calculator2->Compute();
moving_center = calculator2->GetCenterOfGravity();
}
catch (...)
{
fixed_center.Fill(0);
}
}
catch (...)
{
// Rcpp::Rcerr << " zero image1 error ";
}
typename AffineTransformType::OffsetType trans;
itk::Point<RealType, ImageDimension> trans2;
for (unsigned int i = 0; i < ImageDimension; i++)
{
trans[i] = moving_center[i] - fixed_center[i];
trans2[i] = fixed_center[i];
}
if (std::strcmp(whichTransform.c_str(), "affine") == 0)
{
typename AffineRegistrationType::Pointer affineRegistration = AffineRegistrationType::New();
if (antsRandomSeed != 0)
{
affineRegistration->MetricSamplingReinitializeSeed(antsRandomSeed);
}
typename AffineTransformType::Pointer affineTransform = AffineTransformType::New();
affineTransform->SetIdentity();
affineTransform->SetOffset(trans);
affineTransform->SetCenter(trans2);
nparams = affineTransform->GetNumberOfParameters() + 2;
metric->SetFixedImage(preprocessFixedImage);
metric->SetVirtualDomainFromImage(preprocessFixedImage);
metric->SetMovingImage(preprocessMovingImage);
metric->SetMovingTransform(affineTransform);
typename ScalesEstimatorType::ScalesType scales(affineTransform->GetNumberOfParameters());
typename MetricType::ParametersType newparams(affineTransform->GetParameters());
metric->SetParameters(newparams);
metric->Initialize();
scalesEstimator->SetMetric(metric);
scalesEstimator->EstimateScales(scales);
optimizer->SetScales(scales);
if (compositeTransform->GetNumberOfTransforms() > 0)
{
affineRegistration->SetMovingInitialTransform(compositeTransform);
}
affineRegistration->SetFixedImage(preprocessFixedImage);
affineRegistration->SetMovingImage(preprocessMovingImage);
affineRegistration->SetNumberOfLevels(numberOfLevels);
affineRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
affineRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
affineRegistration->SetSmoothingSigmasAreSpecifiedInPhysicalUnits(smoothingSigmasAreInPhysicalUnits);
affineRegistration->SetMetricSamplingStrategy(metricSamplingStrategy);
affineRegistration->SetMetricSamplingPercentage(samplingPercentage);
affineRegistration->SetMetric(metric);
affineRegistration->SetOptimizer(optimizer);
using AffineCommandType = CommandIterationUpdate<AffineRegistrationType>;
typename AffineCommandType::Pointer affineObserver = AffineCommandType::New();
affineObserver->SetNumberOfIterations(iterations);
affineRegistration->AddObserver(itk::IterationEvent(), affineObserver);
try
{
if (verbose)
std::cout << std::endl << "*** Running affine registration ***" << timedim << std::endl << std::endl;
affineRegistration->Update();
}
catch (const itk::ExceptionObject & e)
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform(affineRegistration->GetModifiableTransform());
// Write out the affine transform
std::string filename = outputPrefix + std::string("TimeSlice") + ants_moco_to_string<unsigned int>(timedim) +
std::string("Affine.txt");
using TransformWriterType = itk::TransformFileWriter;
typename TransformWriterType::Pointer transformWriter = TransformWriterType::New();
transformWriter->SetInput(affineRegistration->GetOutput()->Get());
transformWriter->SetFileName(filename.c_str());
#if ITK_VERSION_MAJOR >= 5
transformWriter->SetUseCompression(true);
#endif
// transformWriter->Update();
if (timedim == 0)
{
param_values.set_size(timedims, nparams);
param_values.fill(0);
}
for (unsigned int i = 0; i < nparams - 2; i++)
{
param_values(timedim, i + 2) = affineRegistration->GetOutput()->Get()->GetParameters()[i];
}
}
else if (std::strcmp(whichTransform.c_str(), "rigid") == 0)
{
using RigidTransformType = typename RigidTransformTraits<ImageDimension>::TransformType;
