File: antsRegistrationTemplateHeader.h

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (1554 lines) | stat: -rw-r--r-- 63,759 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
/*
   Instantiating all 4 combinations of 2D,3D and float and double in one file
   was causing object files that were too big to be linked with gcc44, and
   is anticipated to cause problems on Windows machines that require relatively
   small object files as well.

   This file will use explicit template instantiation to make the overall size of
   each object smaller.
 */
#ifndef __ANTSREGISTRATIONTEMPLATEHEADER_H__
#define __ANTSREGISTRATIONTEMPLATEHEADER_H__

#include "antsUtilities.h"
#include "itkantsRegistrationHelper.h"
#include "itkBSplineInterpolateImageFunction.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkGaussianInterpolateImageFunction.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkWindowedSincInterpolateImageFunction.h"
#include "itkLabelImageGaussianInterpolateImageFunction.h"
#include "itkLabelImageGenericInterpolateImageFunction.h"
#include "include/antsRegistration.h"
#include "ReadWriteData.h"

namespace ants
{

extern const char *
RegTypeToFileName(const std::string & type, bool & writeInverse, bool & writeVelocityField, bool minc);

template <typename TComputeType, unsigned VImageDimension>
int
DoRegistration(typename ParserType::Pointer & parser)
{
  typedef TComputeType                                                     RealType;
  typedef typename ants::RegistrationHelper<TComputeType, VImageDimension> RegistrationHelperType;
  typedef typename RegistrationHelperType::ImageType                       ImageType;
  typedef typename RegistrationHelperType::MaskImageType                   MaskImageType;
  typedef typename RegistrationHelperType::LabeledPointSetType             LabeledPointSetType;
  typedef typename RegistrationHelperType::IntensityPointSetType           IntensityPointSetType;
  typedef typename RegistrationHelperType::CompositeTransformType          CompositeTransformType;

  typename RegistrationHelperType::Pointer regHelper = RegistrationHelperType::New();

  OptionType::Pointer useMincFormatOption = parser->GetOption("minc");
  const bool          useMincFormat = parser->Convert<bool>(useMincFormatOption->GetFunction(0)->GetName());

  bool                                                       verbose = false;
  typename itk::ants::CommandLineParser::OptionType::Pointer verboseOption = parser->GetOption("verbose");
  if (verboseOption && verboseOption->GetNumberOfFunctions())
  {
    verbose = parser->Convert<bool>(verboseOption->GetFunction(0)->GetName());
  }

  nullStream cnul;
  if (!verbose)
  {
    regHelper->SetLogStream(cnul);
  }

  OptionType::Pointer fixRandomSeed = parser->GetOption("random-seed");
  if (fixRandomSeed && fixRandomSeed->GetNumberOfFunctions())
  {
    int randomSeed = parser->Convert<int>(fixRandomSeed->GetFunction(0)->GetName());
    regHelper->SetRegistrationRandomSeed(randomSeed);
  }
  else
  {
    char * randomSeedEnv = getenv("ANTS_RANDOM_SEED");
    if (randomSeedEnv != nullptr)
    {
      regHelper->SetRegistrationRandomSeed(std::stoi(randomSeedEnv));
    }
    else
    {
      regHelper->SetRegistrationRandomSeed(0);
    }
  }

  OptionType::Pointer transformOption = parser->GetOption("transform");
  if (!transformOption || transformOption->GetNumberOfFunctions() == 0)
  {
    if (verbose)
    {
      std::cerr << "ERROR: the transform option ('-t') must be specified.  See help menu." << std::endl;
    }
    return EXIT_FAILURE;
  }

  OptionType::Pointer metricOption = parser->GetOption("metric");
  if (!metricOption || metricOption->GetNumberOfFunctions() == 0)
  {
    if (verbose)
    {
      std::cerr << "ERROR: the metric option ('-m') must be specified.  See help menu." << std::endl;
    }
    return EXIT_FAILURE;
  }

  OptionType::Pointer convergenceOption = parser->GetOption("convergence");
  if (!convergenceOption || convergenceOption->GetNumberOfFunctions() == 0)
  {
    if (verbose)
    {
      std::cerr << "ERROR: the convergence option ('-c') must be specified.  See help menu." << std::endl;
    }
    return EXIT_FAILURE;
  }

  OptionType::Pointer shrinkFactorsOption = parser->GetOption("shrink-factors");
  if (!shrinkFactorsOption || shrinkFactorsOption->GetNumberOfFunctions() == 0)
  {
    if (verbose)
    {
      std::cerr << "ERROR: the shrink factors option ('-f') must be specified.  See help menu." << std::endl;
    }
    return EXIT_FAILURE;
  }

  OptionType::Pointer smoothingSigmasOption = parser->GetOption("smoothing-sigmas");
  if (!smoothingSigmasOption || smoothingSigmasOption->GetNumberOfFunctions() == 0)
  {
    if (verbose)
    {
      std::cerr << "ERROR: the smoothing sigmas option ('-s') must be specified.  See help menu." << std::endl;
    }
    return EXIT_FAILURE;
  }

  OptionType::Pointer restrictDeformationOption = parser->GetOption("restrict-deformation");

  OptionType::Pointer outputOption = parser->GetOption("output");
  if (!outputOption || outputOption->GetNumberOfFunctions() == 0)
  {
    if (verbose)
    {
      std::cerr << "ERROR: the output option ('-o') must be specified.  See help menu." << std::endl;
    }
    return EXIT_FAILURE;
  }

  OptionType::Pointer maskOption = parser->GetOption("masks");

  OptionType::Pointer compositeOutputOption = parser->GetOption("write-composite-transform");
  const bool          writeCompositeTransform = parser->Convert<bool>(compositeOutputOption->GetFunction(0)->GetName());

  OptionType::Pointer saveStateOption = parser->GetOption("save-state");

  OptionType::Pointer collapseOutputTransformsOption = parser->GetOption("collapse-output-transforms");
  const bool shouldCollapseBeDone = parser->Convert<bool>(collapseOutputTransformsOption->GetFunction(0)->GetName());

  OptionType::Pointer initializeTransformsPerStageOption = parser->GetOption("initialize-transforms-per-stage");
  if (initializeTransformsPerStageOption &&
      parser->Convert<bool>(initializeTransformsPerStageOption->GetFunction(0)->GetName()))
  {
    if (shouldCollapseBeDone)
    {
      if (verbose)
      {
        std::cerr
          << "ERROR: initialize-transforms-per-stage & collapse-output-transforms options are mutually exclusive."
          << std::endl;
      }
      return EXIT_FAILURE;
    }
    regHelper->SetInitializeTransformsPerStage(true);
  }
  else
  {
    regHelper->SetInitializeTransformsPerStage(false);
  }

  OptionType::Pointer printSimilarityMeasureInterval = parser->GetOption("print-similarity-measure-interval");
  if (printSimilarityMeasureInterval && printSimilarityMeasureInterval->GetNumberOfFunctions())
  {
    unsigned int intervalLength =
      parser->Convert<unsigned int>(printSimilarityMeasureInterval->GetFunction(0)->GetName());
    regHelper->SetPrintSimilarityMeasureInterval(intervalLength);
  }
  else
  {
    regHelper->SetPrintSimilarityMeasureInterval(0);
  }

