1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef __itkWeightedVotingFusionImageFilter_h
#define __itkWeightedVotingFusionImageFilter_h
#include "itkNonLocalPatchBasedImageFilter.h"
#include "itkConstNeighborhoodIterator.h"
#include <vnl/vnl_matrix.h>
#include <vnl/vnl_vector.h>
#include <vector>
#include <map>
#include <set>
namespace itk
{
/** \class WeightedVotingFusionImageFilter
* \brief Implementation of the joint label fusion and joint intensity fusion algorithm
*
* \author Paul Yushkevich with modifications by Brian Avants and Nick Tustison
*
* \par REFERENCE
*
* H. Wang, J. W. Suh, S. Das, J. Pluta, C. Craige, P. Yushkevich,
* "Multi-atlas segmentation with joint label fusion," IEEE Trans.
* on Pattern Analysis and Machine Intelligence, 35(3), 611-623, 2013.
*
* H. Wang and P. A. Yushkevich, "Multi-atlas segmentation with joint
* label fusion and corrective learning--an open source implementation,"
* Front. Neuroinform., 2013.
*
* \ingroup ImageSegmentation
*/
template <typename TInputImage, typename TOutputImage>
class WeightedVotingFusionImageFilter final : public NonLocalPatchBasedImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard class typedefs. */
typedef WeightedVotingFusionImageFilter Self;
typedef NonLocalPatchBasedImageFilter<TInputImage, TOutputImage> Superclass;
typedef SmartPointer<Self> Pointer;
typedef SmartPointer<const Self> ConstPointer;
/** Run-time type information (and related methods). */
itkTypeMacro(WeightedVotingFusionImageFilter, NonLocalPatchBasedImageFilter);
itkNewMacro(Self);
/** ImageDimension constants */
static constexpr unsigned int ImageDimension = TInputImage::ImageDimension;
/** Some convenient typedefs. */
typedef TInputImage InputImageType;
typedef typename InputImageType::Pointer InputImagePointer;
typedef typename InputImageType::ConstPointer InputImageConstPointer;
typedef typename InputImageType::PixelType InputImagePixelType;
typedef typename Superclass::InputImageList InputImageList;
typedef typename Superclass::InputImageSetList InputImageSetList;
typedef typename Superclass::InputImagePixelVectorType InputImagePixelVectorType;
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::PixelType LabelType;
typedef std::set<LabelType> LabelSetType;
typedef Image<LabelType, ImageDimension> LabelImageType;
typedef typename LabelImageType::Pointer LabelImagePointer;
typedef std::vector<LabelImagePointer> LabelImageList;
typedef Image<unsigned int, ImageDimension> CountImageType;
typedef LabelImageType MaskImageType;
typedef typename MaskImageType::Pointer MaskImagePointer;
typedef typename InputImageType::RegionType RegionType;
typedef typename InputImageType::SizeType SizeType;
typedef typename InputImageType::IndexType IndexType;
typedef Image<float, ImageDimension> ProbabilityImageType;
typedef typename ProbabilityImageType::Pointer ProbabilityImagePointer;
typedef double RealType;
typedef vnl_matrix<RealType> MatrixType;
typedef vnl_vector<RealType> VectorType;
typedef std::map<LabelType, ProbabilityImagePointer> LabelPosteriorProbabilityMap;
typedef std::map<LabelType, LabelImagePointer> LabelExclusionMap;
typedef std::vector<ProbabilityImagePointer> VotingWeightImageList;
typedef typename Superclass::ConstNeighborhoodIteratorType ConstNeighborhoodIteratorType;
typedef typename Superclass::NeighborhoodRadiusType NeighborhoodRadiusType;
typedef typename Superclass::NeighborhoodOffsetType NeighborhoodOffsetType;
typedef typename Superclass::NeighborhoodOffsetListType NeighborhoodOffsetListType;
typedef typename SizeType::SizeValueType RadiusValueType;
typedef Image<RadiusValueType, ImageDimension> RadiusImageType;
typedef typename RadiusImageType::Pointer RadiusImagePointer;
/**