typename RigidTransformType::Pointer rigidTransform = RigidTransformType::New();
rigidTransform->SetOffset(trans);
rigidTransform->SetCenter(trans2);
nparams = rigidTransform->GetNumberOfParameters() + 2;
using RigidRegistrationType =
itk::ImageRegistrationMethodv4<FixedImageType, FixedImageType, RigidTransformType>;
typename RigidRegistrationType::Pointer rigidRegistration = RigidRegistrationType::New();
if (antsRandomSeed != 0)
{
rigidRegistration->MetricSamplingReinitializeSeed(antsRandomSeed);
}
metric->SetFixedImage(preprocessFixedImage);
metric->SetVirtualDomainFromImage(preprocessFixedImage);
metric->SetMovingImage(preprocessMovingImage);
metric->SetMovingTransform(rigidTransform);
typename ScalesEstimatorType::ScalesType scales(rigidTransform->GetNumberOfParameters());
typename MetricType::ParametersType newparams(rigidTransform->GetParameters());
metric->SetParameters(newparams);
metric->Initialize();
scalesEstimator->SetMetric(metric);
scalesEstimator->EstimateScales(scales);
optimizer->SetScales(scales);
rigidRegistration->SetFixedImage(preprocessFixedImage);
rigidRegistration->SetMovingImage(preprocessMovingImage);
rigidRegistration->SetNumberOfLevels(numberOfLevels);
rigidRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
rigidRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
rigidRegistration->SetSmoothingSigmasAreSpecifiedInPhysicalUnits(smoothingSigmasAreInPhysicalUnits);
rigidRegistration->SetMetric(metric);
rigidRegistration->SetMetricSamplingStrategy(
static_cast<typename RigidRegistrationType::MetricSamplingStrategyEnum>(metricSamplingStrategy));
rigidRegistration->SetMetricSamplingPercentage(samplingPercentage);
rigidRegistration->SetOptimizer(optimizer);
if (compositeTransform->GetNumberOfTransforms() > 0)
{
rigidRegistration->SetMovingInitialTransform(compositeTransform);
}
using RigidCommandType = CommandIterationUpdate<RigidRegistrationType>;
typename RigidCommandType::Pointer rigidObserver = RigidCommandType::New();
rigidObserver->SetNumberOfIterations(iterations);
rigidRegistration->AddObserver(itk::IterationEvent(), rigidObserver);
try
{
if (verbose)
std::cout << std::endl << "*** Running rigid registration ***" << timedim << std::endl << std::endl;
rigidRegistration->Update();
}
catch (const itk::ExceptionObject & e)
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform(rigidRegistration->GetModifiableTransform());
// Write out the rigid transform
std::string filename = outputPrefix + std::string("TimeSlice") + ants_moco_to_string<unsigned int>(timedim) +
std::string("Rigid.txt");
using TransformWriterType = itk::TransformFileWriter;
typename TransformWriterType::Pointer transformWriter = TransformWriterType::New();
transformWriter->SetInput(rigidRegistration->GetOutput()->Get());
transformWriter->SetFileName(filename.c_str());
#if ITK_VERSION_MAJOR >= 5
transformWriter->SetUseCompression(true);
#endif
// transformWriter->Update();
if (timedim == 0)
{
param_values.set_size(timedims, nparams);
param_values.fill(0);
}
for (unsigned int i = 0; i < nparams - 2; i++)
{
param_values(timedim, i + 2) = rigidRegistration->GetOutput()->Get()->GetParameters()[i];
}
}
else if (std::strcmp(whichTransform.c_str(), "gaussiandisplacementfield") == 0 ||
std::strcmp(whichTransform.c_str(), "gdf") == 0)
{
RealType sigmaForUpdateField =
parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(1));
RealType sigmaForTotalField =
parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(2));
const unsigned int VImageDimension = ImageDimension;
VectorType zeroVector(0.0);
// ORIENTATION ALERT: Original code set image size to
// fixedImage buffered region, & if fixedImage BufferedRegion
// != LargestPossibleRegion, this code would be wrong.