  OptionType::Pointer writeIntervalVolumes = parser->GetOption("write-interval-volumes");
  if (writeIntervalVolumes && writeIntervalVolumes->GetNumberOfFunctions())
  {
    unsigned int LengthOfIntervals = parser->Convert<unsigned int>(writeIntervalVolumes->GetFunction(0)->GetName());
    regHelper->SetWriteIntervalVolumes(LengthOfIntervals);
  }
  else
  {
    regHelper->SetPrintSimilarityMeasureInterval(0);
  }

  std::string outputPrefix = outputOption->GetFunction(0)->GetName();
  if (outputOption->GetFunction(0)->GetNumberOfParameters() > 0)
  {
    outputPrefix = outputOption->GetFunction(0)->GetParameter(0);
  }
  std::string outputWarpedImageName;
  if (outputOption->GetFunction(0)->GetNumberOfParameters() > 1)
  {
    outputWarpedImageName = outputOption->GetFunction(0)->GetParameter(1);
  }

  std::string outputInverseWarpedImageName;
  if (outputOption->GetFunction(0)->GetNumberOfParameters() > 2)
  {
    outputInverseWarpedImageName = outputOption->GetFunction(0)->GetParameter(2);
  }

  ParserType::OptionType::Pointer initialMovingTransformOption = parser->GetOption("initial-moving-transform");

  if (initialMovingTransformOption && initialMovingTransformOption->GetNumberOfFunctions())
  {
    std::vector<bool>                        isDerivedInitialMovingTransform;
    typename CompositeTransformType::Pointer compositeTransform =
      GetCompositeTransformFromParserOption<TComputeType, VImageDimension>(
        parser, initialMovingTransformOption, isDerivedInitialMovingTransform);
    if (compositeTransform.IsNull())
    {
      return EXIT_FAILURE;
    }
    regHelper->SetMovingInitialTransform(compositeTransform);

    // Write out initial derived transforms only if we're not collapsing them in the output
    if (!shouldCollapseBeDone)
    {
      for (unsigned int n = 0; n < isDerivedInitialMovingTransform.size(); n++)
      {
        std::stringstream currentFileName;
        if (useMincFormat)
        {
          currentFileName << outputPrefix << n << "DerivedInitialMovingTranslation.xfm";
        }
        else
        {
          currentFileName << outputPrefix << n << "DerivedInitialMovingTranslation.mat";
        }

        typename RegistrationHelperType::CompositeTransformType::TransformTypePointer currentTransform =
          compositeTransform->GetNthTransform(n);
        if (currentTransform->IsLinear() && isDerivedInitialMovingTransform[n])
        {
          itk::ants::WriteTransform<TComputeType, VImageDimension>(currentTransform, currentFileName.str());
        }
      }
    }
  }

  ParserType::OptionType::Pointer initialFixedTransformOption = parser->GetOption("initial-fixed-transform");

  if (initialFixedTransformOption && initialFixedTransformOption->GetNumberOfFunctions())
  {
    std::vector<bool>                        isDerivedInitialFixedTransform;
    typename CompositeTransformType::Pointer compositeTransform =
      GetCompositeTransformFromParserOption<TComputeType, VImageDimension>(
        parser, initialFixedTransformOption, isDerivedInitialFixedTransform);
    if (compositeTransform.IsNull())
    {
      return EXIT_FAILURE;
    }
    regHelper->SetFixedInitialTransform(compositeTransform);

    // Write out initial derived transforms only if we're not collapsing them in the output
    if (!shouldCollapseBeDone)
    {
      for (unsigned int n = 0; n < isDerivedInitialFixedTransform.size(); n++)
      {
        std::stringstream currentFileName;
        if (useMincFormat)
        {
          currentFileName << outputPrefix << n << "DerivedInitialFixedTranslation.xfm";
        }
        else
        {
          currentFileName << outputPrefix << n << "DerivedInitialFixedTranslation.mat";
        }

        typename RegistrationHelperType::CompositeTransformType::TransformTypePointer currentTransform =
          compositeTransform->GetNthTransform(n);
        if (currentTransform->IsLinear() && isDerivedInitialFixedTransform[n])
        {
          itk::ants::WriteTransform<TComputeType, VImageDimension>(currentTransform, currentFileName.str());
        }
      }
    }
  }

  ParserType::OptionType::Pointer restoreStateOption = parser->GetOption("restore-state");

  if (restoreStateOption && restoreStateOption->GetNumberOfFunctions())
  {
    if (initialMovingTransformOption->GetNumberOfFunctions() || initialFixedTransformOption->GetNumberOfFunctions())
    {
      if (verbose)
      {
        std::cerr << "restore-state option is mutually exclusive with "
                  << "initial-moving-transform & initial-fixed-transform options." << std::endl;
      }
      return EXIT_FAILURE;
    }

    if (verbose)
    {
      std::cout << "Restoring previous registration state" << std::endl;
    }
    std::vector<bool>                        isDerivedInitialMovingTransform;
    typename CompositeTransformType::Pointer compositeTransform =
      GetCompositeTransformFromParserOption<TComputeType, VImageDimension>(
        parser, restoreStateOption, isDerivedInitialMovingTransform);
    if (verbose)
    {
      std::cout << "+" << std::endl;
    }
    if (compositeTransform.IsNull())
    {
      return EXIT_FAILURE;
    }
    regHelper->SetRestoreStateTransform(compositeTransform);
    if (verbose)
    {
      std::cout << "+" << std::endl;
    }
  }

  if (maskOption && maskOption->GetNumberOfFunctions())
  {
    if (verbose)
    {
      std::cout << "  Reading mask(s)." << std::endl;
    }
    for (int l = maskOption->GetNumberOfFunctions() - 1; l >= 0; l--)
    {
      if (verbose)
      {
        std::cout << "    Registration stage " << (maskOption->GetNumberOfFunctions() - l - 1) << std::endl;
      }
      if (maskOption->GetFunction(l)->GetNumberOfParameters() > 0)
      {
        for (unsigned m = 0; m < maskOption->GetFunction(l)->GetNumberOfParameters(); m++)
        {
          std::string                     fname = maskOption->GetFunction(l)->GetParameter(m);
          typename MaskImageType::Pointer maskImage;
          ReadImage<MaskImageType>(maskImage, fname.c_str());
          if (m == 0)
          {
            regHelper->AddFixedImageMask(maskImage);
            if (verbose)
            {
              if (maskImage.IsNotNull())
              {
                std::cout << "      Fixed mask = " << fname.c_str() << std::endl;
              }
              else
              {
                std::cout << "      No fixed mask" << std::endl;
              }
            }
          }
          else if (m == 1)
          {
            regHelper->AddMovingImageMask(maskImage);
            if (verbose)
            {
              if (maskImage.IsNotNull())
              {
                std::cout << "      Moving mask = " << fname << std::endl;
              }
              else
              {
                std::cout << "      No moving mask" << std::endl;
              }
            }
          }
        }
      }
      else
      {
        std::string                     fname = maskOption->GetFunction(l)->GetName();
        typename MaskImageType::Pointer maskImage;
        ReadImage<MaskImageType>(maskImage, fname.c_str());
        regHelper->AddFixedImageMask(maskImage);
        if (verbose)
        {
          if (maskImage.IsNotNull())
          {
            std::cout << "      Fixed mask = " << fname << std::endl;
          }
          else
          {
            std::cout << "      No fixed mask" << std::endl;
          }
        }
      }
    }
  }

  // The misc. options
  //  * winsorize image intensities
  //  * use histogram matching
  //  * estimate learning rate
  // are currently specified once on the command line and then apply to all
  // stages.  Advanced parameter specification might require us to rewrite
  // this in the future.

