File: antsUtilitiesTesting.cxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (348 lines) | stat: -rw-r--r-- 12,951 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
#include "antsUtilities.h"
#include "antsAllocImage.h"
#include <algorithm>
#include "ReadWriteData.h"

#include <cstdio>

#include "itkAffineTransform.h"
#include "itkCenteredTransformInitializer.h"
#include "itkCorrelationImageToImageMetricv4.h"
#include "itkConjugateGradientLineSearchOptimizerv4.h"
#include "itkGradientDescentOptimizerv4.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkJointHistogramMutualInformationImageToImageMetricv4.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkRegistrationParameterScalesFromPhysicalShift.h"
#include "itkResampleImageFilter.h"
#include "itkTransformFileWriter.h"
#include "itkSimilarity2DTransform.h"

#include <string>
#include <vector>

namespace ants
{
int
antsUtilitiesTesting(std::vector<std::string> args, std::ostream * itkNotUsed(out_stream))
{
  // put the arguments coming in as 'args' into standard (argc,argv) format;
  // 'args' doesn't have the command name as first, argument, so add it manually;
  // 'args' may have adjacent arguments concatenated into one argument,
  // which the parser should handle
  args.insert(args.begin(), "antsUtilitiesTesting");

  int     argc = args.size();
  char ** argv = new char *[args.size() + 1];
  for (unsigned int i = 0; i < args.size(); ++i)
  {
    // allocate space for the string plus a null character
    argv[i] = new char[args[i].length() + 1];
    std::strncpy(argv[i], args[i].c_str(), args[i].length());
    // place the null character in the end
    argv[i][args[i].length()] = '\0';
  }
  argv[argc] = nullptr;
  // class to automatically cleanup argv upon destruction
  class Cleanup_argv
  {
  public:
    Cleanup_argv(char ** argv_, int argc_plus_one_)
      : argv(argv_)
      , argc_plus_one(argc_plus_one_)
    {}

    ~Cleanup_argv()
    {
      for (unsigned int i = 0; i < argc_plus_one; ++i)
      {
        delete[] argv[i];
      }
      delete[] argv;
    }

  private:
    char **      argv;
    unsigned int argc_plus_one;
  };
  Cleanup_argv cleanup_argv(argv, argc + 1);

  // antscout->set_stream( out_stream );

  if (argc < 3)
  {
    std::cerr << "Usage: " << argv[0]
              << " testImage whichMetric[GCorMIorMattes] numberOfIterations lowerScalexUpperScalexNumberOfScaleSamples "
                 "numberOfRotationSamples doPrintMatchingFileName transformName setOfTrainingImages"
              << std::endl;
    std::cerr << "Notes:  if transformName='none', no transform is printed" << std::endl;
    std::cerr << "Example call:  " << std::endl;
    std::cerr << "   " << argv[0] << "test.nii.gz CC 10 0.25x3x11 15 testTransform.txt 0 training*.nii.gz" << std::endl;

    if (argc >= 2 && (std::string(argv[1]) == std::string("--help") || std::string(argv[1]) == std::string("-h")))
    {
      return EXIT_SUCCESS;
    }
    return EXIT_FAILURE;
  }

  //////////////////////////////////////////////////////////////////////////////////////////
  //////////////////////////////////////////////////////////////////////////////////////////
  //////////////////////////////////////////////////////////////////////////////////////////

  constexpr unsigned int ImageDimension = 2;

  using PixelType = double;

  using ImageType = itk::Image<PixelType, ImageDimension>;

  // read in test image

  ImageType::Pointer testImage = ImageType::New();
  ReadImage<ImageType>(testImage, argv[1]);

  // read in training image file names

  std::vector<std::string> trainingImageFileNames;
  for (int n = 8; n < argc; n++)
  {
    trainingImageFileNames.emplace_back(argv[n]);
  }

  // Get number of iterations

  unsigned int numberOfIterations = std::stoi(argv[3]);

  // Get scale parameters

  std::vector<double> scaleParameters = ConvertVector<double>(std::string(argv[4]));
  if (scaleParameters.size() != 3)
  {
    std::cerr << "The scale parameters were improperly specified.  See usage." << std::endl;
    return EXIT_FAILURE;
  }
  double scaleLowerBoundLog = std::log(scaleParameters[0]);
  double scaleUpperBoundLog = std::log(scaleParameters[1]);
  auto   scaleNumberOfSamples = static_cast<unsigned int>(scaleParameters[2]);
  double scaleDelta = (scaleUpperBoundLog - scaleLowerBoundLog) / static_cast<double>(scaleNumberOfSamples - 1);

