File: iMathFunctions1.hxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (678 lines) | stat: -rw-r--r-- 24,812 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
/*=========================================================================

  Program:   Advanced Normalization Tools

  Copyright (c) ConsortiumOfANTS. All rights reserved.
  See accompanying COPYING.txt or
 https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#include "ReadWriteData.h"
#include "antsUtilities.h"

#include "itkAddImageFilter.h"
#include "itkAdaptiveHistogramEqualizationImageFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "itkBinaryErodeImageFilter.h"
#include "itkBinaryDilateImageFilter.h"
#include "itkBinaryMorphologicalClosingImageFilter.h"
#include "itkBinaryMorphologicalOpeningImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkCannyEdgeDetectionImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkFastMarchingImageFilterBase.h"
#include "itkFastMarchingThresholdStoppingCriterion.h"
#include "itkFlatStructuringElement.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkGrayscaleDilateImageFilter.h"
#include "itkGrayscaleErodeImageFilter.h"
#include "itkGrayscaleMorphologicalClosingImageFilter.h"
#include "itkGrayscaleMorphologicalOpeningImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkIntensityWindowingImageFilter.h"
#include "itkLabelContourImageFilter.h"
#include "itkLabelStatisticsImageFilter.h"
#include "itkLaplacianRecursiveGaussianImageFilter.h"
#include "itkLaplacianSharpeningImageFilter.h"
#include "itkMultiScaleLaplacianBlobDetectorImageFilter.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkPadImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkSignedMaurerDistanceMapImageFilter.h"

#include "itkImageFileWriter.h"


namespace ants
{

/*
template <typename ImageType>
typename ImageType::Pointer
BlobCorrespondence( typename ImageType::Pointer image, unsigned int nBlobs,
              typename ImageType::Pointer itkNotUsed(image2),
              double itkNotUsed(corrThresh), double itkNotUsed(radius), double itkNotUsed(distanceThresh) )
{
  typedef float RealType;

  // sensitive parameters are set here - begin
  //RealType     gradsig = 1.0;      // sigma for gradient filter
  unsigned int stepsperoctave = 10; // number of steps between doubling of scale
  RealType     minscale = std::pow( 1.0, 1.0 );
  RealType     maxscale = std::pow( 2.0, 10.0 );
  //RealType     uniqfeat_thresh = 0.01;
  //RealType     smallval = 1.e-2; // assumes images are normalizes in [ 0, 1 ]
  //bool         dosinkhorn = false;
  //RealType     maxradiusdiffallowed = 0.25; // IMPORTANT feature size difference
  //RealType     kneighborhoodval = 3;        // IMPORTANT - defines how many nhood nodes to use in k-hood definition
  //unsigned int radval = 20;                 // IMPORTANT radius for correlation
  //RealType     dthresh = 0.02;              // IMPORTANT distance preservation threshold
  // sensitive parameters are set here - end
}
*/

//
// shape (1=ball, 2=box, 3=cross, 4=annulus, 5=polygon)

template <unsigned int ImageDimension>
typename itk::FlatStructuringElement<ImageDimension>
iMathGetFlatStructuringElement(unsigned int  shape,
                               unsigned long radius,
                               bool          radiusIsParametric,
                               unsigned int  lines,
                               unsigned int  thickness,
                               bool          includeCenter)
{
  typedef typename itk::FlatStructuringElement<ImageDimension> ElementType;
  ElementType                                                  element;

  typename ElementType::RadiusType elRadius;
  elRadius.Fill(radius);

  switch (shape)
  {
    case 1:
      element = ElementType::Ball(elRadius, radiusIsParametric);
      break;
    case 2:
      element = ElementType::Box(elRadius);
      break;
    case 3:
      element = ElementType::Cross(elRadius);
      break;
    case 4:
      element = ElementType::Annulus(elRadius, thickness, includeCenter, radiusIsParametric);
      break;
    case 5:
      element = ElementType::Polygon(elRadius, lines);
      break;
    default:
      break;
  }

  return element;
}

template <typename ImageType>
typename ImageType::Pointer
iMathLaplacian(typename ImageType::Pointer image, double sigma, bool normalize) /*1*/
{