typename DisplacementFieldType::Pointer displacementField =
AllocImage<DisplacementFieldType>(preprocessFixedImage, zeroVector);
using GaussianDisplacementFieldTransformType =
itk::GaussianSmoothingOnUpdateDisplacementFieldTransform<RealType, VImageDimension>;
using DisplacementFieldRegistrationType =
itk::ImageRegistrationMethodv4<FixedImageType, FixedImageType, GaussianDisplacementFieldTransformType>;
typename DisplacementFieldRegistrationType::Pointer displacementFieldRegistration =
DisplacementFieldRegistrationType::New();
typename GaussianDisplacementFieldTransformType::Pointer outputDisplacementFieldTransform =
displacementFieldRegistration->GetModifiableTransform();
// Create the transform adaptors
using DisplacementFieldTransformAdaptorType =
itk::GaussianSmoothingOnUpdateDisplacementFieldTransformParametersAdaptor<
GaussianDisplacementFieldTransformType>;
typename DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors;
// Extract parameters
outputDisplacementFieldTransform->SetGaussianSmoothingVarianceForTheUpdateField(sigmaForUpdateField);
outputDisplacementFieldTransform->SetGaussianSmoothingVarianceForTheTotalField(sigmaForTotalField);
outputDisplacementFieldTransform->SetDisplacementField(displacementField);
for (unsigned int level = 0; level < numberOfLevels; level++)
{
using ShrinkFilterType = itk::ShrinkImageFilter<DisplacementFieldType, DisplacementFieldType>;
typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
shrinkFilter->SetShrinkFactors(shrinkFactorsPerLevel[level]);
shrinkFilter->SetInput(displacementField);
shrinkFilter->Update();
typename DisplacementFieldTransformAdaptorType::Pointer fieldTransformAdaptor =
DisplacementFieldTransformAdaptorType::New();
fieldTransformAdaptor->SetRequiredSpacing(shrinkFilter->GetOutput()->GetSpacing());
fieldTransformAdaptor->SetRequiredSize(shrinkFilter->GetOutput()->GetBufferedRegion().GetSize());
fieldTransformAdaptor->SetRequiredDirection(shrinkFilter->GetOutput()->GetDirection());
fieldTransformAdaptor->SetRequiredOrigin(shrinkFilter->GetOutput()->GetOrigin());
fieldTransformAdaptor->SetTransform(outputDisplacementFieldTransform);
adaptors.push_back(fieldTransformAdaptor.GetPointer());
}
displacementFieldRegistration->SetFixedImage(0, preprocessFixedImage);
displacementFieldRegistration->SetMovingImage(0, preprocessMovingImage);
displacementFieldRegistration->SetMetric(metric);
displacementFieldRegistration->SetNumberOfLevels(numberOfLevels);
displacementFieldRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
displacementFieldRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
displacementFieldRegistration->SetSmoothingSigmasAreSpecifiedInPhysicalUnits(smoothingSigmasAreInPhysicalUnits);
displacementFieldRegistration->SetMetricSamplingStrategy(
static_cast<typename DisplacementFieldRegistrationType::MetricSamplingStrategyEnum>(metricSamplingStrategy));
displacementFieldRegistration->SetMetricSamplingPercentage(samplingPercentage);
displacementFieldRegistration->SetOptimizer(optimizer);
displacementFieldRegistration->SetTransformParametersAdaptorsPerLevel(adaptors);
if (compositeTransform->GetNumberOfTransforms() > 0)
{
displacementFieldRegistration->SetMovingInitialTransform(compositeTransform);
}
try
{
displacementFieldRegistration->Update();
}
catch (const itk::ExceptionObject & e)
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform(outputDisplacementFieldTransform);
if (timedim == 0)
{
param_values.set_size(timedims, nparams);
param_values.fill(0);
}
}
else if (std::strcmp(whichTransform.c_str(), "SyN") == 0 || std::strcmp(whichTransform.c_str(), "syn") == 0)
{
RealType sigmaForUpdateField =
parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(1));
RealType sigmaForTotalField =
parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(2));
const unsigned int VImageDimension = ImageDimension;
VectorType zeroVector(0.0);
typename DisplacementFieldType::Pointer displacementField =
AllocImage<DisplacementFieldType>(preprocessFixedImage, zeroVector);
typename DisplacementFieldType::Pointer inverseDisplacementField =
AllocImage<DisplacementFieldType>(preprocessFixedImage, zeroVector);
using DisplacementFieldTransformType = itk::DisplacementFieldTransform<RealType, VImageDimension>;
using DisplacementFieldRegistrationType =
itk::SyNImageRegistrationMethod<FixedImageType, FixedImageType, DisplacementFieldTransformType>;
typename DisplacementFieldRegistrationType::Pointer displacementFieldRegistration =
DisplacementFieldRegistrationType::New();
typename DisplacementFieldTransformType::Pointer outputDisplacementFieldTransform =
displacementFieldRegistration->GetModifiableTransform();
// Create the transform adaptors
using DisplacementFieldTransformAdaptorType =
itk::DisplacementFieldTransformParametersAdaptor<DisplacementFieldTransformType>;
typename DisplacementFieldRegistrationType::TransformParametersAdaptorsContainerType adaptors;
// Create the transform adaptors
// For the gaussian displacement field, the specified variances are in image spacing terms
// and, in normal practice, we typically don't change these values at each level. However,
// if the user wishes to add that option, they can use the class
// GaussianSmoothingOnUpdateDisplacementFieldTransformAdaptor
for (unsigned int level = 0; level < numberOfLevels; level++)
{
// TODO:
// We use the shrink image filter to calculate the fixed parameters of the virtual
// domain at each level. To speed up calculation and avoid unnecessary memory
// usage, we could calculate these fixed parameters directly.