  float lowerQuantile = 0.0;
  float upperQuantile = 1.0;

  bool doWinsorize = false;

  OptionType::Pointer winsorizeOption = parser->GetOption("winsorize-image-intensities");
  if (winsorizeOption && winsorizeOption->GetNumberOfFunctions())
  {
    doWinsorize = true;
    if (winsorizeOption->GetFunction(0)->GetNumberOfParameters() > 0)
    {
      lowerQuantile = parser->Convert<float>(winsorizeOption->GetFunction(0)->GetParameter(0));
    }
    if (winsorizeOption->GetFunction(0)->GetNumberOfParameters() > 1)
    {
      upperQuantile = parser->Convert<float>(winsorizeOption->GetFunction(0)->GetParameter(1));
    }
  }
  regHelper->SetWinsorizeImageIntensities(doWinsorize, lowerQuantile, upperQuantile);

  bool doHistogramMatch = false;

  OptionType::Pointer histOption = parser->GetOption("use-histogram-matching");
  if (histOption && histOption->GetNumberOfFunctions())
  {
    std::string histFunction = histOption->GetFunction(0)->GetName();
    ConvertToLowerCase(histFunction);
    if (histFunction.compare("1") == 0 || histFunction.compare("true") == 0)
    {
      doHistogramMatch = true;
    }
  }
  regHelper->SetUseHistogramMatching(doHistogramMatch);

  // bool doEstimateLearningRateAtEachIteration = true;

  // OptionType::Pointer rateOption = parser->GetOption("use-estimate-learning-rate-once");
  // if (rateOption && rateOption->GetNumberOfFunctions())
  // {
  //   std::string rateFunction = rateOption->GetFunction(0)->GetName();
  //   ConvertToLowerCase(rateFunction);
  //   if (rateFunction.compare("1") == 0 || rateFunction.compare("true") == 0)
  //   {
  //     doEstimateLearningRateAtEachIteration = false;
  //   }
  // }
  // regHelper->SetDoEstimateLearningRateAtEachIteration(doEstimateLearningRateAtEachIteration);

  // We find both the number of transforms and the number of metrics

  unsigned int numberOfTransforms = transformOption->GetNumberOfFunctions();
  if (transformOption.IsNull() || numberOfTransforms == 0)
  {
    if (verbose)
    {
      std::cerr << "No transformations are specified." << std::endl;
    }
    return EXIT_FAILURE;
  }

  // Check that we have the same number of required args for each transform:
  // smoothing sigmas, shrink factors, and convergence
  unsigned int numSmoothingSigmaFunctions = smoothingSigmasOption->GetNumberOfFunctions();
  unsigned int numShrinkFactorFunctions = shrinkFactorsOption->GetNumberOfFunctions();
  unsigned int numConvergenceFunctions = convergenceOption->GetNumberOfFunctions();

  if (numSmoothingSigmaFunctions != numShrinkFactorFunctions ||
      numShrinkFactorFunctions != numConvergenceFunctions ||
      numConvergenceFunctions != numberOfTransforms)
  {
    if (verbose)
    {
      std::cerr << "ERROR: smoothing sigmas, shrink factors, and convergence options must be set "
                << "once for each transform." << std::endl;
    }
    return EXIT_FAILURE;
  }

  std::vector<std::vector<unsigned int>> iterationList;
  std::vector<std::vector<RealType>>     restrictDeformationWeightsList;
  std::vector<RealType>                  convergenceThresholdList;
  std::vector<unsigned int>              convergenceWindowSizeList;
  std::vector<std::vector<unsigned int>> shrinkFactorsList;
  std::vector<std::vector<float>>        smoothingSigmasList;
  std::vector<bool>                      smoothingSigmasAreInPhysicalUnitsList;
  std::deque<std::string>                TransformTypeNames;
  // Each image registration "stage" is characterized by
  //   * a transform
  //   * a set of convergence criteria (number of iterations, convergence threshold,
  //     and/or convergence window)
  //   * a set of shrink factors
  //   * a set of smoothing factors (specified in physical space or voxel space)
  // Note that the set of the number of iterations, the set of shrink factors, and the
  // set of smoothing factors imply the number of levels that will be used for that stage
  // and thus they all need to be the same vector length, e.g. "-c 100x50x10 -f 4x2x1 -s 2x1x0".
  // We use the number of transforms to implicitly guess how many stages are being used in
  // current registration call.  We don't add the metrics in this loop as there could be
  // more than one metric per stage.
  //
  // Also, we iterate backwards because the command line options are stored as a stack (first
  // in last out).
  for (int currentStage = numberOfTransforms - 1; currentStage >= 0; currentStage--)
  {

    // Get the number of iterations and use that information to specify the number of levels
    std::vector<unsigned int> iterations;
    RealType                  convergenceThreshold = 1e-6;
    unsigned int              convergenceWindowSize = 10;

    if (convergenceOption.IsNotNull() && convergenceOption->GetNumberOfFunctions())
    {
      if (convergenceOption->GetFunction(currentStage)->GetNumberOfParameters() == 0)
      {
        iterations = parser->ConvertVector<unsigned int>(convergenceOption->GetFunction(currentStage)->GetName());
      }
      else if (convergenceOption->GetFunction(currentStage)->GetNumberOfParameters() > 0)
      {
        iterations = parser->ConvertVector<unsigned int>(convergenceOption->GetFunction(currentStage)->GetParameter(0));
      }
      if (convergenceOption->GetFunction(currentStage)->GetNumberOfParameters() > 1)
      {
        convergenceThreshold = parser->Convert<RealType>(convergenceOption->GetFunction(currentStage)->GetParameter(1));
      }
      if (convergenceOption->GetFunction(currentStage)->GetNumberOfParameters() > 2)
      {
        convergenceWindowSize =
          parser->Convert<unsigned int>(convergenceOption->GetFunction(currentStage)->GetParameter(2));
        constexpr unsigned int minAllowedconvergenceWindowSize = 2; // The BSplineScatteredDataPoints requires at least
                                                                    // 2 points for interpolation.
        if (convergenceWindowSize < minAllowedconvergenceWindowSize)
        {
          if (verbose)
          {
            std::cerr << "Convergence Window Size must be greater than or equal to " << minAllowedconvergenceWindowSize
                      << std::endl;
          }
          return EXIT_FAILURE;
        }
      }
    }
    else
    {
      if (verbose)
      {
        std::cerr << "No convergence criteria are specified." << std::endl;
      }
      return EXIT_FAILURE;
    }

    iterationList.push_back(iterations);
    convergenceThresholdList.push_back(convergenceThreshold);
    convergenceWindowSizeList.push_back(convergenceWindowSize);

    if (restrictDeformationOption.IsNotNull() &&
        restrictDeformationOption->GetNumberOfFunctions() > static_cast<unsigned int>(currentStage))
    {
      std::vector<RealType> restrictDeformationWeights =
        parser->ConvertVector<RealType>(restrictDeformationOption->GetFunction(currentStage)->GetName());
      restrictDeformationWeightsList.push_back(restrictDeformationWeights);
    }

    unsigned int numberOfLevels = iterations.size();
    if (verbose)
    {
      std::cout << "  number of levels = " << numberOfLevels << std::endl;
    }

