1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
#ifndef CONVOLUTIONS_H
#define CONVOLUTIONS_H
#include "../../structures/types.h"
#include "../../util/rng.h"
#include <cmath>
class Convolutions {
public:
/**
* This function will convolve data with the specified kernel. It will
* place the element at position (kernelSize/2) of the kernel in the
* centre, i.e. data[0] := sum over i in kS : data[i - kS + _kS/2_] *
* kernel[i]. Therefore, it makes most sense to specify an odd kernelSize if
* the kernel consists of a peak / symmetric function.
*
* This function assumes the function represented by @c data is zero outside
* its domain [0..dataSize}.
*
* This function does not reverse one of the input functions, therefore this
* function is not adhering to the strict definition of a convolution.
*
* This function does not use an FFT to calculate the convolution, and is
* therefore O(dataSize x kernelSize).
*
* @param data The data to be convolved (will also be the output)
* @param dataSize Number of samples in data
* @param kernel The kernel to be convolved, central sample = kernelSize/2
* @param kernelSize Number of samples in the kernel, probably desired to be
* odd if the kernel is symmetric.
*/
static void OneDimensionalConvolutionBorderZero(num_t *data,
unsigned dataSize,
const num_t *kernel,
unsigned kernelSize) {
num_t *tmp = new num_t[dataSize];
for (unsigned i = 0; i < dataSize; ++i) {
unsigned kStart, kEnd;
const int offset = i - kernelSize / 2;
// Make sure that kStart >= 0
if (offset < 0)
kStart = -offset;
else
kStart = 0;
// Make sure that kEnd + offset <= dataSize
if (offset + kernelSize > dataSize)
kEnd = dataSize - offset;
else
kEnd = kernelSize;
num_t sum = 0.0;
for (unsigned k = kStart; k < kEnd; ++k)
sum += data[k + offset] * kernel[k];
tmp[i] = sum;
}
for (unsigned i = 0; i < dataSize; ++i) data[i] = tmp[i];
delete[] tmp;
}
/**
* This function will convolve data with the specified kernel. It will
* place the element at position (kernelSize/2) of the kernel in the
* centre, i.e. data[0] := sum over i in kS : data[i - kS + _kS/2_] *
* kernel[i]. Therefore, it makes most sense to specify an odd kernelSize if
* the kernel consists of a peak / symmetric function.
*
* This function assumes the function represented by @c data is not zero
* outside its domain [0..dataSize}, but is "unknown". It assumes that the
* integral over @c kernel is one. If this is not the case, you have to
* multiply all output values with the kernels integral after convolution.
*
* This function does not reverse one of the input functions, therefore this
* function is not adhering to the strict definition of a convolution.
*
* This function does not use an FFT to calculate the convolution, and is
* therefore O(dataSize x kernelSize).
*
* @param data The data to be convolved (will also be the output)
* @param dataSize Number of samples in data
* @param kernel The kernel to be convolved, central sample = kernelSize/2
* @param kernelSize Number of samples in the kernel, probably desired to be
* odd if the kernel is symmetric.
*/
static void OneDimensionalConvolutionBorderInterp(num_t *data,
unsigned dataSize,
const num_t *kernel,
unsigned kernelSize) {
num_t *tmp = new num_t[dataSize];
for (unsigned i = 0; i < dataSize; ++i) {
unsigned kStart, kEnd;
const int offset = i - kernelSize / 2;
// Make sure that kStart >= 0
if (offset < 0)
kStart = -offset;
else
kStart = 0;
// Make sure that kEnd + offset <= dataSize
if (offset + kernelSize > dataSize)
kEnd = dataSize - offset;
else
kEnd = kernelSize;
num_t sum = 0.0;
num_t weight = 0.0;
for (unsigned k = kStart; k < kEnd; ++k) {
sum += data[k + offset] * kernel[k];
weight += kernel[k];
}
// Weighting is performed to correct for the "missing data" outside the
// domain of data. The actual correct value should be sum * (sumover
// kernel / sumover kernel-used ). We however assume "sumover kernel" to
// be 1. sumover kernel-used is the weight.
