File: antsGaussianListSampleFunction.hxx

package info (click to toggle)
ants 2.5.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 11,672 kB
  • sloc: cpp: 85,685; sh: 15,850; perl: 863; xml: 115; python: 111; makefile: 68
file content (156 lines) | stat: -rw-r--r-- 5,180 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
/*=========================================================================

  Program:   Advanced Normalization Tools

  Copyright (c) ConsortiumOfANTS. All rights reserved.
  See accompanying COPYING.txt or
  https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt
  for details.

  This software is distributed WITHOUT ANY WARRANTY; without even
  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
  PURPOSE.  See the above copyright notices for more information.

=========================================================================*/
#ifndef __antsGaussianListSampleFunction_hxx
#define __antsGaussianListSampleFunction_hxx


#include "itkCovarianceSampleFilter.h"
#include "itkMeanSampleFilter.h"
#include "itkWeightedCovarianceSampleFilter.h"
#include "itkWeightedMeanSampleFilter.h"

namespace itk
{
namespace ants
{
namespace Statistics
{
template <typename TListSample, typename TOutput, typename TCoordRep>
GaussianListSampleFunction<TListSample, TOutput, TCoordRep>::GaussianListSampleFunction()
{
  this->m_Gaussian = GaussianType::New();
}

template <typename TListSample, typename TOutput, typename TCoordRep>
GaussianListSampleFunction<TListSample, TOutput, TCoordRep>::~GaussianListSampleFunction() = default;

template <typename TListSample, typename TOutput, typename TCoordRep>
void
GaussianListSampleFunction<TListSample, TOutput, TCoordRep>::SetInputListSample(const InputListSampleType * ptr)
{
  Superclass::SetInputListSample(ptr);

  if (!this->GetInputListSample())
  {
    return;
  }

  if (this->GetInputListSample()->Size() > 1)
  {
    if (this->GetListSampleWeights()->Size() == this->GetInputListSample()->Size())
    {
      typedef typename itk::Statistics::WeightedCovarianceSampleFilter<InputListSampleType> CovarianceCalculatorType;
      typename CovarianceCalculatorType::Pointer covarianceCalculator = CovarianceCalculatorType::New();

      covarianceCalculator->SetWeights(*this->GetListSampleWeights());
      covarianceCalculator->SetInput(this->GetInputListSample());
      covarianceCalculator->Update();

      typename GaussianType::MeanVectorType mean;
      NumericTraits<typename GaussianType::MeanVectorType>::SetLength(
        mean, this->GetInputListSample()->GetMeasurementVectorSize());
      for (unsigned int d = 0; d < this->GetInputListSample()->GetMeasurementVectorSize(); d++)
      {
        mean[d] = covarianceCalculator->GetMean()[d];
      }
      this->m_Gaussian->SetMean(mean);
      this->m_Gaussian->SetCovariance(covarianceCalculator->GetCovarianceMatrix());
    }
    else
    {
      typedef itk::Statistics::CovarianceSampleFilter<InputListSampleType> CovarianceCalculatorType;
      typename CovarianceCalculatorType::Pointer covarianceCalculator = CovarianceCalculatorType::New();
      covarianceCalculator->SetInput(this->GetInputListSample());
      covarianceCalculator->Update();

      typename GaussianType::MeanVectorType mean;
      NumericTraits<typename GaussianType::MeanVectorType>::SetLength(
        mean, this->GetInputListSample()->GetMeasurementVectorSize());
      for (unsigned int d = 0; d < this->GetInputListSample()->GetMeasurementVectorSize(); d++)
      {
        mean[d] = covarianceCalculator->GetMean()[d];
      }
      this->m_Gaussian->SetMean(mean);
      this->m_Gaussian->SetCovariance(covarianceCalculator->GetCovarianceMatrix());
    }

    // Check to see if the covariance matrix is nonsingular

    vnl_matrix_inverse<double> inv_cov((this->m_Gaussian->GetCovariance()).GetVnlMatrix());
    double                     det = inv_cov.determinant_magnitude();

    if (det < 0.0)
    {
      itkExceptionMacro("Determinant of the covariance < 0");
    }
    else if (det < 1.0e-6)
    {
      itkExceptionMacro("Covariance is singular (determinant = " << det << " < 1.0e-6)");
    }
  }
  else
  {
    itkWarningMacro("The input list sample has <= 1 element.  "
                    << "Function evaluations will be equal to 0.");
  }
}

template <typename TListSample, typename TOutput, typename TCoordRep>
TOutput
GaussianListSampleFunction<TListSample, TOutput, TCoordRep>::Evaluate(
  const InputMeasurementVectorType & measurement) const
{
  try
  {
    return this->m_Gaussian->Evaluate(measurement);
  }
  catch (...)
  {
    return 0.0;
  }
}

/**
 * Standard "PrintSelf" method
 */
template <typename TListSample, typename TOutput, typename TCoordRep>
void
GaussianListSampleFunction<TListSample, TOutput, TCoordRep>::PrintSelf(std::ostream & os, Indent indent) const
{
  os << indent << "mean = " << this->m_Gaussian->GetMean() << ", ";

  typename GaussianType::CovarianceMatrixType covariance = this->m_Gaussian->GetCovariance();
  os << "covariance = [";
  for (unsigned int r = 0; r < covariance.Rows(); r++)
  {
    for (unsigned int c = 0; c < covariance.Cols() - 1; c++)
    {
      os << covariance(r, c) << ", ";
    }
    if (r == covariance.Rows() - 1)
    {
      os << covariance(r, covariance.Cols() - 1) << "]" << std::endl;
    }
    else
    {
      os << covariance(r, covariance.Cols() - 1) << "; ";
    }
  }
}
} // end of namespace Statistics
} // end of namespace ants
} // end of namespace itk

#endif