  typedef itk::LaplacianRecursiveGaussianImageFilter<ImageType, ImageType> FilterType;
  typename FilterType::Pointer                                             laplacian = FilterType::New();
  laplacian->SetInput(image);
  laplacian->SetSigma(sigma);
  laplacian->Update();

  typename ImageType::Pointer output = laplacian->GetOutput();
  if (normalize)
  {
    typedef itk::RescaleIntensityImageFilter<ImageType, ImageType> RescaleFilterType;
    typename RescaleFilterType::Pointer                            rescaler = RescaleFilterType::New();
    rescaler->SetOutputMinimum(0);
    rescaler->SetOutputMaximum(1);
    rescaler->SetInput(laplacian->GetOutput());
    rescaler->Update();
    output = rescaler->GetOutput();
  }

  return output;
}

template <typename ImageType>
typename ImageType::Pointer
iMathMaurerDistance(typename ImageType::Pointer   image, /*1*/
                    typename ImageType::PixelType foreground)
{

  typedef itk::BinaryThresholdImageFilter<ImageType, ImageType> ThresholderType;
  typename ThresholderType::Pointer                             thresholder = ThresholderType::New();
  thresholder->SetInput(image);
  thresholder->SetLowerThreshold(foreground);
  thresholder->SetUpperThreshold(foreground);
  thresholder->SetInsideValue(1);
  thresholder->SetOutsideValue(0);

  typedef itk::SignedMaurerDistanceMapImageFilter<ImageType, ImageType> FilterType;
  typename FilterType::Pointer                                          filter = FilterType::New();
  filter->SetInput(thresholder->GetOutput());
  filter->SetSquaredDistance(false);
  filter->SetUseImageSpacing(true);
  filter->SetInsideIsPositive(false);
  filter->Update();

  return filter->GetOutput();
}


template <typename ImageType>
typename ImageType::Pointer
iMathMC(typename ImageType::Pointer   image,
        unsigned long                 radius, /*1*/
        typename ImageType::PixelType closeValue,
        unsigned int                  shape,
        bool                          radiusIsParametric,
        unsigned int                  lines,
        unsigned int                  thickness,
        bool                          includeCenter)
{
  const unsigned int ImageDimension = ImageType::ImageDimension;

  typedef typename itk::FlatStructuringElement<ImageType::ImageDimension> ElementType;
  ElementType                                                             element =
    iMathGetFlatStructuringElement<ImageDimension>(shape, radius, radiusIsParametric, lines, thickness, includeCenter);

  typedef itk::BinaryMorphologicalClosingImageFilter<ImageType, ImageType, ElementType> FilterType;

  typename FilterType::Pointer filter = FilterType::New();
  filter->SetInput(image);
  filter->SetKernel(element);
  filter->SetForegroundValue(closeValue);
  // filter->SetBackgroundValue(0);
  filter->Update();

  return filter->GetOutput();
}

template <typename ImageType>
typename ImageType::Pointer
iMathMD(typename ImageType::Pointer   image,
        unsigned long                 radius, /*1*/
        typename ImageType::PixelType dilateValue,
        unsigned int                  shape,
        bool                          radiusIsParametric,
        unsigned int                  lines,
        unsigned int                  thickness,
        bool                          includeCenter)
{

  const unsigned int ImageDimension = ImageType::ImageDimension;

  typedef typename itk::FlatStructuringElement<ImageType::ImageDimension> ElementType;
  ElementType                                                             element =
    iMathGetFlatStructuringElement<ImageDimension>(shape, radius, radiusIsParametric, lines, thickness, includeCenter);

  typedef itk::BinaryDilateImageFilter<ImageType, ImageType, ElementType> FilterType;

  typename FilterType::Pointer filter = FilterType::New();
  filter->SetInput(image);
  filter->SetKernel(element);
  filter->SetDilateValue(dilateValue);
  filter->SetBackgroundValue(0);
  filter->Update();

  return filter->GetOutput();
}

template <typename ImageType>
typename ImageType::Pointer
iMathME(typename ImageType::Pointer   image,
        unsigned long                 radius, /*1*/
        typename ImageType::PixelType erodeValue,
        unsigned int                  shape,
        bool                          radiusIsParametric,
        unsigned int                  lines,
        unsigned int                  thickness,
        bool                          includeCenter)
{
  const unsigned int ImageDimension = ImageType::ImageDimension;