  // Get rotation sampling resolution

  unsigned int rotationNumberOfSamples = static_cast<unsigned int>(std::stoi(argv[5]));
  double       rotationDelta = (2.0 * itk::Math::pi - 0.0) / static_cast<double>(rotationNumberOfSamples - 1);

  // Set up metric
  using ImageMetricType = itk::ImageToImageMetricv4<ImageType, ImageType, ImageType>;
  using PointSetType = ImageMetricType::FixedSampledPointSetType;

  ImageMetricType::Pointer imageMetric = nullptr;

  if (strcmp(argv[2], "Mattes") == 0)
  {
    using MattesMetricType = itk::MattesMutualInformationImageToImageMetricv4<ImageType, ImageType, ImageType>;
    MattesMetricType::Pointer mattesMetric = MattesMetricType::New();
    mattesMetric->SetNumberOfHistogramBins(20);

    imageMetric = mattesMetric;
  }
  else if (strcmp(argv[2], "GC") == 0)
  {
    using GCMetricType = itk::CorrelationImageToImageMetricv4<ImageType, ImageType, ImageType>;
    GCMetricType::Pointer gcMetric = GCMetricType::New();

    imageMetric = gcMetric;
  }
  else if (strcmp(argv[2], "MI") == 0)
  {
    using MIMetricType = itk::JointHistogramMutualInformationImageToImageMetricv4<ImageType, ImageType>;
    MIMetricType::Pointer miMetric = MIMetricType::New();
    miMetric->SetNumberOfHistogramBins(20);

    imageMetric = miMetric;
  }
  else
  {
    std::cerr << "Unrecognized metric option." << std::endl;
    return EXIT_FAILURE;
  }

  imageMetric->SetFixedImage(testImage);
  imageMetric->SetVirtualDomainFromImage(testImage);
  imageMetric->SetUseMovingImageGradientFilter(false);
  imageMetric->SetUseFixedImageGradientFilter(false);

  // identity transform for fixed image

  using IdentityTransformType = itk::IdentityTransform<double, ImageDimension>;
  IdentityTransformType::Pointer identityTransform = IdentityTransformType::New();
  identityTransform->SetIdentity();

  imageMetric->SetFixedTransform(identityTransform);

  // Do a random sampling

  unsigned int index = 0;
  unsigned int count = 0;

  PointSetType::Pointer pointSet = PointSetType::New();
  pointSet->Initialize();

  itk::ImageRegionIteratorWithIndex<ImageType> It(testImage, testImage->GetLargestPossibleRegion());
  for (It.GoToBegin(); !It.IsAtEnd(); ++It)
  {
    // take every N^th point
    if (count % 20 == 0)
    {
      PointSetType::PointType point;
      testImage->TransformIndexToPhysicalPoint(It.GetIndex(), point);
      pointSet->SetPoint(index++, point);
    }
    count++;
  }
  imageMetric->SetFixedSampledPointSet(pointSet);
  imageMetric->SetUseSampledPointSet(true);

  // Now go through the rotations + scalings to find the optimal pose.

  using AffineTransformType = itk::AffineTransform<double, ImageDimension>;
  using SimilarityTransformType = itk::Similarity2DTransform<double>;

  double                           optimalMetricValue = itk::NumericTraits<double>::max();
  SimilarityTransformType::Pointer optimalTransform = nullptr;
  unsigned int                     optimalMetricIndex = 0;

  for (unsigned int n = 0; n < trainingImageFileNames.size(); n++)
  {
    double optimalMetricValuePerImage = itk::NumericTraits<double>::max();

    ImageType::Pointer trainingImage = ImageType::New();
    ReadImage<ImageType>(trainingImage, trainingImageFileNames[n].c_str());

    imageMetric->SetMovingImage(trainingImage);

    // Initialize centered transform (based on the center of the image)

    AffineTransformType::Pointer initialTransform = AffineTransformType::New();

    using TransformInitializerType = itk::CenteredTransformInitializer<AffineTransformType, ImageType, ImageType>;
    TransformInitializerType::Pointer initializer = TransformInitializerType::New();
    initializer->SetTransform(initialTransform);
    initializer->SetFixedImage(testImage);
    initializer->SetMovingImage(trainingImage);
    initializer->GeometryOn();

    initializer->InitializeTransform();

    for (double angle = 0.0; angle < 2.0 * itk::Math::pi; angle += rotationDelta)
    {
      AffineTransformType::MatrixType rotationMatrix;
      rotationMatrix(0, 0) = rotationMatrix(1, 1) = std::cos(angle);
      rotationMatrix(1, 0) = std::sin(angle);
      rotationMatrix(0, 1) = -rotationMatrix(1, 0);

      for (double scaleLog = scaleLowerBoundLog; scaleLog <= scaleUpperBoundLog; scaleLog += scaleDelta)
      {
        double scale = std::exp(scaleLog);

