1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/*=========================================================================
Program: Advanced Normalization Tools
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#include "ReadWriteData.h"
#include "antsUtilities.h"
#include "itkAddImageFilter.h"
#include "itkAdaptiveHistogramEqualizationImageFilter.h"
#include "itkBinaryBallStructuringElement.h"
#include "itkBinaryErodeImageFilter.h"
#include "itkBinaryDilateImageFilter.h"
#include "itkBinaryMorphologicalClosingImageFilter.h"
#include "itkBinaryMorphologicalOpeningImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkCannyEdgeDetectionImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkConnectedComponentImageFilter.h"
#include "itkDanielssonDistanceMapImageFilter.h"
#include "itkFastMarchingImageFilterBase.h"
#include "itkFastMarchingThresholdStoppingCriterion.h"
#include "itkFlatStructuringElement.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkGrayscaleDilateImageFilter.h"
#include "itkGrayscaleErodeImageFilter.h"
#include "itkGrayscaleMorphologicalClosingImageFilter.h"
#include "itkGrayscaleMorphologicalOpeningImageFilter.h"
#include "itkIdentityTransform.h"
#include "itkIntensityWindowingImageFilter.h"
#include "itkLabelContourImageFilter.h"
#include "itkLabelStatisticsImageFilter.h"
#include "itkLaplacianRecursiveGaussianImageFilter.h"
#include "itkLaplacianSharpeningImageFilter.h"
#include "itkMultiScaleLaplacianBlobDetectorImageFilter.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkPadImageFilter.h"
#include "itkRelabelComponentImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkSignedMaurerDistanceMapImageFilter.h"
#include "itkImageFileWriter.h"
namespace ants
{
/*
template <typename ImageType>
typename ImageType::Pointer
BlobCorrespondence( typename ImageType::Pointer image, unsigned int nBlobs,
typename ImageType::Pointer itkNotUsed(image2),
double itkNotUsed(corrThresh), double itkNotUsed(radius), double itkNotUsed(distanceThresh) )
{
typedef float RealType;
// sensitive parameters are set here - begin
//RealType gradsig = 1.0; // sigma for gradient filter
unsigned int stepsperoctave = 10; // number of steps between doubling of scale
RealType minscale = std::pow( 1.0, 1.0 );
RealType maxscale = std::pow( 2.0, 10.0 );
//RealType uniqfeat_thresh = 0.01;
//RealType smallval = 1.e-2; // assumes images are normalizes in [ 0, 1 ]
//bool dosinkhorn = false;
//RealType maxradiusdiffallowed = 0.25; // IMPORTANT feature size difference
//RealType kneighborhoodval = 3; // IMPORTANT - defines how many nhood nodes to use in k-hood definition
//unsigned int radval = 20; // IMPORTANT radius for correlation
//RealType dthresh = 0.02; // IMPORTANT distance preservation threshold
// sensitive parameters are set here - end
}
*/
template <typename ImageType>
typename ImageType::Pointer
iMathGE(typename ImageType::Pointer image, unsigned long radius) /*3*/
{
const unsigned int ImageDimension = ImageType::ImageDimension;
typedef typename ImageType::PixelType PixelType;
typedef itk::BinaryBallStructuringElement<PixelType, ImageDimension> StructuringElementType;
typedef itk::GrayscaleErodeImageFilter<ImageType, ImageType, StructuringElementType> FilterType;
StructuringElementType structuringElement;
structuringElement.SetRadius(radius);
structuringElement.CreateStructuringElement();
typename FilterType::Pointer filter = FilterType::New();
filter->SetInput(image);
filter->SetKernel(structuringElement);
filter->Update();
return filter->GetOutput();
}
template <typename ImageType>
typename ImageType::Pointer
iMathGO(typename ImageType::Pointer image, unsigned long radius) /*3*/
{
const unsigned int ImageDimension = ImageType::ImageDimension;
typedef typename ImageType::PixelType PixelType;
typedef itk::BinaryBallStructuringElement<PixelType, ImageDimension> StructuringElementType;
typedef itk::GrayscaleMorphologicalOpeningImageFilter<ImageType, ImageType, StructuringElementType> FilterType;
StructuringElementType structuringElement;
structuringElement.SetRadius(radius);
structuringElement.CreateStructuringElement();
typename FilterType::Pointer filter = FilterType::New();
filter->SetInput(image);
filter->SetKernel(structuringElement);
filter->Update();
return filter->GetOutput();
}
template <typename ImageType>
typename ImageType::Pointer
iMathGetLargestComponent(typename ImageType::Pointer image, /*3*/
unsigned long smallest)
{
const unsigned int ImageDimension = ImageType::ImageDimension;
if (image->GetNumberOfComponentsPerPixel() != 1)
{
// NOPE
}
typedef itk::ImageRegionIteratorWithIndex<ImageType> Iterator;
typedef itk::Image<unsigned long, ImageDimension> LabelImageType;
typedef itk::BinaryThresholdImageFilter<ImageType, LabelImageType> ThresholdFilterType;
typedef itk::ConnectedComponentImageFilter<LabelImageType, LabelImageType> FilterType;
typedef itk::RelabelComponentImageFilter<LabelImageType, ImageType> RelabelType;
typename ThresholdFilterType::Pointer threshold = ThresholdFilterType::New();
typename FilterType::Pointer filter = FilterType::New();
typename RelabelType::Pointer relabel = RelabelType::New();
threshold->SetInput(image);
threshold->SetInsideValue(1);
threshold->SetOutsideValue(0);
threshold->SetLowerThreshold(0.25); // FIXME - why these values?
