1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
|
/*=========================================================================
Program: Advanced Normalization Tools
Copyright (c) ConsortiumOfANTS. All rights reserved.
See accompanying COPYING.txt or
https://github.com/stnava/ANTs/blob/master/ANTSCopyright.txt for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notices for more information.
=========================================================================*/
#ifndef _itkPreservationOfPrincipalDirectionTensorReorientationImageFilter_cxx
#define _itkPreservationOfPrincipalDirectionTensorReorientationImageFilter_cxx
#include "antsAllocImage.h"
#include "itkConstNeighborhoodIterator.h"
#include "itkNeighborhoodInnerProduct.h"
#include "itkImageRegionIteratorWithIndex.h"
#include "itkImageRegionConstIterator.h"
#include "itkNeighborhoodAlgorithm.h"
#include "itkOffset.h"
#include "itkProgressReporter.h"
#include "itkObjectFactory.h"
#include "itkVector.h"
#include "itkPreservationOfPrincipalDirectionTensorReorientationImageFilter.h"
#include "itkVectorLinearInterpolateImageFunction.h"
#include "itkNumericTraitsFixedArrayPixel.h"
#include "itkCentralDifferenceImageFunction.h"
#include "itkVariableSizeMatrix.h"
#include "itkDecomposeTensorFunction.h"
#include "itkSymmetricSecondRankTensor.h"
#include <vnl/vnl_cross.h>
#include <vnl/vnl_inverse.h>
#include "vnl/algo/vnl_qr.h"
#include "vnl/algo/vnl_svd.h"
// #include <vnl/vnl_inverse_transpose.h>
namespace itk
{
template <typename TTensorImage, typename TVectorImage>
PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage, TVectorImage>::
PreservationOfPrincipalDirectionTensorReorientationImageFilter()
{
m_DisplacementField = nullptr;
m_DirectionTransform = nullptr;
m_AffineTransform = nullptr;
m_InverseAffineTransform = nullptr;
m_UseAffine = false;
m_UseImageDirection = true;
}
template <typename TTensorImage, typename TVectorImage>
void
PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage, TVectorImage>::DirectionCorrectTransform(
AffineTransformPointer transform,
AffineTransformPointer direction)
{
AffineTransformPointer directionTranspose = AffineTransformType::New();
directionTranspose->SetIdentity();
typename AffineTransformType::MatrixType dirTransposeMatrix(direction->GetMatrix().GetTranspose());
directionTranspose->SetMatrix(dirTransposeMatrix);
transform->Compose(direction, true);
transform->Compose(directionTranspose, false);
}
template <typename TTensorImage, typename TVectorImage>
typename PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage, TVectorImage>::TensorType
PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage, TVectorImage>::ApplyReorientation(
InverseTransformPointer deformation,
TensorType tensor)
{
VnlMatrixType DT(3, 3);
DT.fill(0);
DT(0, 0) = tensor[0];
DT(1, 1) = tensor[3];
DT(2, 2) = tensor[5];
DT(1, 0) = DT(0, 1) = tensor[1];
DT(2, 0) = DT(0, 2) = tensor[2];
DT(2, 1) = DT(1, 2) = tensor[4];
vnl_symmetric_eigensystem<RealType> eig(DT);
TensorType outTensor;
TransformInputVectorType ev1;
TransformInputVectorType ev2;
TransformInputVectorType ev3;
for (unsigned int i = 0; i < 3; i++)
{
ev1[i] = eig.get_eigenvector(2)[i];
ev2[i] = eig.get_eigenvector(1)[i];
ev3[i] = eig.get_eigenvector(0)[i];
}
TransformOutputVectorType ev1r = deformation->TransformVector(ev1);
ev1r.Normalize();
// Get aspect of rotated e2 that is perpendicular to rotated e1
TransformOutputVectorType ev2a = deformation->TransformVector(ev2);
if ((ev2a * ev1r) < 0)
{
ev2a = ev2a * (-1.0);
}
TransformOutputVectorType ev2r = ev2a - (ev2a * ev1r) * ev1r;
ev2r.Normalize();
TransformOutputVectorType ev3r = CrossProduct(ev1r, ev2r);
ev3r.Normalize();
VnlVectorType e1(3);
VnlVectorType e2(3);
VnlVectorType e3(3);
for (unsigned int i = 0; i < 3; i++)
{
e1[i] = ev1r[i];
e2[i] = ev2r[i];
e3[i] = ev3r[i];
}