    // Get the first metricOption for the currentStage (for use with the B-spline transforms)
    unsigned int numberOfMetrics = metricOption->GetNumberOfFunctions();
    std::string  fixedImageFileName;
    for (int currentMetricNumber = numberOfMetrics - 1; currentMetricNumber >= 0; currentMetricNumber--)
    {
      // Get the fixed filename to read later in the case of a B-spline transform
      unsigned int stageID = metricOption->GetFunction(currentMetricNumber)->GetStageID();
      if (stageID == static_cast<unsigned int>(currentStage))
      {
        fixedImageFileName = metricOption->GetFunction(currentMetricNumber)->GetParameter(0);
        break;
      }
    }

    // Get shrink factors
    std::vector<unsigned int> factors =
      parser->ConvertVector<unsigned int>(shrinkFactorsOption->GetFunction(currentStage)->GetName());
    shrinkFactorsList.push_back(factors);

    // Get smoothing sigmas
    std::string  smoothingSigmasString = smoothingSigmasOption->GetFunction(currentStage)->GetName();
    const size_t mmPosition = smoothingSigmasString.find("mm");
    const size_t voxPosition = smoothingSigmasString.find("vox");
    if (mmPosition != std::string::npos)
    {
      smoothingSigmasString.replace(mmPosition, 2, "");
      smoothingSigmasAreInPhysicalUnitsList.push_back(true);
    }
    else if (voxPosition != std::string::npos)
    {
      smoothingSigmasString.replace(voxPosition, 3, "");
      smoothingSigmasAreInPhysicalUnitsList.push_back(false);
    }
    else
    {
      smoothingSigmasAreInPhysicalUnitsList.push_back(false);
    }

    std::vector<float> sigmas = parser->ConvertVector<float>(smoothingSigmasString);
    if (sigmas.size() == 1)
    {
      sigmas.resize(numberOfLevels, sigmas[0]);
    }
    smoothingSigmasList.push_back(sigmas);

    // Set up the optimizer.  To change the iteration number for each level we rely
    // on the command observer.

    float learningRate = parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(0));

    std::string whichTransform = transformOption->GetFunction(currentStage)->GetName();
    ConvertToLowerCase(whichTransform);

    TransformTypeNames.push_back(whichTransform);

    typename RegistrationHelperType::XfrmMethod xfrmMethod = regHelper->StringToXfrmMethod(whichTransform);

    switch (xfrmMethod)
    {
      case RegistrationHelperType::Affine:
      {
        regHelper->AddAffineTransform(learningRate);
      }
      break;
      case RegistrationHelperType::Rigid:
      {
        regHelper->AddRigidTransform(learningRate);
      }
      break;
      case RegistrationHelperType::CompositeAffine:
      {
        regHelper->AddCompositeAffineTransform(learningRate);
      }
      break;
      case RegistrationHelperType::Similarity:
      {
        regHelper->AddSimilarityTransform(learningRate);
      }
      break;
      case RegistrationHelperType::Translation:
      {
        regHelper->AddTranslationTransform(learningRate);
      }
      break;
      case RegistrationHelperType::GaussianDisplacementField:
      {
        const float varianceForUpdateField =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(1));
        const float varianceForTotalField =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(2));
        regHelper->AddGaussianDisplacementFieldTransform(learningRate, varianceForUpdateField, varianceForTotalField);
      }
      break;
      case RegistrationHelperType::BSplineDisplacementField:
      {
        unsigned int splineOrder = 3;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 3)
        {
          splineOrder = parser->Convert<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(3));
        }

        std::vector<unsigned int> meshSizeForTheUpdateField =
          parser->ConvertVector<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(1));

        if (meshSizeForTheUpdateField.size() == 1)
        {
          typename ImageType::Pointer fixedImage;
          ReadImage<ImageType>(fixedImage, fixedImageFileName.c_str());
          fixedImage->DisconnectPipeline();

          meshSizeForTheUpdateField =
            regHelper->CalculateMeshSizeForSpecifiedKnotSpacing(fixedImage, meshSizeForTheUpdateField[0], splineOrder);
        }

        std::vector<unsigned int> meshSizeForTheTotalField;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 2)
        {
          meshSizeForTheTotalField =
            parser->ConvertVector<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(2));
          if (meshSizeForTheTotalField.size() == 1)
          {
            typename ImageType::Pointer fixedImage;
            ReadImage<ImageType>(fixedImage, fixedImageFileName.c_str());
            fixedImage->DisconnectPipeline();

            meshSizeForTheTotalField =
              regHelper->CalculateMeshSizeForSpecifiedKnotSpacing(fixedImage, meshSizeForTheTotalField[0], splineOrder);
          }
        }
        else
        {
          for (unsigned int d = 0; d < VImageDimension; d++)
          {
            meshSizeForTheTotalField.push_back(0);
          }
        }

        regHelper->AddBSplineDisplacementFieldTransform(
          learningRate, meshSizeForTheUpdateField, meshSizeForTheTotalField, splineOrder);
      }
      break;
      case RegistrationHelperType::BSpline:
      {
        std::vector<unsigned int> meshSizeAtBaseLevel =
          parser->ConvertVector<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(1));
        if (meshSizeAtBaseLevel.size() == 1)
        {
          typename ImageType::Pointer fixedImage;
          ReadImage<ImageType>(fixedImage, fixedImageFileName.c_str());
          fixedImage->DisconnectPipeline();

          meshSizeAtBaseLevel =
            regHelper->CalculateMeshSizeForSpecifiedKnotSpacing(fixedImage, meshSizeAtBaseLevel[0], 3);
        }
        regHelper->AddBSplineTransform(learningRate, meshSizeAtBaseLevel);
      }
      break;
      case RegistrationHelperType::TimeVaryingVelocityField:
      {
        unsigned int numberOfTimeIndices =
          parser->Convert<unsigned int>(transformOption->GetFunction(0)->GetParameter(1));

        const float varianceForUpdateField =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(2));
        const float varianceForUpdateFieldTime =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(3));
        const float varianceForTotalField =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(4));
        const float varianceForTotalFieldTime =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(5));
        regHelper->AddTimeVaryingVelocityFieldTransform(learningRate,
                                                        numberOfTimeIndices,
                                                        varianceForUpdateField,
                                                        varianceForUpdateFieldTime,
                                                        varianceForTotalField,
                                                        varianceForTotalFieldTime);
      }
      break;
      case RegistrationHelperType::TimeVaryingBSplineVelocityField:
      {
        std::vector<unsigned int> meshSize =
          parser->ConvertVector<unsigned int>(transformOption->GetFunction(0)->GetParameter(1));

        unsigned int numberOfTimePointSamples = 4;

