1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
|
/*=========================================================================
Program: Advanced Normalization Tools
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt
for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef __antsGrubbsRosnerListSampleFilter_hxx
#define __antsGrubbsRosnerListSampleFilter_hxx
#include "itkTDistribution.h"
namespace itk
{
namespace ants
{
namespace Statistics
{
template <typename TScalarListSample>
GrubbsRosnerListSampleFilter<TScalarListSample>::GrubbsRosnerListSampleFilter()
{
this->AllocateOutput();
this->GetOutput()->SetMeasurementVectorSize(1);
this->m_OutlierHandling = Winsorize;
this->m_WinsorizingLevel = 0.10;
this->m_SignificanceLevel = 0.05;
}
template <typename TScalarListSample>
GrubbsRosnerListSampleFilter<TScalarListSample>::~GrubbsRosnerListSampleFilter() = default;
template <typename TScalarListSample>
void
GrubbsRosnerListSampleFilter<TScalarListSample>::GenerateData()
{
if (this->GetInput()->GetMeasurementVectorSize() != 1)
{
itkExceptionMacro("The input sample must be univariate.");
}
const unsigned int scalarMeasurementVectorSize = this->GetOutput()->GetMeasurementVectorSize();
this->GetOutput()->SetMeasurementVectorSize(scalarMeasurementVectorSize);
/**
* A common hueristic is that Grubbs-Rosner outlier removal does not work for
* sample sizes less than or equal to 6.
*/
if (this->GetInput()->Size() <= 6)
{
typename ScalarListSampleType::ConstIterator It = this->GetInput()->Begin();
while (It != this->GetInput()->End())
{
MeasurementVectorType inputMeasurement = It.GetMeasurementVector();
MeasurementVectorType outputMeasurement;
outputMeasurement.SetSize(scalarMeasurementVectorSize);
for (unsigned int d = 0; d < scalarMeasurementVectorSize; d++)
{
outputMeasurement[d] = inputMeasurement[d];
}
this->GetOutput()->PushBack(outputMeasurement);
++It;
}
return;
}
/**
* Otherwise, iterate through the input list, removing t
*/
RealType mean = 0.0;
RealType variance = 0.0;
RealType count = 0.0;
typename ScalarListSampleType::ConstIterator It = this->GetInput()->Begin();
while (It != this->GetInput()->End())
{
MeasurementVectorType inputMeasurement = It.GetMeasurementVector();
count += NumericTraits<RealType>::OneValue();
variance += (count - NumericTraits<RealType>::OneValue()) *
itk::Math::sqr(static_cast<RealType>(inputMeasurement[0]) - mean) / count;
mean = mean + (static_cast<RealType>(inputMeasurement[0]) - mean) / count;
++It;
}
variance /= (count - NumericTraits<RealType>::OneValue());
bool outlierFound = true;
this->m_OutlierInstanceIdentifiers.clear();
while (outlierFound == true && (this->GetInput()->Size() - this->m_OutlierInstanceIdentifiers.size() > 6))
{
outlierFound = false;
InstanceIdentifierType id = this->FindMaximumNonOutlierDeviationValue(mean, variance);
if (this->GetInput()->GetFrequency(id) > 0)
{
MeasurementVectorType measurement = this->GetInput()->GetMeasurementVector(id);
outlierFound = this->IsMeasurementAnOutlier(
measurement[0], mean, variance, this->GetInput()->Size() - this->m_OutlierInstanceIdentifiers.size());
if (outlierFound)
{
/** Retabulate the variance and mean by removing the previous estimate */
RealType count2 = this->GetInput()->Size() - this->m_OutlierInstanceIdentifiers.size();
mean = (mean * count2 - static_cast<RealType>(measurement[0])) / (count2 - NumericTraits<RealType>::OneValue());
variance = (count2 - 1.0) * variance - (count2 - NumericTraits<RealType>::OneValue()) *
itk::Math::sqr(static_cast<RealType>(measurement[0]) - mean) / count2;
variance /= (count2 - static_cast<RealType>(2.0));
this->m_OutlierInstanceIdentifiers.push_back(id);
}
}
}
RealType lowerWinsorBound = 0.0;
RealType upperWinsorBound = 0.0;
if (this->m_OutlierHandling == Winsorize)
{
typename itk::Statistics::TDistribution::Pointer tdistribution = itk::Statistics::TDistribution::New();