using ShrinkFilterType = itk::ShrinkImageFilter<DisplacementFieldType, DisplacementFieldType>;
typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
shrinkFilter->SetShrinkFactors(shrinkFactorsPerLevel[level]);
shrinkFilter->SetInput(displacementField);
shrinkFilter->Update();
typename DisplacementFieldTransformAdaptorType::Pointer fieldTransformAdaptor =
DisplacementFieldTransformAdaptorType::New();
fieldTransformAdaptor->SetRequiredSpacing(shrinkFilter->GetOutput()->GetSpacing());
fieldTransformAdaptor->SetRequiredSize(shrinkFilter->GetOutput()->GetBufferedRegion().GetSize());
fieldTransformAdaptor->SetRequiredDirection(shrinkFilter->GetOutput()->GetDirection());
fieldTransformAdaptor->SetRequiredOrigin(shrinkFilter->GetOutput()->GetOrigin());
fieldTransformAdaptor->SetTransform(outputDisplacementFieldTransform);
adaptors.push_back(fieldTransformAdaptor.GetPointer());
}
// Extract parameters
typename DisplacementFieldRegistrationType::NumberOfIterationsArrayType numberOfIterationsPerLevel;
numberOfIterationsPerLevel.SetSize(numberOfLevels);
if (timedim == 0)
{
if (verbose)
std::cout << "SyN iterations:";
}
for (unsigned int d = 0; d < numberOfLevels; d++)
{
numberOfIterationsPerLevel[d] = iterations[d]; // currentStageIterations[d];
if (timedim == 0)
{
if (verbose)
std::cout << numberOfIterationsPerLevel[d] << " ";
}
}
if (timedim == 0)
{
if (verbose)
std::cout << std::endl;
}
const RealType varianceForUpdateField = sigmaForUpdateField;
const RealType varianceForTotalField = sigmaForTotalField;
displacementFieldRegistration->SetFixedImage(0, preprocessFixedImage);
displacementFieldRegistration->SetMovingImage(0, preprocessMovingImage);
displacementFieldRegistration->SetMetric(metric);
if (compositeTransform->GetNumberOfTransforms() > 0)
{
displacementFieldRegistration->SetMovingInitialTransform(compositeTransform);
}
displacementFieldRegistration->SetDownsampleImagesForMetricDerivatives(true);
displacementFieldRegistration->SetAverageMidPointGradients(false);
displacementFieldRegistration->SetNumberOfLevels(numberOfLevels);
displacementFieldRegistration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
displacementFieldRegistration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
displacementFieldRegistration->SetSmoothingSigmasAreSpecifiedInPhysicalUnits(smoothingSigmasAreInPhysicalUnits);
displacementFieldRegistration->SetLearningRate(learningRate);
displacementFieldRegistration->SetConvergenceThreshold(1.e-8);
displacementFieldRegistration->SetConvergenceWindowSize(10);
displacementFieldRegistration->SetNumberOfIterationsPerLevel(numberOfIterationsPerLevel);
displacementFieldRegistration->SetTransformParametersAdaptorsPerLevel(adaptors);
displacementFieldRegistration->SetGaussianSmoothingVarianceForTheUpdateField(varianceForUpdateField);
displacementFieldRegistration->SetGaussianSmoothingVarianceForTheTotalField(varianceForTotalField);
outputDisplacementFieldTransform->SetDisplacementField(displacementField);
outputDisplacementFieldTransform->SetInverseDisplacementField(inverseDisplacementField);
try
{
displacementFieldRegistration->Update();
}
catch (const itk::ExceptionObject & e)
{
std::cerr << "Exception caught: " << e << std::endl;
return EXIT_FAILURE;
}
// Add calculated transform to the composite transform
compositeTransform->AddTransform(outputDisplacementFieldTransform);
if (timedim == 0)
{
param_values.set_size(timedims, nparams);
param_values.fill(0);
}
}
else
{
std::cerr << "ERROR: Unrecognized transform option - " << whichTransform << std::endl;
return EXIT_FAILURE;
}
if (currentStage == static_cast<int>(numberOfStages) - 1)
{
param_values(timedim, 1) = metric->GetValue();
}
metriclist.push_back(param_values(timedim, 1));
metricmean += param_values(timedim, 1) / (double)timedims;
// resample the moving image and then put it in its place
using ResampleFilterType = itk::ResampleImageFilter<FixedImageType, FixedImageType>;
typename ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform(compositeTransform);
resampler->SetInput(moving_time_slice);
resampler->SetOutputParametersFromImage(fixed_time_slice);
resampler->SetDefaultPixelValue(0);
resampler->SetInterpolator(interpolator);
resampler->Update();
if (verbose)
std::cout << " done resampling timepoint : " << timedim << std::endl;
/** Here, we put the resampled 3D image into the 4D volume */
using Iterator = itk::ImageRegionIteratorWithIndex<FixedImageType>;
Iterator vfIter2(resampler->GetOutput(), resampler->GetOutput()->GetLargestPossibleRegion());