  typedef typename itk::FlatStructuringElement<ImageType::ImageDimension> ElementType;
  ElementType                                                             element =
    iMathGetFlatStructuringElement<ImageDimension>(shape, radius, radiusIsParametric, lines, thickness, includeCenter);

  typedef itk::BinaryErodeImageFilter<ImageType, ImageType, ElementType> FilterType;

  typename FilterType::Pointer filter = FilterType::New();
  filter->SetInput(image);
  filter->SetKernel(element);
  filter->SetErodeValue(erodeValue);
  filter->SetBackgroundValue(0);
  filter->Update();

  return filter->GetOutput();
}

template <typename ImageType>
typename ImageType::Pointer
iMathMO(typename ImageType::Pointer   image,
        unsigned long                 radius, /*1*/
        typename ImageType::PixelType openValue,
        unsigned int                  shape,
        bool                          radiusIsParametric,
        unsigned int                  lines,
        unsigned int                  thickness,
        bool                          includeCenter)
{
  const unsigned int ImageDimension = ImageType::ImageDimension;

  typedef typename itk::FlatStructuringElement<ImageType::ImageDimension> ElementType;
  ElementType                                                             element =
    iMathGetFlatStructuringElement<ImageDimension>(shape, radius, radiusIsParametric, lines, thickness, includeCenter);

  typedef itk::BinaryMorphologicalOpeningImageFilter<ImageType, ImageType, ElementType> FilterType;

  typename FilterType::Pointer filter = FilterType::New();
  filter->SetInput(image);
  filter->SetKernel(element);
  filter->SetForegroundValue(openValue);
  filter->SetBackgroundValue(0);
  filter->Update();

  return filter->GetOutput();
}

template <typename ImageType>
typename ImageType::Pointer
iMathNormalize(typename ImageType::Pointer image) /*1*/
{
  if (image->GetNumberOfComponentsPerPixel() != 1)
  {
    // NOPE
  }

  typedef typename ImageType::PixelType PixelType;

  typedef itk::RescaleIntensityImageFilter<ImageType, ImageType> NormFilterType;
  typename NormFilterType::Pointer                               normFilter = NormFilterType::New();
  normFilter->SetInput(image);
  normFilter->SetOutputMinimum(itk::NumericTraits<PixelType>::ZeroValue());
  normFilter->SetOutputMaximum(itk::NumericTraits<PixelType>::OneValue());
  normFilter->Update();

  return normFilter->GetOutput();
}

template <typename ImageType>
typename ImageType::Pointer
iMathPad(typename ImageType::Pointer image1, int padvalue) /*1*/
{
  typedef itk::ImageRegionIteratorWithIndex<ImageType> Iterator;
  typename ImageType::SizeType                         size = image1->GetLargestPossibleRegion().GetSize();
  typename ImageType::PointType                        origin2 = image1->GetOrigin();
  typename ImageType::SizeType                         newsize = image1->GetLargestPossibleRegion().GetSize();
  typename ImageType::RegionType                       newregion;
  // determine new image size
  for (unsigned int i = 0; i < ImageType::ImageDimension; i++)
  {
    float dimsz = (float)size[i];
    newsize[i] = (unsigned int)(dimsz + padvalue * 2);
  }
  newregion.SetSize(newsize);
  newregion.SetIndex(image1->GetLargestPossibleRegion().GetIndex());
  typename ImageType::Pointer padimage =
    AllocImage<ImageType>(newregion, image1->GetSpacing(), origin2, image1->GetDirection(), 0);

  typename ImageType::IndexType index;
  typename ImageType::IndexType index2;
  if (padvalue > 0)
  {
    index.Fill(0);
    index2.Fill((unsigned int)fabs(static_cast<float>(padvalue)));
  }
  else
  {
    index2.Fill(0);
    index.Fill((unsigned int)fabs(static_cast<float>(padvalue)));
  }

  typename ImageType::PointType point1, pointpad;
  image1->TransformIndexToPhysicalPoint(index, point1);
  padimage->TransformIndexToPhysicalPoint(index2, pointpad);

  for (unsigned int i = 0; i < ImageType::ImageDimension; i++)
  {
    origin2[i] += (point1[i] - pointpad[i]);
  }

  padimage->SetOrigin(origin2);