VnlMatrixType DTrotated = eig.get_eigenvalue(2) * outer_product(e1, e1) +
eig.get_eigenvalue(1) * outer_product(e2, e2) +
eig.get_eigenvalue(0) * outer_product(e3, e3);
outTensor[0] = DTrotated(0, 0);
outTensor[1] = DTrotated(0, 1);
outTensor[2] = DTrotated(0, 2);
outTensor[3] = DTrotated(1, 1);
outTensor[4] = DTrotated(1, 2);
outTensor[5] = DTrotated(2, 2);
return outTensor;
}
template <typename TTensorImage, typename TVectorImage>
typename PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage,
TVectorImage>::AffineTransformPointer
PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage, TVectorImage>::GetLocalDeformation(
DisplacementFieldPointer field,
typename DisplacementFieldType::IndexType index)
{
AffineTransformPointer affineTransform = AffineTransformType::New();
affineTransform->SetIdentity();
typename AffineTransformType::MatrixType jMatrix;
jMatrix.Fill(0.0);
typename DisplacementFieldType::SizeType size = field->GetLargestPossibleRegion().GetSize();
typename DisplacementFieldType::SpacingType spacing = field->GetSpacing();
typename DisplacementFieldType::IndexType ddrindex;
typename DisplacementFieldType::IndexType ddlindex;
typename DisplacementFieldType::IndexType difIndex[ImageDimension][2];
unsigned int posoff = 1;
RealType space = 1.0;
RealType mindist = 1.0;
RealType dist = 100.0;
bool oktosample = true;
for (unsigned int row = 0; row < ImageDimension; row++)
{
dist = fabs((RealType)index[row]);
if (dist < mindist)
{
oktosample = false;
}
dist = fabs((RealType)size[row] - (RealType)index[row]);
if (dist < mindist)
{
oktosample = false;
}
}
if (oktosample)
{
typename DisplacementFieldType::PixelType cpix = m_DisplacementField->GetPixel(index);
cpix = this->TransformVectorByDirection(cpix);
// itkCentralDifferenceImageFunction does not support vector images so do this manually here
for (unsigned int row = 0; row < ImageDimension; row++)
{
difIndex[row][0] = index;
difIndex[row][1] = index;
ddrindex = index;
ddlindex = index;
if ((int)index[row] < (int)(size[row] - 2))
{
difIndex[row][0][row] = index[row] + posoff;
ddrindex[row] = index[row] + posoff * 2;
}
if (index[row] > 1)
{
difIndex[row][1][row] = index[row] - 1;
ddlindex[row] = index[row] - 2;
}
RealType h = 1;
space = 1.0; // should use image spacing here?
typename DisplacementFieldType::PixelType rpix = m_DisplacementField->GetPixel(difIndex[row][1]);
typename DisplacementFieldType::PixelType lpix = m_DisplacementField->GetPixel(difIndex[row][0]);
typename DisplacementFieldType::PixelType rrpix = m_DisplacementField->GetPixel(ddrindex);
typename DisplacementFieldType::PixelType llpix = m_DisplacementField->GetPixel(ddlindex);
if (this->m_UseImageDirection)
{
rpix = this->TransformVectorByDirection(rpix);
lpix = this->TransformVectorByDirection(lpix);
rrpix = this->TransformVectorByDirection(rrpix);
llpix = this->TransformVectorByDirection(llpix);
}
rpix = rpix * h + cpix * (1. - h);
lpix = lpix * h + cpix * (1. - h);
rrpix = rrpix * h + rpix * (1. - h);
llpix = llpix * h + lpix * (1. - h);
typename DisplacementFieldType::PixelType dPix =
(lpix * 8.0 + llpix - rrpix - rpix * 8.0) * space / (12.0); // 4th order centered difference
// typename DisplacementFieldType::PixelType dPix=( lpix - rpix )*space/(2.0*h); //4th order centered difference
for (unsigned int col = 0; col < ImageDimension; col++)
{
RealType val = dPix[col] / spacing[col];
if (row == col)
{
val += 1.0;
}
jMatrix(col, row) = val;
}
}
}
for (unsigned int jx = 0; jx < ImageDimension; jx++)
{
for (unsigned int jy = 0; jy < ImageDimension; jy++)
{
if (!std::isfinite(jMatrix(jx, jy)))
{
oktosample = false;
}
}
}
if (!oktosample)
{
jMatrix.Fill(0.0);
for (unsigned int i = 0; i < ImageDimension; i++)
{
jMatrix(i, i) = 1.0;
}
}
affineTransform->SetMatrix(jMatrix);
// this->DirectionCorrectTransform( affineTransform, this->m_DirectionTransform );
return affineTransform;
}
template <typename TTensorImage, typename TVectorImage>