        SimilarityTransformType::Pointer similarityTransform = SimilarityTransformType::New();
        similarityTransform->SetCenter(initialTransform->GetCenter());
        similarityTransform->SetTranslation(initialTransform->GetTranslation());
        similarityTransform->SetMatrix(initialTransform->GetMatrix() * rotationMatrix);
        similarityTransform->SetScale(scale);

        imageMetric->SetMovingTransform(similarityTransform);
        imageMetric->Initialize();

        if (numberOfIterations > 0)
        {
          using ScalesEstimatorType = itk::RegistrationParameterScalesFromPhysicalShift<ImageMetricType>;
          ScalesEstimatorType::Pointer scalesEstimator = ScalesEstimatorType::New();
          scalesEstimator->SetMetric(imageMetric);
          scalesEstimator->SetTransformForward(true);

          using ConjugateGradientDescentOptimizerType = itk::ConjugateGradientLineSearchOptimizerv4Template<double>;
          ConjugateGradientDescentOptimizerType::Pointer optimizer = ConjugateGradientDescentOptimizerType::New();
          optimizer->SetLowerLimit(0);
          optimizer->SetUpperLimit(2);
          optimizer->SetEpsilon(0.2);
          optimizer->SetLearningRate(0.15);
          optimizer->SetMaximumStepSizeInPhysicalUnits(0.15);
          optimizer->SetNumberOfIterations(numberOfIterations);
          optimizer->SetScalesEstimator(scalesEstimator);
          optimizer->SetMinimumConvergenceValue(1e-10);
          optimizer->SetConvergenceWindowSize(10);
          optimizer->SetDoEstimateLearningRateAtEachIteration(false);
          optimizer->SetDoEstimateLearningRateOnce(true);
          optimizer->SetMetric(imageMetric);

          //         typedef itk::GradientDescentOptimizerv4Template<double> GradientDescentOptimizerType;
          //         GradientDescentOptimizerType::Pointer optimizer2 = GradientDescentOptimizerType::New();
          //         optimizer2->SetLearningRate( 0.15 );
          //         optimizer2->SetMaximumStepSizeInPhysicalUnits( 0.15 );
          //         optimizer2->SetNumberOfIterations( numberOfIterations );
          //         optimizer2->SetScalesEstimator( scalesEstimator );
          //         optimizer2->SetMinimumConvergenceValue( 1e-6 );
          //         optimizer2->SetConvergenceWindowSize( 10 );
          //         optimizer2->SetDoEstimateLearningRateAtEachIteration( true );
          //         optimizer2->SetDoEstimateLearningRateOnce( false );
          //         optimizer2->SetMetric( imageMetric );

          try
          {
            optimizer->StartOptimization();
          }
          catch (...)
          {
            continue;
          }
        }

        //         typedef itk::ResampleImageFilter<ImageType, ImageType, double> ResamplerType;
        //         ResamplerType::Pointer resampleFilter = ResamplerType::New();
        //         resampleFilter->SetInput( trainingImage );
        //         resampleFilter->SetOutputParametersFromImage( testImage );
        //         resampleFilter->SetTransform( similarityTransform );
        //         resampleFilter->SetDefaultPixelValue( 255 );
        //         resampleFilter->Update();
        //         ANTs::WriteImage<ImageType>( resampleFilter->GetOutput(), "training.nii.gz" );

        double metricValue = imageMetric->GetValue();

        if (metricValue < optimalMetricValue)
        {
          optimalMetricValue = metricValue;
          optimalTransform = similarityTransform;
          optimalMetricIndex = n;
        }

        if (metricValue < optimalMetricValuePerImage)
        {
          optimalMetricValuePerImage = metricValue;
        }
      }
    }
    //     std::cout << trainingImageFileNames[n] << " -> " << optimalMetricValuePerImage << std::endl;
  }

  if (strcmp(argv[7], "none") != 0)
  {
    using TransformWriterType = itk::TransformFileWriter;
    TransformWriterType::Pointer transformWriter = TransformWriterType::New();
    transformWriter->SetInput(optimalTransform);
    transformWriter->SetFileName(argv[7]);
#if ITK_VERSION_MAJOR >= 5
    transformWriter->SetUseCompression(true);
#endif
    transformWriter->Update();
  }

  if (static_cast<bool>(std::stoi(argv[6])))
  {
    std::cout << trainingImageFileNames[optimalMetricIndex] << std::endl;
  }
  std::cout << optimalMetricValue << std::endl;

  return EXIT_SUCCESS;
}

} // namespace ants