  Iterator iter(image1, image1->GetLargestPossibleRegion());
  for (iter.GoToBegin(); !iter.IsAtEnd(); ++iter)
  {
    typename ImageType::IndexType oindex = iter.GetIndex();
    typename ImageType::IndexType padindex = iter.GetIndex();

    bool isinside = true;
    for (unsigned int i = 0; i < ImageType::ImageDimension; i++)
    {
      float shifted = ((float)oindex[i] + padvalue);
      if (shifted < 0 || shifted > newsize[i] - 1)
      {
        isinside = false;
      }
      //      if (shifted < 0) shifted=0;
      // padindex[i]=
    }
    if (isinside)
    {
      for (unsigned int i = 0; i < ImageType::ImageDimension; i++)
      {
        float shifted = ((float)oindex[i] + padvalue);
        padindex[i] = (unsigned int)shifted;
      }
      padimage->SetPixel(padindex, iter.Get());
    }
  }
  return padimage;
}


template <typename ImageType>
typename ImageType::Pointer
iMathPeronaMalik(typename ImageType::Pointer image,
                 unsigned long               nIterations, /*1*/
                 double                      conductance)
{
  if (image->GetNumberOfComponentsPerPixel() != 1)
  {
    // NOPE
  }

  typedef itk::GradientAnisotropicDiffusionImageFilter<ImageType, ImageType> FilterType;
  typedef typename FilterType::TimeStepType                                  TimeStepType;

  // Select time step size.
  TimeStepType spacingsize = 0;
  for (unsigned int d = 0; d < ImageType::ImageDimension; d++)
  {
    TimeStepType sp = image->GetSpacing()[d];
    spacingsize += sp * sp;
  }
  spacingsize = sqrt(spacingsize);

  // FIXME - cite reason for this step
  double       dimPlusOne = ImageType::ImageDimension + 1;
  TimeStepType mytimestep = spacingsize / std::pow(2.0, dimPlusOne);
  TimeStepType reftimestep = 0.4 / std::pow(2.0, dimPlusOne);
  if (mytimestep > reftimestep)
  {
    mytimestep = reftimestep;
  }

  typename FilterType::Pointer filter = FilterType::New();
  filter->SetInput(image);
  filter->SetConductanceParameter(conductance); // might need to change this
  filter->SetNumberOfIterations(nIterations);
  filter->SetTimeStep(mytimestep);

  filter->Update();
  return filter->GetOutput();
}

template <typename ImageType>
typename ImageType::Pointer
iMathPropagateLabelsThroughMask(typename ImageType::Pointer speedimage, /*1*/
                                typename ImageType::Pointer labimage,
                                double                      stoppingValue,
                                unsigned int                propagationMethod)
{

  typedef itk::ImageRegionIteratorWithIndex<ImageType> Iterator;

  typedef itk::FastMarchingThresholdStoppingCriterion<ImageType, ImageType> CriterionType;

  typedef typename CriterionType::Pointer                        CriterionPointer;
  typedef itk::FastMarchingImageFilterBase<ImageType, ImageType> FastMarchingFilterType;
  typedef typename FastMarchingFilterType::LabelImageType        LabelImageType;
  typedef itk::BinaryThresholdImageFilter<ImageType, ImageType>  ThresholderType;
  typedef itk::LabelContourImageFilter<ImageType, ImageType>     ContourFilterType;
  typedef typename FastMarchingFilterType::NodePairContainerType NodeContainer;
  typedef typename FastMarchingFilterType::NodePairType          NodePairType;
  typedef itk::CastImageFilter<ImageType, ImageType>             CastFilterType;

  typename ImageType::Pointer fastimage = ImageType::New();
  fastimage->SetRegions(speedimage->GetLargestPossibleRegion());
  fastimage->SetSpacing(speedimage->GetSpacing());
  fastimage->SetOrigin(speedimage->GetOrigin());
  fastimage->SetDirection(speedimage->GetDirection());
  fastimage->Allocate();
  fastimage->FillBuffer(1.e9);