void
PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage, TVectorImage>::GenerateData()
{
// get input and output images
// FIXME - use buffered region, etc
InputImagePointer input = this->GetInput();
OutputImagePointer output = this->GetOutput();
this->m_DirectionTransform = AffineTransformType::New();
this->m_DirectionTransform->SetIdentity();
AffineTransformPointer directionTranspose = AffineTransformType::New();
directionTranspose->SetIdentity();
if (this->m_UseAffine)
{
this->m_DirectionTransform->SetMatrix(input->GetDirection());
if (this->m_UseImageDirection)
{
this->DirectionCorrectTransform(this->m_AffineTransform, this->m_DirectionTransform);
}
this->m_InverseAffineTransform = this->m_AffineTransform->GetInverseTransform();
output->SetRegions(input->GetLargestPossibleRegion());
output->SetSpacing(input->GetSpacing());
output->SetOrigin(input->GetOrigin());
output->SetDirection(input->GetDirection());
output->AllocateInitialized();
}
else
{
// Retain input image space as that should be handled in antsApplyTransforms
this->m_DirectionTransform->SetMatrix(m_DisplacementField->GetDirection());
output->SetRegions(input->GetLargestPossibleRegion());
output->SetSpacing(input->GetSpacing());
output->SetOrigin(input->GetOrigin());
output->SetDirection(input->GetDirection());
output->AllocateInitialized();
this->m_DisplacementTransform = DisplacementFieldTransformType::New();
this->m_DisplacementTransform->SetDisplacementField(m_DisplacementField);
}
ImageRegionIteratorWithIndex<OutputImageType> outputIt(output, output->GetLargestPossibleRegion());
VariableMatrixType jMatrixAvg;
jMatrixAvg.SetSize(ImageDimension, ImageDimension);
jMatrixAvg.Fill(0.0);
std::cout << "Iterating over image" << std::endl;
// for all voxels
for (outputIt.GoToBegin(); !outputIt.IsAtEnd(); ++outputIt)
{
InverseTransformPointer localDeformation;
// FIXME - eventually this will be callable via a generic transform base class
if (this->m_UseAffine)
{
localDeformation = this->m_InverseAffineTransform;
}
else
{
AffineTransformPointer deformation = this->GetLocalDeformation(this->m_DisplacementField, outputIt.GetIndex());
localDeformation = deformation->GetInverseTransform();
}
TensorType inTensor = input->GetPixel(outputIt.GetIndex());
TensorType outTensor;
// valid values?
bool hasNans = false;
for (unsigned int jj = 0; jj < 6; jj++)
{
if (std::isnan(inTensor[jj]) || std::isinf(inTensor[jj]))
{
hasNans = true;
;
}
}
bool isNull = false;
RealType trace = inTensor[0] + inTensor[3] + inTensor[5];
if (trace <= 0.0)
{
isNull = true;
}
if (hasNans || isNull)
{
outTensor = inTensor;
}
else
{
// outTensor = inTensor;
// InverseTransformPointer localDeformation;
if (this->m_UseAffine)
{
outTensor = this->m_AffineTransform->TransformDiffusionTensor3D(inTensor);
// localDeformation = this->m_InverseAffineTransform;
}
else
{
typename DisplacementFieldType::PointType pt;
this->m_DisplacementField->TransformIndexToPhysicalPoint(outputIt.GetIndex(), pt);
outTensor = this->m_DisplacementTransform->TransformDiffusionTensor3D(inTensor, pt);
// AffineTransformPointer deformation = this->GetLocalDeformation( this->m_DeformationField, outputIt.GetIndex()
// );
// localDeformation = deformation->GetInverseTransform();
}
/*
std::cout << "apply";
outTensor = this->ApplyReorientation( localDeformation, inTensor );
std::cout << " ok" << std::endl;
*/
}
// valid values?
for (unsigned int jj = 0; jj < 6; jj++)
{
if (std::isnan(outTensor[jj]) || std::isinf(outTensor[jj]))
{
outTensor[jj] = 0;
}
}
outputIt.Set(outTensor);
}
}
/**
* Standard "PrintSelf" method
*/
template <typename TTensorImage, typename TVectorImage>
void
PreservationOfPrincipalDirectionTensorReorientationImageFilter<TTensorImage, TVectorImage>::PrintSelf(
std::ostream & os,
Indent indent) const
{
Superclass::PrintSelf(os, indent);
}
} // end namespace itk
#endif
|