for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
{
typename FixedImageType::PixelType fval = vfIter2.Get();
typename MovingImageType::IndexType ind;
for (unsigned int xx = 0; xx < ImageDimension; xx++)
{
ind[xx] = vfIter2.GetIndex()[xx];
}
unsigned int tdim = timedim;
if (tdim > (timedims - 1))
{
tdim = timedims - 1;
}
ind[ImageDimension] = tdim;
outputImage->SetPixel(ind, fval);
}
if (writeDisplacementField > 0)
{
using ConverterType = typename itk::TransformToDisplacementFieldFilter<DisplacementFieldType, RealType>;
typename ConverterType::Pointer converter = ConverterType::New();
converter->SetOutputOrigin(fixed_time_slice->GetOrigin());
converter->SetOutputStartIndex(fixed_time_slice->GetBufferedRegion().GetIndex());
converter->SetSize(fixed_time_slice->GetBufferedRegion().GetSize());
converter->SetOutputSpacing(fixed_time_slice->GetSpacing());
converter->SetOutputDirection(fixed_time_slice->GetDirection());
converter->SetTransform(compositeTransform);
converter->Update();
/** Here, we put the 3d tx into a 4d displacement field */
for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
{
VectorType vec = converter->GetOutput()->GetPixel(vfIter2.GetIndex());
VectorIOType vecout;
vecout.Fill(0);
typename MovingIOImageType::IndexType ind;
for (unsigned int xx = 0; xx < ImageDimension; xx++)
{
ind[xx] = vfIter2.GetIndex()[xx];
vecout[xx] = vec[xx];
}
unsigned int tdim = timedim;
if (tdim > (timedims - 1))
{
tdim = timedims - 1;
}
ind[ImageDimension] = tdim;
displacementout->SetPixel(ind, vecout);
}
#
typename ConverterType::Pointer converter2 = ConverterType::New();
converter2->SetOutputOrigin(moving_time_slice->GetOrigin());
converter2->SetOutputStartIndex(moving_time_slice->GetBufferedRegion().GetIndex());
converter2->SetSize(moving_time_slice->GetBufferedRegion().GetSize());
converter2->SetOutputSpacing(moving_time_slice->GetSpacing());
converter2->SetOutputDirection(moving_time_slice->GetDirection());
converter2->SetTransform(compositeTransform->GetInverseTransform());
converter2->Update();
/** Here, we put the 3d tx into a 4d displacement field */
Iterator vfIterInv(moving_time_slice, moving_time_slice->GetLargestPossibleRegion());
for (vfIterInv.GoToBegin(); !vfIterInv.IsAtEnd(); ++vfIterInv)
{
VectorType vec = converter2->GetOutput()->GetPixel(vfIterInv.GetIndex());
VectorIOType vecout;
vecout.Fill(0);
typename MovingIOImageType::IndexType ind;
for (unsigned int xx = 0; xx < ImageDimension; xx++)
{
ind[xx] = vfIterInv.GetIndex()[xx];
vecout[xx] = vec[xx];
}
unsigned int tdim = timedim;
if (tdim > (timedims - 1))
{
tdim = timedims - 1;
}
ind[ImageDimension] = tdim;
displacementinv->SetPixel(ind, vecout);
}
}
}
if (outputOption && outputOption->GetFunction(0)->GetNumberOfParameters() > 1 && currentStage == 0)
{
std::string fileName = outputOption->GetFunction(0)->GetParameter(1);
if (outputPrefix.length() < 3)
{
outputPrefix = outputOption->GetFunction(0)->GetName();
}
if (verbose)
std::cout << "motion corrected out " << fileName << std::endl;
ANTs::WriteImage<MovingIOImageType>(outputImage, fileName.c_str());
}
if (outputOption && outputOption->GetFunction(0)->GetNumberOfParameters() > 2 && outputImage && currentStage == 0)
{
std::string fileName = outputOption->GetFunction(0)->GetParameter(2);
typename FixedIOImageType::Pointer avgImage;
using ExtractFilterType = itk::ExtractImageFilter<MovingImageType, FixedIOImageType>;
typename MovingImageType::RegionType extractRegion = movingImage->GetLargestPossibleRegion();
extractRegion.SetSize(ImageDimension, 0);
typename ExtractFilterType::Pointer extractFilter = ExtractFilterType::New();
extractFilter->SetInput(movingImage);
extractFilter->SetDirectionCollapseToSubmatrix();
if (ImageDimension == 2)
{
extractFilter->SetDirectionCollapseToIdentity();
}
unsigned int td = 0;
extractRegion.SetIndex(ImageDimension, td);
extractFilter->SetExtractionRegion(extractRegion);
extractFilter->Update();
avgImage = extractFilter->GetOutput();
std::sort(timelist.begin(), timelist.end(), ants_moco_index_cmp<std::vector<double> &>(metriclist));
if (nimagestoavg == 0)
{
nimagestoavg = timelist.size();
}
std::vector<unsigned int> timelistsort;
for (unsigned int i = 0; i < nimagestoavg; i++)
{
if (i < timelist.size())
{
timelistsort.push_back(timelist[i]);
}
if (verbose)
std::cout << " i^th value " << i << " is " << metriclist[timelist[i]] << std::endl;
}
AverageTimeImages<MovingIOImageType, FixedIOImageType>(outputImage, fixed_time_slice, timelistsort);
if (verbose)
std::cout << " write average post " << fileName << std::endl;