* Set the multimodal target image
*/
void
SetTargetImage(InputImageList imageList)
{
this->m_TargetImage = imageList;
this->UpdateInputs();
}
/**
* Add an atlas (multi-modal image + segmentation)
* imageList is a vector of image pointers
* *segmentation is the pointer for the single segmentation corresponding to imageList
*/
void
AddAtlas(InputImageList imageList, LabelImageType * segmentation = nullptr)
{
this->m_AtlasImages.push_back(imageList);
if (this->m_NumberOfAtlasModalities == 0)
{
itkDebugMacro("Setting the number of modalities to " << this->m_NumberOfAtlasModalities);
this->m_NumberOfAtlasModalities = imageList.size();
}
else if (this->m_NumberOfAtlasModalities != imageList.size())
{
itkExceptionMacro("The number of atlas multimodal images is not equal to " << this->m_NumberOfAtlasModalities);
}
this->m_NumberOfAtlases++;
if (segmentation != nullptr)
{
this->m_AtlasSegmentations.push_back(segmentation);
this->m_NumberOfAtlasSegmentations++;
}
this->UpdateInputs();
}
/**
* Set mask image function. If a binary mask image is specified, only
* those input image voxels corresponding with mask image values equal
* to one are used.
*/
void
SetMaskImage(MaskImageType * mask)
{
this->m_MaskImage = mask;
this->UpdateInputs();
}
/**
* Add a label exclusion map
*/
void
AddLabelExclusionImage(LabelType label, LabelImageType * exclusionImage)
{
this->m_LabelExclusionImages[label] = exclusionImage;
this->UpdateInputs();
}
/**
* Get the number of modalities used in determining the optimal label fusion
* or optimal fused image.
*/
itkGetConstMacro(NumberOfAtlasModalities, unsigned int);
/**
* Get the label set.
*/
itkGetConstMacro(LabelSet, LabelSetType);
/**
* Set/Get the local search neighborhood radius image.
*/
void
SetNeighborhoodSearchRadiusImage(RadiusImageType * image)
{
this->m_NeighborhoodSearchRadiusImage = image;
}
/**
* Set/Get the Alpha parameter---the regularization weight added to the matrix Mx for
* the inverse. Default = 0.1.
*/
itkSetMacro(Alpha, RealType);
itkGetConstMacro(Alpha, RealType);
/**
* Set/Get the Beta parameter---exponent for mapping intensity difference to joint error.
* Default = 2.0.
*/
itkSetMacro(Beta, RealType);
itkGetConstMacro(Beta, RealType);
/** Set the requested region */
void
GenerateInputRequestedRegion() override;
/**
* Boolean for retaining the posterior images. This can have a negative effect
* on memory use, so it should only be done if one wishes to save the posterior
* maps. The posterior maps (n = number of labels) give the probability of each
* voxel in the target image belonging to each label. Default = false.
*/
itkSetMacro(RetainLabelPosteriorProbabilityImages, bool);
itkGetConstMacro(RetainLabelPosteriorProbabilityImages, bool);
itkBooleanMacro(RetainLabelPosteriorProbabilityImages);
/**
* Boolean for retaining the voting weights images. This can have a negative effect
* on memory use, so it should only be done if one wishes to save the voting weight
* maps. The voting weight maps (n = number of atlases) gives the contribution of
* a particular atlas to the final label/intensity fusion.
*/
itkSetMacro(RetainAtlasVotingWeightImages, bool);
itkGetConstMacro(RetainAtlasVotingWeightImages, bool);
itkBooleanMacro(RetainAtlasVotingWeightImages);
/**
* Boolean for constraining the weights to be positive and sum to 1. We use
* an implementation of the algorithm based on the algorithm by Lawson, Charles L.;
* Hanson, Richard J. (1995). Solving Least Squares Problems. SIAM.
*/
itkSetMacro(ConstrainSolutionToNonnegativeWeights, bool);
itkGetConstMacro(ConstrainSolutionToNonnegativeWeights, bool);
itkBooleanMacro(ConstrainSolutionToNonnegativeWeights);
/**
* Get the current state for progress reporting.