        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 2)
        {
          numberOfTimePointSamples =
            parser->Convert<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(2));
        }
        unsigned int splineOrder = 3;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 3)
        {
          splineOrder = parser->Convert<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(3));
        }
        regHelper->AddTimeVaryingBSplineVelocityFieldTransform(
          learningRate, meshSize, numberOfTimePointSamples, splineOrder);
      }
      break;
      case RegistrationHelperType::SyN:
      {
        float varianceForUpdateField = 3.0;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 1)
        {
          varianceForUpdateField = parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(1));
        }
        float varianceForTotalField = 0.0;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 2)
        {
          varianceForTotalField = parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(2));
        }
        regHelper->AddSyNTransform(learningRate, varianceForUpdateField, varianceForTotalField);
      }
      break;
      case RegistrationHelperType::BSplineSyN:
      {
        unsigned int splineOrder = 3;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 3)
        {
          splineOrder = parser->Convert<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(3));
        }

        std::vector<unsigned int> meshSizeForTheUpdateField;

        std::vector<float> meshSizeForTheUpdateFieldFloat =
          parser->ConvertVector<float>(transformOption->GetFunction(currentStage)->GetParameter(1));
        if (meshSizeForTheUpdateFieldFloat.size() == 1)
        {
          typename ImageType::Pointer fixedImage;
          ReadImage<ImageType>(fixedImage, fixedImageFileName.c_str());
          fixedImage->DisconnectPipeline();

          meshSizeForTheUpdateField = regHelper->CalculateMeshSizeForSpecifiedKnotSpacing(
            fixedImage, meshSizeForTheUpdateFieldFloat[0], splineOrder);
        }
        else
        {
          meshSizeForTheUpdateField =
            parser->ConvertVector<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(1));
        }

        std::vector<unsigned int> meshSizeForTheTotalField;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 2)
        {
          std::vector<float> meshSizeForTheTotalFieldFloat =
            parser->ConvertVector<float>(transformOption->GetFunction(currentStage)->GetParameter(2));
          if (meshSizeForTheTotalFieldFloat.size() == 1)
          {
            typename ImageType::Pointer fixedImage;
            ReadImage<ImageType>(fixedImage, fixedImageFileName.c_str());
            fixedImage->DisconnectPipeline();

            meshSizeForTheTotalField = regHelper->CalculateMeshSizeForSpecifiedKnotSpacing(
              fixedImage, meshSizeForTheTotalFieldFloat[0], splineOrder);
          }
          else
          {
            meshSizeForTheTotalField =
              parser->ConvertVector<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(2));
          }
        }
        else
        {
          for (unsigned int d = 0; d < VImageDimension; d++)
          {
            meshSizeForTheTotalField.push_back(0);
          }
        }

        regHelper->AddBSplineSyNTransform(
          learningRate, meshSizeForTheUpdateField, meshSizeForTheTotalField, splineOrder);
      }
      break;
      case RegistrationHelperType::Exponential:
      {
        const float varianceForUpdateField =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(1));
        const float varianceForVelocityField =
          parser->Convert<float>(transformOption->GetFunction(currentStage)->GetParameter(2));
        unsigned int numberOfIntegrationSteps = 0; // If the number of integration steps = 0, compute steps
                                                   // automatically
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 3)
        {
          numberOfIntegrationSteps =
            parser->Convert<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(3));
        }
        regHelper->AddExponentialTransform(
          learningRate, varianceForUpdateField, varianceForVelocityField, numberOfIntegrationSteps);
      }
      break;
      case RegistrationHelperType::BSplineExponential:
      {
        unsigned int splineOrder = 3;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 4)
        {
          splineOrder = parser->Convert<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(4));
        }

        std::vector<unsigned int> meshSizeForTheUpdateField =
          parser->ConvertVector<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(1));
        if (meshSizeForTheUpdateField.size() == 1)
        {
          typename ImageType::Pointer fixedImage;
          ReadImage<ImageType>(fixedImage, fixedImageFileName.c_str());
          fixedImage->DisconnectPipeline();

          meshSizeForTheUpdateField =
            regHelper->CalculateMeshSizeForSpecifiedKnotSpacing(fixedImage, meshSizeForTheUpdateField[0], splineOrder);
        }

        std::vector<unsigned int> meshSizeForTheVelocityField;
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 2)
        {
          meshSizeForTheVelocityField =
            parser->ConvertVector<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(2));
          if (meshSizeForTheVelocityField.size() == 1)
          {
            typename ImageType::Pointer fixedImage;
            ReadImage<ImageType>(fixedImage, fixedImageFileName.c_str());
            fixedImage->DisconnectPipeline();

            meshSizeForTheVelocityField = regHelper->CalculateMeshSizeForSpecifiedKnotSpacing(
              fixedImage, meshSizeForTheVelocityField[0], splineOrder);
          }
        }
        else
        {
          for (unsigned int d = 0; d < VImageDimension; d++)
          {
            meshSizeForTheVelocityField.push_back(0);
          }
        }

        unsigned int numberOfIntegrationSteps = 0; // If the number of integration steps = 0, compute steps
                                                   // automatically
        if (transformOption->GetFunction(currentStage)->GetNumberOfParameters() > 3)
        {
          numberOfIntegrationSteps =
            parser->Convert<unsigned int>(transformOption->GetFunction(currentStage)->GetParameter(3));
        }

        regHelper->AddBSplineExponentialTransform(
          learningRate, meshSizeForTheUpdateField, meshSizeForTheVelocityField, numberOfIntegrationSteps, splineOrder);
      }
      break;
      default:
      {
        if (verbose)
        {
          std::cerr << "Unknown registration method "
                    << "\"" << whichTransform << "\"" << std::endl;
        }
        return EXIT_FAILURE;
      }
      break;
    }
  }

  // set the vector-vector parameters accumulated
  regHelper->SetIterations(iterationList);
  regHelper->SetRestrictDeformationOptimizerWeights(restrictDeformationWeightsList);
  regHelper->SetConvergenceWindowSizes(convergenceWindowSizeList);
  regHelper->SetConvergenceThresholds(convergenceThresholdList);
  regHelper->SetSmoothingSigmas(smoothingSigmasList);
  regHelper->SetSmoothingSigmasAreInPhysicalUnits(smoothingSigmasAreInPhysicalUnitsList);
  regHelper->SetShrinkFactors(shrinkFactorsList);

  // We iterate through each of the metric "functions" specified on the command
  // line and add it the registration helper.  We also need to assign the stage
  // ID to the added metric.  Multiple metrics for a single stage are specified
  // on the command line by being specified adjacently.

  unsigned int numberOfMetrics = metricOption->GetNumberOfFunctions();
  for (int currentMetricNumber = numberOfMetrics - 1; currentMetricNumber >= 0; currentMetricNumber--)
  {
    // Get the stage ID
    unsigned int stageID = metricOption->GetFunction(currentMetricNumber)->GetStageID();

    // We check the last stage ID (first iteration) to ensure that the number of stages
    // (as determined by the number of transforms) is equal to the number of stages (as
    // determined by the metrics command line specification).
    if (currentMetricNumber == static_cast<int>(numberOfMetrics - 1))
    {
      if (stageID != numberOfTransforms - 1)
      {
        if (verbose)
        {
          std::cerr << "\n\n\n"
                    << "Error:  The number of stages does not match up with the metrics." << std::endl
                    << "The number of transforms is " << numberOfTransforms << " and the last stage ID "
                    << " as determined by the metrics is " << stageID << "." << std::endl;
        }
        return EXIT_FAILURE;
      }
    }

    std::string whichMetric = metricOption->GetFunction(currentMetricNumber)->GetName();
    ConvertToLowerCase(whichMetric);
    typename RegistrationHelperType::MetricEnumeration currentMetric = regHelper->StringToMetricType(whichMetric);

    // Get the fixed and moving images or point sets

    typename ImageType::Pointer             fixedImage = nullptr;
    typename ImageType::Pointer             movingImage = nullptr;
    typename LabeledPointSetType::Pointer   fixedLabeledPointSet = nullptr;
    typename LabeledPointSetType::Pointer   movingLabeledPointSet = nullptr;
    typename IntensityPointSetType::Pointer fixedIntensityPointSet = nullptr;
    typename IntensityPointSetType::Pointer movingIntensityPointSet = nullptr;

    float metricWeighting = 1.0;
    if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 2)
    {
      metricWeighting = parser->Convert<float>(metricOption->GetFunction(currentMetricNumber)->GetParameter(2));
    }