  /*
  typename ImageType::Pointer outlabimage = ImageType::New();
  outlabimage->SetRegions( speedimage->GetLargestPossibleRegion() );
  outlabimage->SetSpacing( speedimage->GetSpacing() );
  outlabimage->SetOrigin( speedimage->GetOrigin() );
  outlabimage->SetDirection( speedimage->GetDirection() );
  outlabimage->AllocateInitialized();
  */

  typename CastFilterType::Pointer caster = CastFilterType::New();
  caster->SetInput(labimage);
  caster->Update();
  typename ImageType::Pointer outlabimage = caster->GetOutput();


  // FIXME - why is thresh set to 0.5?
  double   maxlabel = 0;
  double   thresh = 0.5;
  Iterator vfIter2(labimage, labimage->GetLargestPossibleRegion());
  for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
  {
    bool   isinside = true;
    double speedval = speedimage->GetPixel(vfIter2.GetIndex());
    double labval = labimage->GetPixel(vfIter2.GetIndex());
    if (speedval < thresh)
    {
      isinside = false;
    }
    if (isinside)
    {
      if (labval > maxlabel)
      {
        maxlabel = labval;
      }
    }
  }

  CriterionPointer criterion = CriterionType::New();
  criterion->SetThreshold(stoppingValue);

  typename FastMarchingFilterType::Pointer fastMarching;
  for (unsigned int lab = 1; lab <= (unsigned int)maxlabel; lab++)
  {

    // Create binary mask for each label
    typename ThresholderType::Pointer thresholder = ThresholderType::New();
    thresholder->SetInput(labimage);
    thresholder->SetLowerThreshold(lab);
    thresholder->SetUpperThreshold(lab);
    thresholder->SetInsideValue(1);
    thresholder->SetOutsideValue(0);

    // Get pixels on border of the label mask
    typename ContourFilterType::Pointer contour = ContourFilterType::New();
    contour->SetInput(thresholder->GetOutput());
    contour->FullyConnectedOff();
    contour->SetBackgroundValue(itk::NumericTraits<typename LabelImageType::PixelType>::ZeroValue());
    contour->Update();
    typename ImageType::Pointer contourimage = contour->GetOutput();


    fastMarching = FastMarchingFilterType::New();
    fastMarching->SetInput(speedimage);
    fastMarching->SetStoppingCriterion(criterion);

    if (propagationMethod == 1) // Strict
    {
      // std::cout << " strict " << std::endl;
      fastMarching->SetTopologyCheck(itk::FastMarchingTraitsEnums::TopologyCheck::Strict);
    }
    if (propagationMethod == 2) // No handles
    {
      // std::cout << " no handles " << std::endl;
      fastMarching->SetTopologyCheck(itk::FastMarchingTraitsEnums::TopologyCheck::NoHandles);
    }

    typename NodeContainer::Pointer seeds = NodeContainer::New();
    seeds->Initialize();

    typename NodeContainer::Pointer alivePoints = NodeContainer::New();
    alivePoints->Initialize();

    for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
    {
      double labval = labimage->GetPixel(vfIter2.GetIndex());
      double contourval = contourimage->GetPixel(vfIter2.GetIndex());
      if (((unsigned int)contourval == 1) && ((unsigned int)labval == lab))
      {
        seeds->push_back(NodePairType(vfIter2.GetIndex(), 0.0));
      }
      if (((unsigned int)contourval == 0) && ((unsigned int)labval == lab))
      {
        alivePoints->push_back(NodePairType(vfIter2.GetIndex(), 0.0));
      }
    }
    fastMarching->SetTrialPoints(seeds);
    fastMarching->SetAlivePoints(alivePoints);
    fastMarching->Update();

    for (vfIter2.GoToBegin(); !vfIter2.IsAtEnd(); ++vfIter2)
    {
      bool   isinside = true;
      double speedval = speedimage->GetPixel(vfIter2.GetIndex());
      double labval = labimage->GetPixel(vfIter2.GetIndex());
      if (speedval < thresh)
      {
        isinside = false;
      }