ANTs::WriteImage<FixedIOImageType>(fixed_time_slice, fileName.c_str());
}
}
if (writeDisplacementField > 0)
{
std::string dfn = outputPrefix + std::string("Warp.nii.gz");
ANTs::WriteImage<DisplacementIOFieldType>(displacementout, dfn.c_str());
dfn = outputPrefix + std::string("InverseWarp.nii.gz");
ANTs::WriteImage<DisplacementIOFieldType>(displacementinv, dfn.c_str());
}
totalTimer.Stop();
if (verbose)
std::cout << std::endl
<< "Total elapsed time: " << totalTimer.GetMean() << " averagemetric " << metricmean << std::endl;
{
std::vector<std::string> ColumnHeaders;
std::string colname;
colname = std::string("MetricPre");
ColumnHeaders.push_back(colname);
colname = std::string("MetricPost");
ColumnHeaders.push_back(colname);
for (unsigned int nv = 2; nv < nparams; nv++)
{
std::string _colname = std::string("MOCOparam") + ants_moco_to_string<unsigned int>(nv - 2);
ColumnHeaders.push_back(_colname);
}
using WriterType = itk::CSVNumericObjectFileWriter<double, 1, 1>;
WriterType::Pointer writer = WriterType::New();
std::string fnmp;
if (verbose)
std::cout << " get motion corr params " << outputPrefix << std::endl;
if (outputPrefix[0] == '0' && outputPrefix[1] == 'x')
{
void * ptr;
std::sscanf(outputPrefix.c_str(), "%p", (void **)&ptr);
// std::stringstream strstream;
// strstream << outputPrefix;
// void* ptr;
// strstream >> ptr;
(static_cast<std::pair<std::vector<std::string>, vnl_matrix<float>> *>(ptr))->first = ColumnHeaders;
(static_cast<std::pair<std::vector<std::string>, vnl_matrix<double>> *>(ptr))->second = param_values;
if (verbose)
std::cout << "motion-correction params written" << std::endl;
}
else
{
fnmp = outputPrefix + std::string("MOCOparams.csv");
if (verbose)
std::cout << " write " << fnmp << std::endl;
writer->SetFileName(fnmp.c_str());
writer->SetColumnHeaders(ColumnHeaders);
writer->SetInput(¶m_values);
writer->Write();
}
}
return EXIT_SUCCESS;
}
void
antsMotionCorrInitializeCommandLineOptions(itk::ants::CommandLineParser * parser)
{
using OptionType = itk::ants::CommandLineParser::OptionType;
{
std::string description = std::string("This option forces the image to be treated as a specified-") +
std::string("dimensional image. If not specified, the program tries to ") +
std::string("infer the dimensionality from the input image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("dimensionality");
option->SetShortName('d');
option->SetUsageOption(0, "2/3");
option->SetDescription(description);
parser->AddOption(option);
}
// {
// std::string description =
// std::string("turn on the option that lets you estimate the learning rate step size only at the beginning of each "
// "level. * useful as a second stage of fine-scale registration.");
// OptionType::Pointer option = OptionType::New();
// option->SetLongName("use-estimate-learning-rate-once");
// option->SetShortName('l');
// option->SetDescription(description);
// parser->AddOption(option);
// }
{
std::string description =
std::string("This option sets the number of images to use to construct the template image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("n-images");
option->SetShortName('n');
option->SetUsageOption(0, "10");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Four image metrics are available--- ") +
std::string("GC : global correlation, CC: ANTS neighborhood cross correlation, MI: Mutual information, and ") +
std::string("Demons: Thirion's Demons (modified mean-squares). ") +
std::string("Note that the metricWeight is currently not used. ") +
std::string("Rather, it is a temporary place holder until multivariate metrics ") +
std::string("are available for a single stage. ") +
std::string("The fixed image should be a single time point (eg the average of the time series). ") +
std::string(
"By default, this image is not used, the fixed image for correction of each volume is the preceding volume ") +
std::string("in the time series. See below for the option to use a fixed reference image for all volumes. ") +
std::string("useGradientFilter specifies whether a smoothing") +
std::string("filter is applied when estimating the metric gradient.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("metric");
option->SetShortName('m');
option->SetUsageOption(
0,
"CC[fixedImage,movingImage,metricWeight,radius,<samplingStrategy={Regular,Random}>,<samplingPercentage=[0,1]>,<useGradientFilter=false>]");
option->SetUsageOption(1,
"MI[fixedImage,movingImage,metricWeight,numberOfBins,<samplingStrategy={Regular,Random}>,<"