    // assign default image metric variables
    typename RegistrationHelperType::SamplingStrategy samplingStrategy = RegistrationHelperType::none;
    unsigned int                                      numberOfBins = 32;
    unsigned int                                      radius = 4;
    bool                                              useGradientFilter = false;

    // assign default point-set variables

    //   labeled point sets
    bool         useBoundaryPointsOnly = false;
    RealType     pointSetSigma = itk::NumericTraits<RealType>::OneValue();
    unsigned int evaluationKNeighborhood = 50;
    RealType     alpha = static_cast<RealType>(1.1);
    bool         useAnisotropicCovariances = false;
    RealType     samplingPercentage = itk::NumericTraits<RealType>::OneValue();
    //   intensity point sets
    RealType intensityDistanceSigma = itk::NumericTraits<RealType>::ZeroValue();
    RealType euclideanDistanceSigma = itk::NumericTraits<RealType>::ZeroValue();

    if (!regHelper->IsPointSetMetric(currentMetric))
    {
      if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 5)
      {
        samplingPercentage = parser->Convert<float>(metricOption->GetFunction(currentMetricNumber)->GetParameter(5));
      }

      if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 6)
      {
        useGradientFilter = parser->Convert<bool>(metricOption->GetFunction(currentMetricNumber)->GetParameter(6));
      }

      std::string fixedFileName = metricOption->GetFunction(currentMetricNumber)->GetParameter(0);
      std::string movingFileName = metricOption->GetFunction(currentMetricNumber)->GetParameter(1);

      if (verbose)
      {
        std::cout << "  fixed image: " << fixedFileName << std::endl;
        std::cout << "  moving image: " << movingFileName << std::endl;
      }

      ReadImage<ImageType>(fixedImage, fixedFileName.c_str());
      ReadImage<ImageType>(movingImage, movingFileName.c_str());
      fixedImage->DisconnectPipeline();
      movingImage->DisconnectPipeline();

      std::string strategy = "none";
      if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 4)
      {
        strategy = metricOption->GetFunction(currentMetricNumber)->GetParameter(4);
      }
      ConvertToLowerCase(strategy);

      if (strategy == "random")
      {
        samplingStrategy = RegistrationHelperType::random;
      }
      else if (strategy == "regular")
      {
        samplingStrategy = RegistrationHelperType::regular;
      }
      else if ((strategy == "none") || (strategy == ""))
      {
        samplingStrategy = RegistrationHelperType::none;
      }
      else
      {
        samplingStrategy = RegistrationHelperType::invalid;
        if (verbose)
        {
          std::cerr << "ERROR: invalid sampling strategy specified: " << strategy << std::endl;
        }
        return EXIT_FAILURE;
      }
      if (currentMetric == RegistrationHelperType::CC)
      {
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 3)
        {
          radius = parser->Convert<unsigned int>(metricOption->GetFunction(currentMetricNumber)->GetParameter(3));
        }
      }
      else if (currentMetric == RegistrationHelperType::Mattes || currentMetric == RegistrationHelperType::MI)
      {
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 3)
        {
          numberOfBins = parser->Convert<unsigned int>(metricOption->GetFunction(currentMetricNumber)->GetParameter(3));
        }
      }
    }
    else
    {
      if (whichMetric == "igdm")
      {
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() < 5)
        {
          if (verbose)
          {
            std::cerr << "The expected number of parameters aren't specified.  Please see help menu." << std::endl;
          }
          return EXIT_FAILURE;
        }

        std::string fixedFileName = metricOption->GetFunction(currentMetricNumber)->GetParameter(0);
        std::string movingFileName = metricOption->GetFunction(currentMetricNumber)->GetParameter(1);

        if (verbose)
        {
          std::cout << "  fixed intensity point set: " << fixedFileName << std::endl;
          std::cout << "  moving intensity point set: " << movingFileName << std::endl;
        }

        std::string fixedPointSetMaskFile = metricOption->GetFunction(currentMetricNumber)->GetParameter(3);
        std::string movingPointSetMaskFile = metricOption->GetFunction(currentMetricNumber)->GetParameter(4);

        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 6)
        {
          intensityDistanceSigma =
            parser->Convert<RealType>(metricOption->GetFunction(currentMetricNumber)->GetParameter(6));
        }
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 7)
        {
          euclideanDistanceSigma =
            parser->Convert<RealType>(metricOption->GetFunction(currentMetricNumber)->GetParameter(7));
        }
        evaluationKNeighborhood = 1;
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 8)
        {
          evaluationKNeighborhood =
            parser->Convert<unsigned int>(metricOption->GetFunction(currentMetricNumber)->GetParameter(8));
        }

        RealType gradientPointSetSigma = itk::NumericTraits<RealType>::OneValue();
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 9)
        {
          gradientPointSetSigma =
            parser->Convert<RealType>(metricOption->GetFunction(currentMetricNumber)->GetParameter(9));
        }
        std::vector<unsigned int> neighborhoodRadius;
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 5)
        {
          neighborhoodRadius =
            parser->ConvertVector<unsigned int>(metricOption->GetFunction(currentMetricNumber)->GetParameter(5));
        }
        else
        {
          for (unsigned d = 0; d < VImageDimension; d++)
          {
            neighborhoodRadius.push_back(0);
          }
        }

        if (neighborhoodRadius.size() != VImageDimension)
        {
          if (verbose)
          {
            std::cerr << "The neighborhood size must equal the dimension." << std::endl;
          }
          return EXIT_FAILURE;
        }

        ReadImageIntensityPointSet<ImageType, MaskImageType, IntensityPointSetType>(fixedIntensityPointSet,
                                                                                    fixedFileName.c_str(),
                                                                                    fixedPointSetMaskFile.c_str(),
                                                                                    neighborhoodRadius,
                                                                                    gradientPointSetSigma);

        ReadImageIntensityPointSet<ImageType, MaskImageType, IntensityPointSetType>(movingIntensityPointSet,
                                                                                    movingFileName.c_str(),
                                                                                    movingPointSetMaskFile.c_str(),
                                                                                    neighborhoodRadius,
                                                                                    gradientPointSetSigma);

        fixedIntensityPointSet->DisconnectPipeline();
        movingIntensityPointSet->DisconnectPipeline();
      }
      else
      {
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 3)
        {
          samplingPercentage =
            parser->Convert<RealType>(metricOption->GetFunction(currentMetricNumber)->GetParameter(3));
        }
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 4)
        {
          useBoundaryPointsOnly =
            parser->Convert<bool>(metricOption->GetFunction(currentMetricNumber)->GetParameter(4));
        }
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 5)
        {
          pointSetSigma = parser->Convert<RealType>(metricOption->GetFunction(currentMetricNumber)->GetParameter(5));
        }
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 6)
        {
          evaluationKNeighborhood =
            parser->Convert<unsigned int>(metricOption->GetFunction(currentMetricNumber)->GetParameter(6));
        }
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 7)
        {
          alpha = parser->Convert<RealType>(metricOption->GetFunction(currentMetricNumber)->GetParameter(7));
        }
        if (metricOption->GetFunction(currentMetricNumber)->GetNumberOfParameters() > 8)
        {
          useAnisotropicCovariances =
            parser->Convert<bool>(metricOption->GetFunction(currentMetricNumber)->GetParameter(8));
        }
        std::string fixedFileName = metricOption->GetFunction(currentMetricNumber)->GetParameter(0);
        std::string movingFileName = metricOption->GetFunction(currentMetricNumber)->GetParameter(1);
        if (verbose)
        {
          std::cout << "  fixed labeled point set: " << fixedFileName << std::endl;
          std::cout << "  moving labeled point set: " << movingFileName << std::endl;
        }