      if (isinside && itk::Math::FloatAlmostEqual(labval, itk::NumericTraits<double>::ZeroValue()))
      {
        double fmarrivaltime = fastMarching->GetOutput()->GetPixel(vfIter2.GetIndex());
        double mmm = fastimage->GetPixel(vfIter2.GetIndex());
        if (fmarrivaltime < mmm)
        {
          fastimage->SetPixel(vfIter2.GetIndex(), fmarrivaltime);
          outlabimage->SetPixel(vfIter2.GetIndex(), lab);
        }
      }
      else if (!isinside)
      {
        outlabimage->SetPixel(vfIter2.GetIndex(), 0);
      }
    }
  }

  return outlabimage;
}

template <typename ImageType>
typename ImageType::Pointer
iMathSharpen(typename ImageType::Pointer image) /*1*/
{
  if (image->GetNumberOfComponentsPerPixel() != 1)
  {
    // NOPE
  }

  typedef itk::LaplacianSharpeningImageFilter<ImageType, ImageType> FilterType;
  typename FilterType::Pointer                                      sharpenFilter = FilterType::New();
  sharpenFilter->SetInput(image);
  sharpenFilter->Update();

  return sharpenFilter->GetOutput();
}

template <typename ImageType>
typename ImageType::Pointer
iMathTruncateIntensity(typename ImageType::Pointer                                           image,
                       double                                                                lowerQ,
                       double                                                                upperQ,
                       int                                                                   nBins, /*1*/
                       typename itk::Image<unsigned int, ImageType::ImageDimension>::Pointer mask)
{

  typedef typename ImageType::PixelType                    PixelType;
  typedef unsigned int                                     LabelType;
  typedef itk::Image<LabelType, ImageType::ImageDimension> MaskType;

  if (mask.IsNull())
  {
    typedef itk::BinaryThresholdImageFilter<ImageType, MaskType> ThresholdFilterType;
    typename ThresholdFilterType::Pointer                        thresh = ThresholdFilterType::New();
    thresh->SetInput(image);
    thresh->SetLowerThreshold(itk::NumericTraits<PixelType>::NonpositiveMin());
    thresh->SetUpperThreshold(itk::NumericTraits<PixelType>::max());
    thresh->SetInsideValue(1);
    thresh->SetOutsideValue(0);
    thresh->Update();
    mask = thresh->GetOutput();
  }
  typedef itk::LabelStatisticsImageFilter<ImageType, MaskType> HistogramFilterType;
  typename HistogramFilterType::Pointer                        stats = HistogramFilterType::New();

  stats->SetInput(image);
  stats->SetLabelInput(mask);
  stats->Update();
  PixelType minValue = stats->GetMinimum(1);
  PixelType maxValue = stats->GetMaximum(1);

  // Hack increment by delta
  if (itk::Math::FloatAlmostEqual(minValue, itk::NumericTraits<PixelType>::ZeroValue()))
  {
    minValue = minValue + static_cast<PixelType>(1e-6);
  }
  if (itk::Math::FloatAlmostEqual(minValue, itk::NumericTraits<PixelType>::ZeroValue()))
  {
    minValue++;
  }

  typedef typename HistogramFilterType::HistogramPointer HistogramPointer;
  typename HistogramFilterType::Pointer                  stats2 = HistogramFilterType::New();
  stats2->SetInput(image);
  stats2->SetLabelInput(mask);
  stats2->UseHistogramsOn();
  stats2->SetHistogramParameters(nBins, minValue, maxValue);
  stats2->Update();
  HistogramPointer histogram = stats2->GetHistogram(1);

  PixelType lowerQuantile = histogram->Quantile(0, lowerQ);
  PixelType upperQuantile = histogram->Quantile(0, upperQ);

  typedef itk::IntensityWindowingImageFilter<ImageType, ImageType> WindowFilterType;
  typename WindowFilterType::Pointer                               windowFilter = WindowFilterType::New();
  windowFilter->SetInput(image);
  windowFilter->SetWindowMinimum(lowerQuantile);
  windowFilter->SetOutputMinimum(lowerQuantile);
  windowFilter->SetWindowMaximum(upperQuantile);
  windowFilter->SetOutputMaximum(upperQuantile);
  windowFilter->Update();

  return windowFilter->GetOutput();
}

//
// shape (1=ball, 2=box, 3=cross, 4=annulus, 5=polygon)

} // namespace ants