"samplingPercentage=[0,1]>,<useGradientFilter=false>]");
option->SetUsageOption(2,
"Demons[fixedImage,movingImage,metricWeight,radius,<samplingStrategy={Regular,Random}>,<"
"samplingPercentage=[0,1]>,<useGradientFilter=false>]");
option->SetUsageOption(
3,
"GC[fixedImage,movingImage,metricWeight,radius,<samplingStrategy={Regular,Random}>,<samplingPercentage=[0,1]>,<useGradientFilter=false>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("use a fixed reference image to correct all volumes, instead of correcting each image ") +
std::string("to the prior volume in the time series.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("useFixedReferenceImage");
option->SetShortName('u');
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("use the scale estimator to control optimization.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("useScalesEstimator");
option->SetShortName('e');
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Several transform options are available. The gradientStep or") +
std::string("learningRate characterizes the gradient descent optimization and is scaled appropriately ") +
std::string("for each transform using the shift scales estimator. Subsequent parameters are ") +
std::string("transform-specific and can be determined from the usage. ");
OptionType::Pointer option = OptionType::New();
option->SetLongName("transform");
option->SetShortName('t');
option->SetUsageOption(0, "Affine[gradientStep]");
option->SetUsageOption(1, "Rigid[gradientStep]");
option->SetUsageOption(
2, "GaussianDisplacementField[gradientStep,updateFieldSigmaInPhysicalSpace,totalFieldSigmaInPhysicalSpace]");
option->SetUsageOption(3, "SyN[gradientStep,updateFieldSigmaInPhysicalSpace,totalFieldSigmaInPhysicalSpace]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Specify the number of iterations at each level.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("iterations");
option->SetShortName('i');
option->SetUsageOption(0, "MxNx0...");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Specify the sigma for smoothing at each level. Smoothing may be specified ") +
std::string("in mm units or voxels with \"AxBxCmm\" or \"AxBxCvox\". No units implies voxels.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("smoothingSigmas");
option->SetShortName('s');
option->SetUsageOption(0, "MxNx0...");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Specify the shrink factor for the virtual domain (typically the fixed image) at each level.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("shrinkFactors");
option->SetShortName('f');
option->SetUsageOption(0, "MxNx0...");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description =
std::string("Specify the output transform prefix (output format is .nii.gz ).") +
std::string("Optionally, one can choose to warp the moving image to the fixed space and, if the ") +
std::string("inverse transform exists, one can also output the warped fixed image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("output");
option->SetShortName('o');
option->SetUsageOption(0, "[outputTransformPrefix,<outputWarpedImage>,<outputAverageImage>]");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Average the input time series image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("average-image");
option->SetShortName('a');
option->SetUsageOption(0, "<timeseries>");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Write the low-dimensional 3D transforms to a 4D displacement field.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("write-displacement");
option->SetShortName('w');
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Histogram match the moving images to the reference image.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("use-histogram-matching");
option->SetUsageOption(0, "0/(1)");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Use a fixed seed for random number generation. ") +
std::string("By default, the system clock is used to initialize the seeding. ") +
std::string("The fixed seed can be any nonzero int value.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("random-seed");
option->SetUsageOption(0, "seedValue");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Several interpolation options are available in ITK. ") +
std::string("The above are available (default Linear).");
OptionType::Pointer option = OptionType::New();
option->SetLongName("interpolation");
// n is already in use by --n-images. Unfortunately flag shortname is inconsistent with antsApplyTransforms.