        ReadLabeledPointSet<LabeledPointSetType>(
          fixedLabeledPointSet, fixedFileName.c_str(), useBoundaryPointsOnly, samplingPercentage);
        ReadLabeledPointSet<LabeledPointSetType>(
          movingLabeledPointSet, movingFileName.c_str(), useBoundaryPointsOnly, samplingPercentage);

        fixedLabeledPointSet->DisconnectPipeline();
        movingLabeledPointSet->DisconnectPipeline();
      }
    }

    regHelper->AddMetric(currentMetric,
                         fixedImage,
                         movingImage,
                         fixedLabeledPointSet,
                         movingLabeledPointSet,
                         fixedIntensityPointSet,
                         movingIntensityPointSet,
                         stageID,
                         metricWeighting,
                         samplingStrategy,
                         numberOfBins,
                         radius,
                         useGradientFilter,
                         useBoundaryPointsOnly,
                         pointSetSigma,
                         evaluationKNeighborhood,
                         alpha,
                         useAnisotropicCovariances,
                         samplingPercentage,
                         intensityDistanceSigma,
                         euclideanDistanceSigma);
  }

  // Perform the registration

  if (regHelper->DoRegistration() == EXIT_FAILURE)
  {
    return EXIT_FAILURE;
  }

  std::string                                                whichInterpolator("linear");
  typename itk::ants::CommandLineParser::OptionType::Pointer interpolationOption = parser->GetOption("interpolation");
  if (interpolationOption && interpolationOption->GetNumberOfFunctions())
  {
    whichInterpolator = interpolationOption->GetFunction(0)->GetName();
    ConvertToLowerCase(whichInterpolator);
  }

  typename ImageType::SpacingType cache_spacing_for_smoothing_sigmas(
    itk::NumericTraits<typename ImageType::SpacingType::ValueType>::ZeroValue());
  if (!std::strcmp(whichInterpolator.c_str(), "gaussian") || !std::strcmp(whichInterpolator.c_str(), "multilabel"))
  {
#if 1
    // HACK:: This can just be cached when reading the fixedImage from above!!
    //
    std::string fixedImageFileName = metricOption->GetFunction(numberOfTransforms - 1)->GetParameter(0);

    typedef itk::ImageFileReader<ImageType> ImageReaderType;
    typename ImageReaderType::Pointer       fixedImageReader = ImageReaderType::New();

    fixedImageReader->SetFileName(fixedImageFileName.c_str());
    fixedImageReader->Update();
    typename ImageType::Pointer fixedImage = fixedImageReader->GetOutput();
#endif
    cache_spacing_for_smoothing_sigmas = fixedImage->GetSpacing();
  }

#include "make_interpolator_snip.tmpl"
  regHelper->SetInterpolator(interpolator);

  if (!outputWarpedImageName.empty())
  {
    typename ImageType::Pointer warpedImage = regHelper->GetWarpedImage();
    if (warpedImage.IsNotNull())
    {
      ANTs::WriteImage<ImageType>(warpedImage, outputWarpedImageName.c_str());
    }
  }

  if (!outputInverseWarpedImageName.empty())
  {
    typename ImageType::Pointer inverseWarpedImage = regHelper->GetInverseWarpedImage();
    if (inverseWarpedImage.IsNotNull())
    {
      ANTs::WriteImage<ImageType>(inverseWarpedImage, outputInverseWarpedImageName.c_str());
    }
  }

  // write out transforms stored in the composite
  typename CompositeTransformType::Pointer resultTransform = regHelper->GetModifiableCompositeTransform();
  unsigned int                             numTransforms = resultTransform->GetNumberOfTransforms();

  ////
  typedef typename RegistrationHelperType::CompositeTransformType         CompositeTransformType;
  typedef typename CompositeTransformType::Pointer                        CompositeTransformPointer;
  typedef typename RegistrationHelperType::DisplacementFieldTransformType DisplacementFieldTransformType;
  typedef typename RegistrationHelperType::TransformType                  TransformType;

  if (saveStateOption && saveStateOption->GetNumberOfFunctions())
  {
    CompositeTransformPointer savedStateTx =
      dynamic_cast<CompositeTransformType *>(regHelper->GetModifiableRegistrationState());
    if (savedStateTx.IsNull())
    {
      return EXIT_FAILURE;
    }
    unsigned int numStateComponents = savedStateTx->GetNumberOfTransforms();
    // If the last two transforms are displacement field transforms, we add their inverse displacement field to the
    // saved state composite.
    if (savedStateTx->GetNthTransform(numStateComponents - 1)->GetTransformCategory() ==
          TransformType::TransformCategoryEnum::DisplacementField &&
        savedStateTx->GetNthTransform(numStateComponents - 2)->GetTransformCategory() ==
          TransformType::TransformCategoryEnum::DisplacementField)
    {
      typename DisplacementFieldTransformType::Pointer oneToEndTransform =
        dynamic_cast<DisplacementFieldTransformType *>(
          savedStateTx->GetNthTransform(numStateComponents - 2).GetPointer());
      typename DisplacementFieldTransformType::Pointer endTransform = dynamic_cast<DisplacementFieldTransformType *>(
        savedStateTx->GetNthTransform(numStateComponents - 1).GetPointer());
      if (oneToEndTransform && oneToEndTransform->GetInverseDisplacementField() && endTransform &&
          endTransform->GetInverseDisplacementField())
      {
        savedStateTx->RemoveTransform();
        savedStateTx->AddTransform(oneToEndTransform->GetInverseTransform());
        savedStateTx->AddTransform(endTransform);
        savedStateTx->AddTransform(endTransform->GetInverseTransform());
      }
    }
    typename RegistrationHelperType::CompositeTransformType::TransformTypePointer savedStateCompositeTransform =
      savedStateTx.GetPointer();
    const std::string saveStateFileName = saveStateOption->GetFunction(0)->GetName();

    // The savedState includes:
    // output linear transforms
    //  + SyN FixedToMiddle displacement field + SyN FixedToMiddle inverse displacement field
    //  + SyN MovingToMiddle displacement field + SyN MovingToMiddle inverse displacement field
    //
    itk::ants::WriteTransform<TComputeType, VImageDimension>(savedStateCompositeTransform, saveStateFileName.c_str());
  }

  // write out transforms actually computed, so skip any initial transforms unless
  // we're collapsing the output transforms.