*/
itkGetConstMacro(IsWeightedAveragingComplete, bool);
/**
* Get the posterior probability image corresponding to a label.
*/
ProbabilityImagePointer
GetLabelPosteriorProbabilityImage(LabelType label)
{
if (this->m_RetainLabelPosteriorProbabilityImages)
{
if (std::find(this->m_LabelSet.begin(), this->m_LabelSet.end(), label) != this->m_LabelSet.end())
{
return this->m_LabelPosteriorProbabilityImages[label];
}
else
{
itkDebugMacro("Not returning a label posterior probability image. Requested label not found.");
return nullptr;
}
}
else
{
itkDebugMacro("Not returning a label posterior probability image. These images were not saved.");
return nullptr;
}
}
/**
* Get the voting weight image corresponding to an atlas.
*/
ProbabilityImagePointer
GetAtlasVotingWeightImage(unsigned int n)
{
if (this->m_RetainAtlasVotingWeightImages)
{
if (n < this->m_NumberOfAtlases)
{
return this->m_AtlasVotingWeightImages[n];
}
else
{
itkDebugMacro("Not returning a voting weight image. Requested index is greater than the number of atlases.");
return nullptr;
}
}
else
{
itkDebugMacro("Not returning a voting weight image. These images were not saved.");
return nullptr;
}
}
/**
* Get the joint intensity fusion output image
*/
ProbabilityImagePointer
GetJointIntensityFusionImage(unsigned int n)
{
if (n < this->m_NumberOfAtlasModalities)
{
return this->m_JointIntensityFusionImage[n];
}
else
{
itkDebugMacro(
"Not returning a joint intensity fusion image. Requested index is greater than the number of modalities.");
return nullptr;
}
}
protected:
WeightedVotingFusionImageFilter();
~WeightedVotingFusionImageFilter() override = default;
void
PrintSelf(std::ostream & os, Indent indent) const override;
void
ThreadedGenerateData(const RegionType &, ThreadIdType) override;
void
BeforeThreadedGenerateData() override;
void
AfterThreadedGenerateData() override;
void
GenerateData() override;
private:
void
ThreadedGenerateDataForWeightedAveraging(const RegionType &, ThreadIdType);
void
ThreadedGenerateDataForReconstruction(const RegionType &, ThreadIdType);
VectorType
NonNegativeLeastSquares(const MatrixType &, const VectorType &, const RealType);
void
UpdateInputs();
typedef std::pair<unsigned int, RealType> DistanceIndexType;
typedef std::vector<DistanceIndexType> DistanceIndexVectorType;
struct DistanceIndexComparator
{
bool
operator()(const DistanceIndexType & left, const DistanceIndexType & right)
{
return left.second < right.second;
}
};
bool m_IsWeightedAveragingComplete;
/** Input variables */
InputImageList m_TargetImage;
InputImageSetList m_AtlasImages;
LabelImageList m_AtlasSegmentations;
LabelExclusionMap m_LabelExclusionImages;
MaskImagePointer m_MaskImage;
typename CountImageType::Pointer m_CountImage;
LabelSetType m_LabelSet;
SizeValueType m_NumberOfAtlases;
SizeValueType m_NumberOfAtlasSegmentations;
SizeValueType m_NumberOfAtlasModalities;
std::map<RadiusValueType, NeighborhoodOffsetListType> m_NeighborhoodSearchOffsetSetsMap;
RealType m_Alpha;
RealType m_Beta;
bool m_RetainLabelPosteriorProbabilityImages;
bool m_RetainAtlasVotingWeightImages;
bool m_ConstrainSolutionToNonnegativeWeights;
ProbabilityImagePointer m_WeightSumImage;
RadiusImagePointer m_NeighborhoodSearchRadiusImage;
/** Output variables */
LabelPosteriorProbabilityMap m_LabelPosteriorProbabilityImages;
VotingWeightImageList m_AtlasVotingWeightImages;
InputImageList m_JointIntensityFusionImage;
};
} // namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
# include "itkWeightedVotingFusionImageFilter.hxx"
#endif
#endif
|