threshold->SetUpperThreshold(1.e9);
threshold->Update();
filter->SetInput(threshold->GetOutput());
filter->SetFullyConnected(0);
filter->Update();
relabel->SetInput(filter->GetOutput());
relabel->SetMinimumObjectSize(smallest);
// relabel->SetUseHistograms(true);
try
{
relabel->Update();
}
catch (const itk::ExceptionObject & itkNotUsed(excep))
{
// std::cout << "Relabel: exception caught !" << std::endl;
// std::cout << excep << std::endl;
}
// ANTs::WriteImage<ImageType>(relabel->GetOutput(),outname.c_str());
// return 0;
typename ImageType::Pointer Clusters = MakeNewImage<ImageType>(relabel->GetOutput(), 0);
// typename ImageType::Pointer Clusters=relabel->GetOutput();
typedef itk::ImageRegionIteratorWithIndex<ImageType> Iterator;
Iterator vfIter(relabel->GetOutput(), relabel->GetOutput()->GetLargestPossibleRegion());
float maximum = relabel->GetNumberOfObjects();
float maxtstat = 0;
std::vector<unsigned int> histogram((int)maximum + 1);
std::vector<float> clustersum((int)maximum + 1);
for (int i = 0; i <= maximum; i++)
{
histogram[i] = 0;
clustersum[i] = 0;
}
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (vfIter.Get() > 0)
{
float vox = image->GetPixel(vfIter.GetIndex());
histogram[(unsigned int)vfIter.Get()] = histogram[(unsigned int)vfIter.Get()] + 1;
clustersum[(unsigned int)vfIter.Get()] += vox;
if (vox > maxtstat)
{
maxtstat = vox;
}
}
}
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (vfIter.Get() > 0)
{
Clusters->SetPixel(vfIter.GetIndex(), histogram[(unsigned int)vfIter.Get()]);
// if ( Clusters->GetPixel( vfIter.GetIndex() ) > maximgval )
// maximgval=Clusters->GetPixel( vfIter.GetIndex());
}
else
{
Clusters->SetPixel(vfIter.GetIndex(), 0);
}
}
float maximgval = 0;
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (Clusters->GetPixel(vfIter.GetIndex()) > maximgval)
{
maximgval = Clusters->GetPixel(vfIter.GetIndex());
}
}
for (vfIter.GoToBegin(); !vfIter.IsAtEnd(); ++vfIter)
{
if (Clusters->GetPixel(vfIter.GetIndex()) >= maximgval)
{
image->SetPixel(vfIter.GetIndex(), 1);
}
else
{
image->SetPixel(vfIter.GetIndex(), 0);
}
}
return image;
}
template <typename ImageType>
typename ImageType::Pointer
iMathGrad(typename ImageType::Pointer image, double sigma, bool normalize) /*3*/
{
typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<ImageType, ImageType> FilterType;
typename FilterType::Pointer grad = FilterType::New();
grad->SetInput(image);
grad->SetSigma(sigma);
grad->Update();
typename ImageType::Pointer output = grad->GetOutput();
if (normalize)
{
typedef itk::RescaleIntensityImageFilter<ImageType, ImageType> RescaleFilterType;
typename RescaleFilterType::Pointer rescaler = RescaleFilterType::New();
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(1);
rescaler->SetInput(grad->GetOutput());
rescaler->Update();
output = rescaler->GetOutput();
}
return output;
}
template <typename ImageType>
typename ImageType::Pointer
iMathHistogramEqualization(typename ImageType::Pointer image, double alpha, double beta, unsigned int r) /*3*/
{
if (image->GetNumberOfComponentsPerPixel() != 1)
{
// NOPE
}
typedef itk::AdaptiveHistogramEqualizationImageFilter<ImageType> AdaptiveHistogramEqualizationImageFilterType;
typename AdaptiveHistogramEqualizationImageFilterType::Pointer adaptiveHistogramEqualizationImageFilter =
AdaptiveHistogramEqualizationImageFilterType::New();
adaptiveHistogramEqualizationImageFilter->SetInput(image);
typename AdaptiveHistogramEqualizationImageFilterType::RadiusType radius;
radius.Fill(r);
adaptiveHistogramEqualizationImageFilter->SetRadius(radius);
adaptiveHistogramEqualizationImageFilter->SetAlpha(alpha);
adaptiveHistogramEqualizationImageFilter->SetBeta(beta);
adaptiveHistogramEqualizationImageFilter->Update();
return adaptiveHistogramEqualizationImageFilter->GetOutput();
}
//
// shape (1=ball, 2=box, 3=cross, 4=annulus, 5=polygon)
template <typename ImageType>
typename ImageType::Pointer
iMathGD(typename ImageType::Pointer image, unsigned long radius) /*0*/ /*3*/
{
const unsigned int ImageDimension = ImageType::ImageDimension;
typedef typename ImageType::PixelType PixelType;
typedef itk::BinaryBallStructuringElement<PixelType, ImageDimension> StructuringElementType;
typedef itk::GrayscaleDilateImageFilter<ImageType, ImageType, StructuringElementType> FilterType;
StructuringElementType structuringElement;
structuringElement.SetRadius(radius);
structuringElement.CreateStructuringElement();
typename FilterType::Pointer filter = FilterType::New();
filter->SetInput(image);
filter->SetKernel(structuringElement);
filter->Update();
return filter->GetOutput();
}
} // namespace ants
|