option->SetShortName('p');
option->SetUsageOption(0, "Linear");
option->SetUsageOption(1, "NearestNeighbor");
option->SetUsageOption(2, "BSpline[<order=3>]");
option->SetUsageOption(3, "BlackmanWindowedSinc");
option->SetUsageOption(4, "CosineWindowedSinc");
option->SetUsageOption(5, "WelchWindowedSinc");
option->SetUsageOption(6, "HammingWindowedSinc");
option->SetUsageOption(7, "LanczosWindowedSinc");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Verbose output.");
OptionType::Pointer option = OptionType::New();
option->SetShortName('v');
option->SetLongName("verbose");
option->SetUsageOption(0, "(0)/1");
option->SetDescription(description);
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu (short version).");
OptionType::Pointer option = OptionType::New();
option->SetShortName('h');
option->SetDescription(description);
option->AddFunction(std::string("0"));
parser->AddOption(option);
}
{
std::string description = std::string("Print the help menu.");
OptionType::Pointer option = OptionType::New();
option->SetLongName("help");
option->SetDescription(description);
option->AddFunction(std::string("0"));
parser->AddOption(option);
}
}
// entry point for the library; parameter 'args' is equivalent to 'argv' in (argc,argv) of commandline parameters to
// 'main()'
int
antsMotionCorr(std::vector<std::string> args, std::ostream * /*out_stream = nullptr */)
{
// put the arguments coming in as 'args' into standard (argc,argv) format;
// 'args' doesn't have the command name as first, argument, so add it manually;
// 'args' may have adjacent arguments concatenated into one argument,
// which the parser should handle
args.insert(args.begin(), "antsMotionCorr");
int argc = args.size();
char ** argv = new char *[args.size() + 1];
for (unsigned int i = 0; i < args.size(); ++i)
{
// allocate space for the string plus a null character
argv[i] = new char[args[i].length() + 1];
std::strncpy(argv[i], args[i].c_str(), args[i].length());
// place the null character in the end
argv[i][args[i].length()] = '\0';
}
argv[argc] = nullptr;
// class to automatically cleanup argv upon destruction
class Cleanup_argv
{
public:
Cleanup_argv(char ** argv_, int argc_plus_one_)
: argv(argv_)
, argc_plus_one(argc_plus_one_)
{}
~Cleanup_argv()
{
for (unsigned int i = 0; i < argc_plus_one; ++i)
{
delete[] argv[i];
}
delete[] argv;
}
private:
char ** argv;
unsigned int argc_plus_one;
};
Cleanup_argv cleanup_argv(argv, argc + 1);
// antscout->set_stream( out_stream );
itk::ants::CommandLineParser::Pointer parser = itk::ants::CommandLineParser::New();
parser->SetCommand(argv[0]);
std::string commandDescription =
std::string("antsMotionCorr = motion correction. This program is a user-level ") +
std::string("registration application meant to utilize classes in ITK v4.0 or greater. The user can specify ") +
std::string("any number of \"stages\" where a stage consists of a transform; an image metric; ") +
std::string("and iterations, shrink factors, and smoothing sigmas for each level. ") +
std::string(
"Specialized for 4D time series data: fixed image is 3D, moving image should be the 4D time series. ") +
std::string("Fixed image is a reference space or time slice. ") +
std::string("To create a reference image from the time series, use the -a option.");
parser->SetCommandDescription(commandDescription);
antsMotionCorrInitializeCommandLineOptions(parser);
if (parser->Parse(argc, argv) == EXIT_FAILURE)
{
return EXIT_FAILURE;
}
if (argc < 2 || parser->Convert<bool>(parser->GetOption("help")->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, false);
if (argc < 2)
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
else if (parser->Convert<bool>(parser->GetOption('h')->GetFunction()->GetName()))
{
parser->PrintMenu(std::cout, 5, true);
return EXIT_SUCCESS;
}
// Get dimensionality
unsigned int dimension = 3;
itk::ants::CommandLineParser::OptionType::Pointer dimOption = parser->GetOption("dimensionality");
if (dimOption && dimOption->GetNumberOfFunctions())
{
dimension = parser->Convert<unsigned int>(dimOption->GetFunction(0)->GetName());
}
else
{
std::cerr << "Image dimensionality not specified. See command line option --dimensionality" << std::endl;
return EXIT_FAILURE;
}
switch (dimension)
{
case 2:
{
return ants_motion<2>(parser);
}
break;
case 3:
{
return ants_motion<3>(parser);
}
break;
default:
std::cerr << "Unsupported dimension" << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
} // namespace ants
|