RealType t = tdistribution->EvaluateInverseCDF(
1.0 - 0.5 * this->m_WinsorizingLevel, this->GetInput()->Size() - this->m_OutlierInstanceIdentifiers.size());
lowerWinsorBound = mean - t * std::sqrt(variance);
upperWinsorBound = mean + t * std::sqrt(variance);
}
It = this->GetInput()->Begin();
while (It != this->GetInput()->End())
{
MeasurementVectorType inputMeasurement = It.GetMeasurementVector();
MeasurementVectorType outputMeasurement;
outputMeasurement.SetSize(scalarMeasurementVectorSize);
if (this->m_OutlierHandling == None ||
std::find(this->m_OutlierInstanceIdentifiers.begin(),
this->m_OutlierInstanceIdentifiers.end(),
It.GetInstanceIdentifier()) == this->m_OutlierInstanceIdentifiers.end())
{
outputMeasurement[0] = inputMeasurement[0];
this->GetOutput()->PushBack(outputMeasurement);
}
else if (this->m_OutlierHandling == Winsorize)
{
if (static_cast<RealType>(inputMeasurement[0]) < lowerWinsorBound)
{
outputMeasurement[0] = lowerWinsorBound;
}
else
{
outputMeasurement[0] = upperWinsorBound;
}
this->GetOutput()->PushBack(outputMeasurement);
}
++It;
}
}
template <typename TScalarListSample>
typename GrubbsRosnerListSampleFilter<TScalarListSample>::InstanceIdentifierType
GrubbsRosnerListSampleFilter<TScalarListSample>::FindMaximumNonOutlierDeviationValue(RealType mean,
RealType itkNotUsed(variance))
{
RealType maximumDeviation = 0.0;
InstanceIdentifierType maximumID = NumericTraits<InstanceIdentifierType>::max();
typename ScalarListSampleType::ConstIterator It = this->GetInput()->Begin();
while (It != this->GetInput()->End())
{
MeasurementVectorType inputMeasurement = It.GetMeasurementVector();
InstanceIdentifierType inputID = It.GetInstanceIdentifier();
if (std::find(this->m_OutlierInstanceIdentifiers.begin(), this->m_OutlierInstanceIdentifiers.end(), inputID) ==
this->m_OutlierInstanceIdentifiers.end())
{
if (Math::abs(static_cast<RealType>(inputMeasurement[0]) - mean) > maximumDeviation)
{
maximumDeviation = Math::abs(static_cast<RealType>(inputMeasurement[0]) - mean);
maximumID = inputID;
}
}
++It;
}
return maximumID;
}
template <typename TScalarListSample>
bool
GrubbsRosnerListSampleFilter<TScalarListSample>::IsMeasurementAnOutlier(RealType x,
RealType mean,
RealType variance,
unsigned long N)
{
/**
* The Grubb critical two-sided value is defined to be
* (N-1)/sqrt(N)*sqrt( t*t / (N-2+t*t) ) where t is at the
* (alpha / (2N)) signficance level with N-2 degrees of freedom.
*/
RealType sig = this->m_SignificanceLevel / (2.0 * static_cast<RealType>(N));
typename itk::Statistics::TDistribution::Pointer tdistribution = itk::Statistics::TDistribution::New();
RealType t = tdistribution->EvaluateInverseCDF(1.0 - sig, N - 2);
RealType nu = static_cast<RealType>(N - 1);
RealType g = nu / std::sqrt(nu + 1.0) * std::sqrt(t * t / (nu - 1 + t * t));
return g < (itk::Math::abs(x - mean) / std::sqrt(variance));
}
template <typename TScalarListSample>
void
GrubbsRosnerListSampleFilter<TScalarListSample>::PrintSelf(std::ostream & os, Indent indent) const
{
os << indent << "Significance level: " << this->m_SignificanceLevel << std::endl;
os << indent << "Outlier handling: ";
if (this->m_OutlierHandling == None)
{
os << "None" << std::endl;
}
if (this->m_OutlierHandling == Trim)
{
os << "Trim" << std::endl;
}
if (this->m_OutlierHandling == Winsorize)
{
os << "Winsorize";
os << " (level = " << this->m_WinsorizingLevel << ")" << std::endl;
}
if (this->m_OutlierInstanceIdentifiers.size() > 0)
{
os << indent << "Outlier Identifiers: " << std::endl;
for (unsigned int d = 0; d < this->m_OutlierInstanceIdentifiers.size(); d++)
{
os << indent << " " << this->m_OutlierInstanceIdentifiers[d] << std::endl;
}
}
else
{
os << indent << "There are no outliers." << std::endl;
}
}
} // end of namespace Statistics
} // end of namespace ants
} // end of namespace itk
#endif
|