tmp[i] = sum / weight;
}
for (unsigned i = 0; i < dataSize; ++i) data[i] = tmp[i];
delete[] tmp;
}
static void OneDimensionalGausConvolution(num_t *data, unsigned dataSize,
num_t sigma) {
unsigned kernelSize = (unsigned)roundn(sigma * 3.0L);
if (kernelSize % 2 == 0) ++kernelSize;
if (kernelSize > dataSize * 2) {
if (dataSize == 0) return;
kernelSize = dataSize * 2 - 1;
}
unsigned centreElement = kernelSize / 2;
num_t *kernel = new num_t[kernelSize];
for (unsigned i = 0; i < kernelSize; ++i) {
num_t x = ((num_t)i - (num_t)centreElement);
kernel[i] = RNG::EvaluateGaussian(x, sigma);
}
OneDimensionalConvolutionBorderInterp(data, dataSize, kernel, kernelSize);
delete[] kernel;
}
/**
* Perform a sinc convolution. This is equivalent with a low-pass filter,
* where @c frequency specifies the frequency in index units.
*
* With frequency=1, the data will be convolved with the
* delta function and have no effect. With frequency = 0.25,
* all fringes faster than 0.25 fringes/index units will be
* filtered.
*
* The function is O(dataSize^2).
*/
static void OneDimensionalSincConvolution(num_t *data, unsigned dataSize,
num_t frequency) {
if (dataSize == 0) return;
const unsigned kernelSize = dataSize * 2 - 1;
const unsigned centreElement = kernelSize / 2;
num_t *kernel = new num_t[kernelSize];
const numl_t factor = 2.0 * frequency * M_PInl;
numl_t sum = 0.0;
for (unsigned i = 0; i < kernelSize; ++i) {
const numl_t x = (((numl_t)i - (numl_t)centreElement) * factor);
if (x != 0.0)
kernel[i] = (num_t)(sinnl(x) / x);
else
kernel[i] = 1.0;
sum += kernel[i];
}
for (unsigned i = 0; i < kernelSize; ++i) {
kernel[i] /= sum;
}
OneDimensionalConvolutionBorderZero(data, dataSize, kernel, kernelSize);
delete[] kernel;
}
/**
* Perform a sinc convolution, with a convolution kernel that has been Hamming
* windowed. Because of the hamming window, the filter has less of a steep
* cutting edge, but less ripples.
*
* See OneDimensionalSincConvolution() for more info.
*
* The function is O(dataSize^2).
*/
static void OneDimensionalSincConvolutionHammingWindow(num_t *data,
unsigned dataSize,
num_t frequency) {
if (dataSize == 0) return;
const unsigned kernelSize = dataSize * 2 - 1;
const unsigned centreElement = kernelSize / 2;
num_t *kernel = new num_t[kernelSize];
const numl_t sincFactor = 2.0 * frequency * M_PInl;
const numl_t hammingFactor = 2.0 * M_PInl * (numl_t)(kernelSize - 1);
numl_t sum = 0.0;
for (unsigned i = 0; i < kernelSize; ++i) {
const numl_t hamming = 0.54 - 0.46 * cosnl(hammingFactor * (numl_t)i);
const numl_t x = (((numl_t)i - (numl_t)centreElement) * sincFactor);
if (x != 0.0)
kernel[i] = (num_t)(sinnl(x) / x) * hamming;
else
kernel[i] = 1.0;
sum += kernel[i];
}
for (unsigned i = 0; i < kernelSize; ++i) {
kernel[i] /= sum;
}
OneDimensionalConvolutionBorderZero(data, dataSize, kernel, kernelSize);
delete[] kernel;
}
};
#endif
|