  CompositeTransformPointer transformToWrite;
  if (shouldCollapseBeDone)
  {
    // For some reason regHelper->m_CompositeTransform is getting mangled here.
    // However, both resultTransform and transformToWrite appear to be correct.
    transformToWrite = regHelper->CollapseCompositeTransform(resultTransform);

    numTransforms = transformToWrite->GetNumberOfTransforms();
    TransformTypeNames.clear();
    for (unsigned int i = 0; i < numTransforms; i++)
    {
      if (transformToWrite->GetNthTransform(i)->GetTransformCategory() == TransformType::TransformCategoryEnum::Linear)
      {
        // The output type must be Affine, not matrixoffset!  TransformTypeNames.push_back( "matrixoffset" );
        TransformTypeNames.emplace_back("genericaffine");
      }
      else if (transformToWrite->GetNthTransform(i)->GetTransformCategory() ==
               TransformType::TransformCategoryEnum::DisplacementField)
      {
        typename DisplacementFieldTransformType::Pointer nthTransform =
          dynamic_cast<DisplacementFieldTransformType *>(transformToWrite->GetNthTransform(i).GetPointer());

        // We don't know what set of displacement field transforms were optimized.
        // All we know is whether or not an inverse displacement field exists.  If so,
        // we simply pass a transform name which either does have an inverse or does
        // not.
        if (nthTransform && nthTransform->GetInverseDisplacementField())
        {
          TransformTypeNames.emplace_back("syn");
        }
        else
        {
          TransformTypeNames.emplace_back("gdf");
        }
      }
      else if (transformToWrite->GetNthTransform(i)->GetTransformCategory() ==
               TransformType::TransformCategoryEnum::BSpline)
      {
        TransformTypeNames.emplace_back("bspline");
      }
    }
  }
  else
  {
    transformToWrite = resultTransform.GetPointer();
  }

  if (writeCompositeTransform)
  {
    std::string compositeTransformFileName = outputPrefix;
    if (useMincFormat)
    {
      compositeTransformFileName += std::string(".xfm");
    }
    else
    {
      compositeTransformFileName += std::string("Composite.h5");
    }

    std::string inverseCompositeTransformFileName = outputPrefix;
    if (useMincFormat)
    {
      inverseCompositeTransformFileName += std::string("_inverse.xfm");
    }
    else
    {
      inverseCompositeTransformFileName += std::string("InverseComposite.h5");
    }

    typename RegistrationHelperType::CompositeTransformType::TransformTypePointer compositeTransform =
      transformToWrite.GetPointer();
    itk::ants::WriteTransform<TComputeType, VImageDimension>(compositeTransform, compositeTransformFileName.c_str());

    typename RegistrationHelperType::CompositeTransformType::TransformTypePointer inverseCompositeTransform =
      compositeTransform->GetInverseTransform();
    if (inverseCompositeTransform.IsNotNull())
    {
      itk::ants::WriteTransform<TComputeType, VImageDimension>(inverseCompositeTransform,
                                                               inverseCompositeTransformFileName.c_str());
    }
  }
  else // Write out each individual transform
  {
    const unsigned int startIndex = (shouldCollapseBeDone) ? 0 : initialMovingTransformOption->GetNumberOfFunctions();
    for (unsigned int i = startIndex; i < numTransforms; ++i)
    {
      typename CompositeTransformType::TransformTypePointer currentTransform = transformToWrite->GetNthTransform(i);

      // only registrations not part of the initial transforms in the
      // TransformTypeNames list.
      const std::string currentTransformType = TransformTypeNames.front();
      TransformTypeNames.pop_front();

      bool writeInverse;
      bool writeVelocityField;

      std::string transformTemplateName =
        RegTypeToFileName(currentTransformType, writeInverse, writeVelocityField, useMincFormat);

      std::stringstream currentFileName;
      currentFileName << outputPrefix << i << transformTemplateName;

      // WriteTransform will spit all sorts of error messages if it
      // fails, and we want to keep going even if it does so ignore its
      // return value.
      itk::ants::WriteTransform<TComputeType, VImageDimension>(currentTransform, currentFileName.str());

      typename DisplacementFieldTransformType::Pointer dispTransform =
        dynamic_cast<DisplacementFieldTransformType *>(currentTransform.GetPointer());
      if (writeInverse && dispTransform.IsNotNull())
      {
        std::stringstream currentInverseFileName;
        if (useMincFormat)
        {
          currentInverseFileName << outputPrefix << i << "_inverse" << transformTemplateName;
        }
        else
        {
          currentInverseFileName << outputPrefix << i << "Inverse" << transformTemplateName;
        }

        // write inverse transform file
        itk::ants::WriteInverseTransform<TComputeType, VImageDimension>(dispTransform, currentInverseFileName.str());
      }
      if (writeVelocityField)
      {
        // write velocity field (if applicable)
        typedef
          typename RegistrationHelperType::TimeVaryingVelocityFieldTransformType TimeVaryingVelocityFieldTransformType;

        typedef itk::GaussianExponentialDiffeomorphicTransform<TComputeType, VImageDimension>
          GaussianDisplacementFieldTransformType;

        typename TimeVaryingVelocityFieldTransformType::Pointer tvVelocityFieldTransform =
          dynamic_cast<TimeVaryingVelocityFieldTransformType *>(currentTransform.GetPointer());
        typename GaussianDisplacementFieldTransformType::Pointer constVelocityFieldTransform =
          dynamic_cast<GaussianDisplacementFieldTransformType *>(currentTransform.GetPointer());

        std::stringstream currentVelocityFieldFileName;
        if (useMincFormat)
        {
          currentVelocityFieldFileName << outputPrefix << i << "_VelocityField.mnc";
        }
        else
        {
          currentVelocityFieldFileName << outputPrefix << i << "VelocityField.nii.gz";
        }

        try
        {
          if (!tvVelocityFieldTransform.IsNull())
          {

            typedef itk::Image<itk::Vector<TComputeType, VImageDimension>, VImageDimension + 1> VelocityFieldType;
            typedef itk::ImageFileWriter<VelocityFieldType>                                     VelocityFieldWriterType;
            typename VelocityFieldWriterType::Pointer velocityFieldWriter = VelocityFieldWriterType::New();

            velocityFieldWriter->SetInput(tvVelocityFieldTransform->GetTimeVaryingVelocityField());
            velocityFieldWriter->SetFileName(currentVelocityFieldFileName.str().c_str());
            velocityFieldWriter->Update();
          }
          else if (!constVelocityFieldTransform.IsNull())
          {
            typedef itk::Image<itk::Vector<TComputeType, VImageDimension>, VImageDimension> VelocityFieldType;
            typedef itk::ImageFileWriter<VelocityFieldType>                                 VelocityFieldWriterType;
            typename VelocityFieldWriterType::Pointer velocityFieldWriter = VelocityFieldWriterType::New();

            velocityFieldWriter->SetInput(constVelocityFieldTransform->GetModifiableConstantVelocityField());
            velocityFieldWriter->SetFileName(currentVelocityFieldFileName.str().c_str());
            velocityFieldWriter->Update();
          }
        }
        catch (const itk::ExceptionObject & err)
        {
          if (verbose)
          {
            std::cerr << "Can't write velocity field transform file " << currentVelocityFieldFileName.str().c_str()
                      << std::endl;
            std::cerr << "Exception Object caught: " << std::endl;
            std::cerr << err << std::endl;
          }
        }
      }
    }
  }

  return EXIT_SUCCESS;
}

extern int
antsRegistration2DDouble(ParserType::Pointer & parser);

extern int
antsRegistration3DDouble(ParserType::Pointer & parser);

extern int
antsRegistration4DDouble(ParserType::Pointer & parser);

extern int
antsRegistration2DFloat(ParserType::Pointer & parser);

extern int
antsRegistration3DFloat(ParserType::Pointer & parser);

extern int
antsRegistration4DFloat(ParserType::Pointer & parser);

} // namespace ants

#endif // __ANTSREGISTRATIONTEMPLATEHEADER_H__